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The Curved Space is the Electrified Flat Space

Jamila Douari
Department of Science, University of North Florida, 1 UNF Drive 32224, Jacksonville, Florida, USA.

High Energy Section, The Abdus Salam International Center for Theoretical Physics, Trieste, Italy.
E-mail: jdouari@hotmail.com

The responsibility of the electric field E in the modification of the nature of the space
is proved. We investigate the way the fundamental strings are related to super-gravity
background of D5-branes; i.e. once the endpoints of the D-strings are electrified the flat
space becomes curved. We study the electrified relative and overall transverse pertur-
bations of fuzzy funnel solutions of intersecting (N,N f )-strings and D5-branes in flat
and super-gravity backgrounds respectively. As a result the perturbations have a dis-
continuity which corresponds to a zero phase shift realizing Polchinski’s open string
Neumann boundary condition. And once the electric field E is turned on in flat space
these perturbations decrease and when E is close to the critical value 1/λ the perturba-
tions disappear forever and the string coupling becomes strong. At this stage the space is
considered curved and the electric field is responsible for this effect. This phenomenon
is also enhanced by the behavior of the potential V associated to the perturbations Φ
on the funnel solutions under the influence of the electric field. The potential goes too
fast to −∞ when E goes to the critical value 1/λ in flat space which looks like a kink
to increase the velocity for Φ to disappear. But in curved space and close to the inter-
secting point we do not find any perturbation for all E and there is no effect of E on V
and this is a sign to the absence of the perturbation effects in super-gravity background.
This clarifies the existence of a relation between the electric field and the super-gravity
background.

1 Introduction

The present work proves the fact that the flat space becomes
curved because of the presence of the electric field. We use
the non-Abelian Dirac-Born-Infeld (DBI) effective action for
this study. Many results using this action have dealt with
brane intersections and polarization [1–3, 5, 6, 18]. The study
of brane intersections has given a realization of non-commu-
tative geometry in the form of so-called fuzzy funnels [7–13].
In the context of time dependence in string theory from the
effective D-brane action, we expect that the hyperplanes can
fluctuate in shape and position as dynamical objects.

We deal with the branes intersection problem of (N,N f )-
strings with D5-branes in flat and curved spaces by treating
the relative and overall transverse perturbations. And it will
be devoted to extend the research begun in [9, 12, 13]. The
duality of intersecting D1-D3 branes in the low energy ef-
fective theory in the presence of electric field is found to be
broken in [11] but the duality of intersecting D1-D5 branes
discussed in [12] is unbroken in the same theory with the elec-
tric field switched on which allows us to be more interested
by the study of the intersecting D1-D5 branes.

We observe, in section 2, that the most lowest energy is
gotten as the electric field E is approximately its critical value
1/λ (λ = 2πℓ2

s and ℓs the string length) and also as E is going
to 1/λ the physical radius is going to the highest value and
then D5-brane is getting bulky.

The analysis we give in sections 3 and 4 proves that the
perturbations have a discontinuity which corresponds to zero

phase shift and then the string is Polchinski’s open string
obeying Neumann boundary condition. Hence the endpoints
lie on the hyperplane are still free to move in.

We also look for more effects of E on the perturbations
and the associated potentials. The behavior of the perturba-
tions in both backgrounds is as follows: in flat space (section
3), the perturbations are disappearing because of the presence
of E and when E ≈ 1/λ we end by no perturbation and our
system is stable; and in curved space (section 4) we did not
get any perturbation for all E which means the presence of
the super-gravity does not allow any perturbation to appear in
the same way that E does in flat space.

The effect of E on the potentials associated to the pertur-
bations in flat and curved spaces is the following: the poten-
tial is going down too fast to a very low amplitude minima
(−∞) in flat space as E is going to its maxima, this is inter-
preted as inducing an increase in the velocity of the perturba-
tion to disappear; and in curved space the effect of E on the
potential is absent.

The comparison of the flat and curved cases leads us to
say if E or super-gravity is present then the perturbations
should be absent. This looks like E affects the flat background
of D5-brane and transformed it to super-gravity background
where the objects are stable. Consequently, we can think of
E and super-gravity as dual.

It’s known that in curved space the string coupling gs is
strong. And from our study the electric field E is fixed in
terms of gs by the relation E = 1

λ
(1 + (N/N f gs)2)−1/2. Then
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if E ≈ 1/λ that means N f gs ≫ 1 and gs is strong. In this
case the system should be described by Quantum Field The-
ory (QFT) in curved space where no perturbations show up.
Hence our electric field is sending us to another theory such
that our space is not flat any more.

The effect of the electric field is clear in this work. E in-
creases the volume of D5-brane and decreases the low energy
of the system and changes the nature of the background from
flat to curved and tells us the system should now be studied
in QFT in curved space.

We start the study by introducing D1⊥D5 branes and dis-
cussing the influence of the electric field on the low energy
and the volume of D5-brane in section 2. We give the so-
lutions of the linearized equations of motion of the relative
transverse perturbations in flat space and we treat the effect
of the electric field on the perturbations and the associated
potentials in section 3. Then in section 4, we study the over-
all transverse perturbations and their associated potentials in
zero and non-zero modes propagating on a dyonic string in
the super-gravity background of the orthogonal D5-branes
and we look for the effect of the electric field in this case.
The discussion and conclusion are presented in section 5.

2 Intersecting D1 and D5 branes

Let’s briefly review the non-abelian viewpoint of the (N,N f )-
strings which grow into D5-branes by using non-commutative
coordinates [7, 15, 18]. The dual picture is the intersecting
D5 and D1 branes such that (N,N f )-strings can end on D5-
branes, but they must act as sources of second Chern class
or instanton number in the world volume theory of the D5-
branes. Hence D5 world volume description is complicated
because of the second chern term which is not vanishing. The
most important feature of the intersecting D1-D5 branes is
the fact that the duality of this system discussed in [12] in the
low energy effective theory with the electric field switched on
is unbroken.

In the present description, the fundamental N f strings are
introduced by adding a U(1) electric field denoted Fτσ = EIN ,
with IN the N × N identity matrix. In fact the electric field
turns the N D-strings into a (N,N f )-strings by dissolving the
fundamental string degrees of freedom into the world volume.

For a fixed E we consider the quantization condition on
the displacement D = N f

N such that

D ≡ 1
N
δS
δE
=

λ2T1E
√

1 − λ2E2
.

Then the electric field is expressed in terms of string coupling
gs and the number of fundamental strings N f ,

E =
1
λ

1 + (
N

N f gs

)2−1/2

. (1)

The electric field is turned on and the system dyonic is
described by the action

S = −T1

∫
d2σ×

× S Tr
[
−det

(
ηab + λFabλ∂aΦ

j − λ∂bΦ
iQi j

)] 1
2

(2)

with i, j = 1, ..., 5, a, b = τ, σ and using T = 1/λgs such that
λ = 2πl2s with ls is the string length, gs is the string coupling
and Qi j = δi j + iλ[Φi,Φ j]. The funnel solution is given by
suggesting the ansatz

Φi(σ) = ∓R̂(σ)Gi (3)

i = 1, ..., 5, where R̂(σ) is the (positive) radial profile and
Gi are the matrices constructed by Castelino, Lee and Taylor
in [14]. We note that Gi are given by the totally symmet-
ric n-fold tensor product of 4×4 Euclidean gamma matrices,
such that 1

2 [Gi,G j] are generators of SO(5) rotations, and that
the dimension of the matrices is related to the integer n by
N = (n + 1)(n + 2)(n + 3)/6. The funnel solution (3) has the
following physical radius

R(σ) =
√

cλR̂(σ) (4)

with c is the Casimir associated with the Gi matrices, given
by c = n(n + 4), and the funnel solution is

Φi(σ) = ±R(σ)
λ
√

c
Gi . (5)

We compute the determinant in (2) and we obtain

S = −NT1

∫
d2σ

√
1 − λ2E2 + (R′)2

(
1 + 4

R4

cλ2

)
. (6)

This result only captures the leading large N contribution at
each order in the expansion of the square root. Using the
action (6), we can derive the lowest energy ξmin as the electric
field is present and E ∈ ]0, 1/λ[, (the low energy in the case
of intersecting D1-D5 branes when the electric field is absent
was discussed in [15])

ξ = NT1

∫
dσ

[(√
1 − λ2E2 ∓ R′

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2

+

+

(
R′ ±

√
1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2
)2] 1

2

and

ξmin = NT1

√
1 − λ2E2

∫ (
1 +

4R4

cλ2

)2

dσ. (7)

such that

R′ = ∓
√

1 − λ2E2

(
8R4

cλ2 +
16R8

c2λ4

) 1
2

. (8)
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The lowest energy (7) can be rewritten in the following ex-
pression

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR − ∆ξ.

(9)

In this equation, T5 = T1/(2πls)4 and we can interpret the four
terms as follows; the first term is the energy of N f strings and
the second is the energy of 6N/c ≈ n (for large N) D5-branes
and the third is of N D-strings running out radially across D5-
brane world volume and the last term is a binding energy

∆ξ = 2NT1

√
1 − λ2E2 ×

×
∫ ∞

0
du u4

1 + 1
2u4 −

√
1 +

1
u4


≈ 1.0102 T1lsNc

1
4

√
1 − λ2E2.

(10)

This equation shows that the lowest energy is gotten more
lowest as the value of electric field is more important.

The equation (6) can be solved in the dyonic case by con-
sidering various limits. For small R, the physical radius of the
fuzzy funnel solution (5) is found to be

R(σ) ≈ λ
√

c

2
√

2
√

1 − λ2E2σ
(11)

and for large R the solution is

R(σ) ≈
(

λ2c
√

18
√

1 − λ2E2σ

) 1
3

(12)

with an upper bound on the electric field E < 1/λ for both
cases.

According to equations (11) and (12), we remark that as
the higher order terms in the BI action would effect a tran-
sition from the universal small R behavior to the “harmonic”
expansion at large R (σ goes to zero). The effect we get at
this stage when the electric field is turned on is that R is go-
ing up faster as σ goes to zero once E reaches approximately
1/2λ as shown in Fig. 1, and we are on D5-brane. It looks like
the electric field increases the velocity of the transition from
strings to D5-branes world volume. Also we remark that D5
brane got highest radius once E close to its critical value.

The equations (9) and (12) give us the impression that
the presence of the electric field is an important phenomena;
it decreases the low energy and makes the D5-brane more
voluminous.

In the following sections, we include a perturbation in the
D5-brane configuration by simply adding lower and higher
order symmetric polynomials in the Gi to the matrix configu-
ration. We study the spatial perturbations of the moving D1-
branes as the electric field is switched on.

Fig. 1: Large radius.

3 Flat space

In this section, we examine the propagation of the perturba-
tions on the fuzzy funnel by considering dyonic strings in flat
background. We discuss the relative transverse perturbations
which are transverse to the string, but parallel to the D5-brane
world volume (i.e. along X1,..,5). The overall transverse per-
turbations were studied in [13].

We give the relative transverse perturbations in the fol-
lowing form

δϕi(σ, t) = f i(σ, t)IN , (13)

as zero mode with i = 1, .., 5 and IN the identity matrix. By
inserting this perturbation into the full (N,N f )-string action
(2), together with the funnel (6) the action is found to be

S ≈ −NT1

∫
d2σ

[ (
1 − λ2E2

)
A−

− (1 − λE)
λ2

2

(
ḟ i
)2
+

(1 + λE)λ2

2A

(
∂σ f i

)2
+ ...

] (14)

with

A =
(
1 +

4R(σ)4

cλ2

)2

. (15)

Then, in large and fixed n the equations of motion are

1 − λE
1 + λE

{
1 +

n2λ2

16(1 − λ2E2)2σ4

}2

∂2
τ − ∂2

σ

 f i = 0 . (16)

Let’s suggest that

f i = Φ(σ)e−iwτδxi,
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in the direction of δxi with Φ is a function of σ and the equa-
tions of motion become−1 − λE

1 + λE

(
1 +

n2λ2

16(1 − λ2E2)2σ4

)2

w2 − ∂2
σ

Φ = 0 (17)

which can be rewritten as(
− 1 − λE

1 + λE

(
n2λ2

8(1 − λ2E2)2σ4+

+
n4λ4

162(1 − λ2E2)4σ8

)
w2 − ∂2

σ

)
Φ =

1 − λE
1 + λE

w2Φ .

(18)

Since the equation looks complicated, we simplify the calcu-
lations by dealing with asymptotic analysis; we start by the
system in small and then large σ limits.

3.1 Small σ region

In this region, we see that σ8 dominates and the equation of
motion is reduced to(

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (19)

for each direction δxi, with the potential

V(σ) = − w2n4λ4

162(1 + λE)5(1 − λE)3σ8 . (20)

The progress of this potential is shown in Fig. 2; when we
are close to the D5-brane the potential is close to zero and
once E is turned on it gets negative values until E is close
to its maxima, we see this potential goes down too fast to a
very low amplitude minima (−∞). This phenomenon should
have a physical meaning! This could be thought as a kink to
increase theΦ’s velocity to push the perturbation to disappear.

To solve (19), we consider the total differential on the per-
turbation. Let’s denote ∂σΦ ≡ Φ′. Since Φ depends only on
σ we find dΦ

dσ = ∂σΦ. We rewrite (19) in this form

1
Φ

dΦ′

dσ
= −w2

[
n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]
. (21)

An integral formula can be written as follows

Φ′∫
0

dΦ′

Φ
= −

σ∫
0

w2
[

n4λ4

162(1 + λE)5(1 − λE)3σ8 + 1
]

dσ (22)

which gives

Φ′

Φ
= −w2

[
− n4λ4

162(1 + λE)5(1 − λE)3 × 7σ7 + σ

]
+ α . (23)

We integrate again the following

Φ∫
0

dΦ
Φ
= −

σ∫
0

dσ×

×
(
w2

[
− n4λ4

162 7(1 + λE)5(1 − λE)3σ7 + σ

]
+ α

)
.

(24)

Fig. 2: Potential associated to the relative transverse perturbations in
small region in flat space.

Fig. 3: Relative transverse perturbations in small region in flat space.

We get

lnΦ = −w2
[
− n4λ4

162 42(1 + λE)5(1 − λE)3σ6 +
σ2

2

]
+

+ ασ + β

(25)

and the perturbation in small σ region is found to be

Φ(σ) = β e
−w2

[
− n4λ4

162 42(1+λE)5(1−λE)3σ6 +
σ2
2

]
+ασ

(26)

with β and α are constants.
We plot the progress of the obtained perturbation. First

we consider the constants β = 1 = α, then the small spatial
coordinate in the interval [0, 10] with the unit of λ = 1, w = 1
and n ≈ 103 with the electric field in [0, 1[.

As shown in Fig. 3, close to D5-brane there is perturba-
tion. We remark that as E goes up, the perturbation goes
down. And when E ≈ 1/λwe observe no perturbation effects.

142 Jamila Douari. The Curved Space is The Electrified Flat Space
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Fig. 4: Potential of relative transverse perturbations in large region
in flat space.

At this stage, according to (1) the string coupling gets strong
N f gs ≫ 1 which means the system background is changed.
We know that with strong coupling the system should be in
super-gravity background where the perturbations are no
more. Consequently, the presence of E kills the perturbation
and moves the system from flat to super-gravity background.

3.2 Large σ region

By considering large σ limit the equation of motion (18) be-
comes (

− ∂2
σ + V(σ)

)
Φ =

1 − λE
1 + λE

w2Φ (27)

with the potential

V(σ) = − w2n2λ2

8(1 + λE)3(1 − λE)σ4 . (28)

By plotting the progress of this potential (Fig. 4) we remark
that when σ goes faraway from the D5-brane the potential
vanishes approximately for all values of the electric field.
And close to D5-brane the potential gets negative values. The
effect of E is very clear; as E goes up V slows down the de-
creasing until the medium of E, then V decreases too fast until
its minimum value for E going up to its critical value.

Consequently, the electric field has the same effect on V
in both regions of σ; as E goes to its maxima V goes to its
minima.

To solve (27) we rewrite it in the following form(
∂2
σ̃ +

κ2

σ̃4 + 1
)
Φ = 0, (29)

Fig. 5: Relative transverse perturbations in large region in flat space.

with

σ̃ =

√
1 − λE
1 + λE

wσ (30)

and

κ2 =
n2λ2

8w2(1 + λE)(1 − λE)3 . (31)

Eq. (29) is a Schrödinger equation for an attractive singu-
lar potential ∝ σ̃−4 and depends on the single coupling param-
eter κwith constant positive Schrödinger energy. The solution
is then known by making the following coordinate change

χ(σ̃) =

σ̃∫
√
κ

dy

√
1 +

κ2

y4 (32)

and

Φ =

(
1 +

κ2

σ̃4

)− 1
4

Φ̃. (33)

Thus, (29) becomes(
− ∂2

χ + V(χ)
)
Φ̃ = 0 (34)

with

V(χ) =
5κ2(

σ̃2 +
κ2

σ̃2

)3 . (35)

Then, the perturbation is found to be

Φ =

(
1 +

κ2

σ̃4

)− 1
4

e±iχ(σ̃) (36)
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which has the following limit; since we are in large σ re-
gion Φ ∼ e±iχ(σ̃). This is the asymptotic wave function in
the region χ → +∞, while around χ ∼ 0, i.e. σ̃ ∼

√
κ and

σ ∼ nλ/2
√

2w2(1 − λE)2, Φ ∼ 2−
1
4 .

Owing to the plotting of the progress of this perturbation
(Fig. 5), by considering the real part of the function, the per-
turbation solution is totally different from the one gotten in
the small σ limit (26). Hence the perturbations have a dis-
continuity and the system is divided into two regions which
implies Neumann boundary conditions and the end of an open
string can move freely on the brane in the dyonic case, which
means the end of a string on D5-brane can be seen as an elec-
trically charged particle.

Fig. 5 shows that the perturbation is slowing down as E
is turned on then starts to disappear once E reaches the value
1/2λ. The perturbation disappears when E is too close to 1/λ
for all values of σ. The effect of E is very surprising! The
presence of E stops the perturbations.

No electric field means the intersecting point is in high
perturbation. Then as E is turned on the perturbations de-
crease. When E is close to its critical value the perturbations
are no more. They are killed by E. This phenomena matches
very well with the fact that gs becomes strong (N f gs ≫ 1)
at this point according to the relation (5) such that E ≈ 1/λ.
Consequently, we can suggest that the presence of the electric
field changes the background of D-branes from flat to super-
gravity background (where the string coupling is strong).

4 Curved space

We extend the investigation of the intersecting D1-D5 branes
to curved space. We consider again the presence of electric
field and the resulting configuration is a bound state of fun-
damental strings and D-strings. Under these conditions the
bosonic part of the effective action is the non-abelian BI ac-
tion

S = −T1

∫
d2σe−ϕS Tr

[
− det

(
P

(
Gab+

+Gai (Q−1 − δ)i jG jb + λFab
))

detQi j
] 1

2
(37)

with T1 the D1-brane tension, G the bulk metric, (for sim-
plicity we set the Kalb-Ramond two form B to be zero), ϕ
the dilaton and F the field strength, a, b = τ, σ and i, j =
1, 2, 3, 4, 5. Furthermore, P denotes the pullback of the bulk
space time tensors to each of the brane world volume. The
matrix Q is given by Qi

j = δ
i
j + iλ

[
ϕi, ϕk

]
Gk j, with ϕi are the

transverse coordinates to the D1-branes.
We consider the super-gravity background and the metric

of n D5-branes

ds2 =
1
√

h
ηµνdxµdxν +

√
h

(
dσ2 + σ2dΩ2

3

)
e−ϕ =

√
h

h = 1 +
L2

σ2

(38)

with µ, ν = τ, σ and L = nl2sgs.

4.1 Zero mode

In our work we treat E as a variable to discuss its influence
on the perturbations. We investigate the perturbations in the
super-gravity background of an orthogonal 5-brane in the
context of dyonic strings growing into D5-branes. The study
is focused on overall transverse perturbations in the zero
mode; δϕi = f i(τ, σ)I, i = 6, 7, 8, 9 and I is N × N identity
matrix.

The action describing the perturbed intersecting D1-D5
branes in the super-gravity background is

S ≡ −NT1e−ϕ
∫

d2σ

[
GττGσσ(1 + λE)−

λ2

2

(
1 − λ2E2

)
GσσGii( ḟ i)2+

+
λ2

2
(1 + λE) GττGii( f i)′2 + ...

]
≡ −NT1

∫
d2σ
√

h
[
1 + λE−

− λ
2αi

2h
(1 − λ2E2)( ḟ i)2+

+
λ2
√

hαi

2
(1 + λE)( f i)′2 + ...

]

(39)

where h(σ) = e−2ϕ = 1 + L2/σ2, ḟ i = ∂τ f i, ( f i)′ = ∂σ f i,
Gττ = h−1/2Gσσ =

√
he−ϕ and Gii = αi with αi some real

numbers.
The equations of motion of the perturbations are found to

be (
1 − λE

h3/2 ∂2
τ − ∂2

σ +
L2

hσ3 ∂σ

)
f i = 0 . (40)

If we consider σ̃2 = σ2 + L2 the equations of motion become(
1 − λE
√

h
∂2
τ − ∂2

σ̃

)
f i(σ̃, t) = 0 . (41)

We define the perturbations as

f i(σ̃, t) = Ψ(σ̃) e−iwτδxi (42)

with δxi (i = 6, 7, 8, 9) the direction of the perturbation and
(41) becomes(
−w2(1 − λE)

σ̃
√
σ̃2 − L2

− ∂2
σ̃

)
Ψ = w2(1 − λE)Ψ (43)
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Fig. 6: Potential in curved space for zero mode.

with the potential

V = −w2(1 − λE)
σ̃

√
σ̃2 − L2

= −w2(1 − λE)

√
σ2 + L2

σ
.

Fig. 6 shows the variation of the potential V in terms of σ.
We remark approximately the absence of the potential for all
large values of σ and V goes to zero as E goes to 1/λ. When
σ is too close to zero, in this case V is negative and goes
down too quick for all E and the potential is not that low. In
addition, in the curved space the effect of E is approximately
absent.

Let’s solve the differential equation (43). As we see this
is Heun’s equation and the solution is the perturbation

Ψ =
(
−σ̃2 + L2

)
×

×
[
ηHeunC

(
0,
−1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)
+

+ βHeunC
(
0,

1
2
, 1,

1
4
w2(1 − λE)L2,

1
2
+

+
1
4

(−L2 + L2)w2(1 − λE), σ̃2/L2
)]
σ̃

(44)

with η and β are constants.
We tried to plot the perturbation (44) for small region of

σ (the radius of funnel solution is too large) and there is no
perturbation in this region. The intersecting point is stable in
super-gravity background even if the electric field is present.

Fig. 7 shows the variation of the perturbation in terms of
the electric field E and the coordinate σ̃ in large region such
that the radius of funnel solution is too small. We set λ = 1,
w = 1 and n = 102. The perturbation is showing up as a peak

Fig. 7: Overall transverse perturbations in curved space for zero
mode.

for a while and for low electric field. In general we observe
approximately no perturbation effects for all E in this case.

The important remark we obtain by comparing the influ-
ence of E on the perturbation in flat and curved spaces is that
E kills the perturbation in flat space (Fig. 3, Fig. 5) and turns
the string coupling to be strong and then the flat space in this
case becomes curved when E reaches its critical value, but
when the space is already curved the influence of E is absent.
This observation leads us to think that E is strongly related in
some way to the super-gravity background.

4.2 Non-zero modes

Let’s now consider the non-zero modes, the perturbations can
be written in the form

δϕm(σ, t) =
N−1∑
ℓ=1

ψm
i1...iℓG

i1 ...Giℓ

and ψm
i1...iℓ

are completely symmetric and traceless in the lower
indices. We get two terms added to the action (39) to describe
the present system [ϕi, δϕm]2 and [∂σϕi, ∂tδϕ

m]2. Then in the
equation of motion (40) these two terms [ϕi, [ϕi, δϕm]] and
[∂σϕi, [∂σϕi, ∂2

t δϕ
m]] appeared. We have ϕi = RGi and by

straightforward calculations we have

[Gi, [Gi, δϕm], ] =
N−1∑
ℓ<N

ψm
i1...iℓ [G

i, [Gi,Gi1 ...Giℓ ]]

=

N−1∑
ℓ<N

ψm
i1...iℓϵ

i1...iℓGi1 ...Giℓ ,

=

N−1∑
ℓ<N

4ℓ(ℓ + β) δϕm
ℓ

(45)
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with ϵ i1...iℓ antisymmetric tensor and β a real number. To ob-
tain a specific spherical harmonic on 4-sphere, we have

[ϕi, [ϕi, δϕm
ℓ ]] =

ℓ(ℓ + β)λ2c
2(1 − λ2E2)σ2 δϕ

m
ℓ ,

[∂σϕi, [∂σϕi, ∂2
t δϕ

m]] =
ℓ(ℓ + β)λ2c

2(1 − λ2E2)σ4 ∂
2
t δϕ

m
ℓ .

(46)

Then for each mode we set δϕm
ℓ = f m

ℓ (σ̃)e−iωτδxm with f m
ℓ

some function for each mode. Then the equations of motion
will be in this form

(−∂2
σ̃ + V(σ̃)) f m

ℓ (σ̃) = −w2(1 − λE) f m
ℓ (σ̃) (47)

with V(σ̃) = V1 + V2 + V3 and

V1 = −w2(1−λE)
σ̃

√
σ̃2 − L2

= −w2(1−λE)

√
σ2 + L2

σ
(48)

V2 =
ℓ(ℓ + β)λ2c
2(σ̃2 − L2)

=
ℓ(ℓ + β)λ2c

2σ2 (49)

V3 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)(σ̃2 − L2)2 =
ℓ(ℓ + β)λ6cw2αiαm

24(1 − λ2E2)σ4 . (50)

These expressions can be treated by taking into account the
limits of σ such as σ goes to zero and the infinity.

For small σ, V3 dominates and in large σ, V1 + V2 will
dominate. From now on, it is clear that the system in the
present background will get different potentials and perturba-
tions from region to other which support the idea of Neumann
boundary condition in super-gravity background.

We start by small σ region, and the plot of V3 (Fig. 8)
shows that if σ goes to zero then the potential goes to +∞.
Physically this behavior should mean something! This could
be a sign to the absence of the perturbation effects and the
influence of E is absent.

We remark that the electric field does not have any influ-
ence on the perturbations in non-zero mode at the presence of
the super-gravity background.

Then the perturbation for each mode ℓ is gotten (see (51)
at the top of the next page) with b1 and b2 are constants and
d = ℓ(ℓ + β)λ6n(n + 1)αiαmw2. We tried to plot this function
but noway we could not get any perturbation for the values
λ = 1, w = 1 and for all E, ℓ > 4 and n > 1 in the region
σ ∈ [0, 10].

Also the potential shows up with little values by compar-
ison to the case of small region and for all E which means E
does not change anything in the case of curved space.

Let’s move to the large σ. As σ goes to infinity we see
the potential goes to zero (Fig. 9) but when σ approaches the
small σ region the potential goes up too quick and reaches the
maximum value, approximately for all E. Then the electric
field does not have influence on the behavior of the potential
in curved space.

Fig. 8: Potential in curved space for non-zero mode for different
values of E in small region.

The perturbation for each mode is (see (52)) with a1 and
a2 are real constants. We tried to plot this function for all E,
ℓ = 10 and n = 102, and no perturbations appear which is
consistent with the nature of space. Since the system is in
super-gravity background, there is no perturbations then no
influence of electric field.

5 Discussion and conclusion

In the low energy effective theory with the electric field E is
switched on, we proved in [11] that the duality of intersecting
D1-D3 branes is broken and in [12] the duality of intersecting
D1-D5 branes is unbroken. Hence, it is interesting to know
more about the effect of the electric field, and the intersecting
D1-D5 branes looks more important as a system.

We consider the non-abelian Born-Infeld (BI) dynamics
of the dyonic string such that the electric field E has a lim-
ited value. If we suppose there is no excitation on transverse
directions then the action of D1-branes is

S = −NT1

∫
d2σ
√

1 − λ2E2.

The limit of E attains a maximum value Emax = 1/λ just as
there is an upper limit for the velocity in special relativity.
In fact, if E is constant, after T-duality along the direction
of E the speed of the brane is precisely λE so that the upper
limit on the electric field follows from the upper limit on the
velocity. Hence if this critical value arises such as Emax >
1/λ the action ceases to make physical sense and the system
becomes unstable. Since the string effectively carries electric
charges of equal sign at each of its endpoints, as E increases
the charges start to repel each other and stretch the string. For
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f m
ℓ = b1 HeunT

−3 21/3d
(
−1 + λ2E2

)
(−1 + λE)
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(
−d

(
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)
22/3(
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(
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121/3
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−6d
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24λ
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(
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−6d
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Fig. 9: Potential in curved space for non-zero modes in large region.

E larger than the critical value, the string tension T1 can no
longer hold the strings together.

In this context, we have treated in this project in partic-
ular the perturbations of a set of (N,N f )-strings ending on a
collection of n orthogonal D5-branes in lowest energy world
volume theory. The fundamental strings ending on an orthog-
onal D5-branes act as an electric point sources in the world
volume theory of D5-brane and the perturbations in both flat
and curved spaces were studied from this point of view.

We showed in section 2 that the semi-infinite fuzzy fun-
nel is a minimum energy configuration by imposing singular
boundary conditions that have interesting physical interpreta-
tion in terms of D-brane geometries. And to consider the low-
est energy effective theory the electric field should be present.

We found the lowest energy

ξmin = N f gsT1
1 − λ2E2

λE

∫ ∞

0
dσ+

+
6N
c

T5

√
1 − λ2E2

∫ ∞

0
Ω4R4dR+

+NT1

√
1 − λ2E2

∫ ∞

0
dR−

−1.0102 T1lsNc
1
4

√
1 − λ2E2

by considering E switched on in the low energy effective the-
ory. The energy of intersecting D1-D5 branes is found to be
a sum of four parts depending on the electric field E and all
these energies are decreasing as E goes to 1/λ. The first is
for N f fundamental strings extending orthogonally away from
the D5-branes and the second for the n D5-branes and the
third for the N D-strings extending out radially in D5-branes
and the fourth is the binding energy.

In this theory, the transition between the universal behav-
ior at small radius of the funnel solution and the harmonic
behavior at large one in terms of electric field is mentioned
too. When the electric field is turned on the physical radius
of the fuzzy funnel solution R(σ) ≈ (λ2c/

√
18
√

1 − λ2E2σ)
1
3

is going up faster as σ goes to zero (the intersecting point)
and E reaches approximately 1/2λ which looks like the elec-
tric field increases the velocity of the transition from strings
to D5-branes world volume. Then D5-branes get highest ra-
dius once E is close to 1/λ which interprets the increasing of
the volume of the D5-branes under the effect of the electric
field (Fig. 1).

In section 3, we have investigated the relative transverse
perturbations of the funnel solutions of the intersecting D1-
D5 branes in flat space and the associated potentials in terms
of the electric field E ∈]0, 1/λ[ and the spatial coordinate σ.
We find that too close to the intersecting point the potential is
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f m
ℓ = a1 HeunC
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close to zero and once E is turned on it gets negative values
until E is close to its maxima, we see this potential goes down
too fast to a very low amplitude minima −∞ (Figs. 2,4) and
away from the intersecting point there is approximately no
potential for all E. This is interpreted as inducing an increase
in the velocity of the perturbation to disappear at the inter-
secting point toward the D5-brane world volume. Figs. 3,5
show that when E goes to its maxima there is no perturbation
effects. Hence the presence of E kills in general the perturba-
tions. At this stage, according to (1) the string coupling starts
to get strong which means the system background is chang-
ing.

In curved space, we have studied the same system by
looking for the effect of electric field on the perturbations
and the associated potentials in zero (Figs. 6,7) and non zero-
modes (Figs. 8,9) of the overall transverse perturbations in
section 4. It was surprisingly that too close to the intersecting
point; i.e. at large physical radius of D5-brane, we could not
find any perturbation and also there is approximately no influ-
ence of E on potentials. The effect of E appears only when we
are too far away from the intersecting point where the radius
is too small and still E makes the perturbations to disappear
on the strings. In general we do not see the influence of E in
curved space.

The main and very important feature we got from this in-
vestigation is the following; the presence of electric field flux
on the strings changes the background of the system. We
proved explicitly that when the coupling is going to be strong
which means E goes to its critical value we should move to
QFT to describe the system where no perturbations exist. In
curved space the influence of the electric field appears for too
small radius of funnel solution which means for large spatial
coordinate σ of strings and this phenomena decreases from
zero mode to non-zero modes but when the radius is impor-
tant as σ goes to zero there is no effect of E. By contrast in
the case of flat space that was very clear when E is turned on
the perturbations change their behavior in general. E forces

them to disappear as it is close to the critical value and in
meantime the string coupling is getting strong.

The string coupling is strong means N f gs ≫ 1 and gs ≈
N/N f since E ≈ 1/λwhich is the critical value and if the elec-
tric field exceeds this value the system will be non-physical
phenomena as discussed above and to be out of this problem
we should choose another theory to describe our system.

In the case of weak coupling N f gs ≪ 1 the electric field
will be approximately E ≈ N f gs/λN and the condition match-
es our perturbative phenomena E ∈ [0, 1/λ[. We mention
here that if E goes to zero then N f gs does too which means
the number of fundamental strings decreases and simply the
endpoints of the strings loose their electric charges and vice-
versa.

In curved space, we can say the electric field E has no
effect on the intersecting point. We can connect then the phe-
nomena to the electric field E and the string coupling gs such
as E and gs are connected by the relation (5). We see that
once E is turned on and goes up gs is getting stronger. At the
critical point, E reaches its maxima and gs is strong then the
space should become curved. Hence we can remark at this
stage that the effect of E looks like it transforms the flat space
to curved one. In this context we can say there is a one-to-one
map between the super-gravity background and the electric
field that we should look for!
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Recent controversy on the existence (versus non-existence) of variability in the ob-
servation of decay rate can be settled by considering mixing in decay configuration.
Variability in decay rate was investigated based on the available information of beta
decay rate data, solar neutrino flux, and energy distribution. Full systematic analysis of
the oscillatory behavior was carried out. Based on the zero threshold energy for neu-
trino absorption in beta emitters, a model for configuration mixing between two distinct
beta disintegration modes βν-disintegration (electron from neutrino interaction) and the
β−-disintegration (electron from natural decay) was proposed. The phenomenon of vari-
ability in beta decay rate was related to the possible exothermic neutrino absorption by
unstable nuclei which, in principle, should include the whole range of flux energies
involving flux with energy below the 71Ga threshold at 0.23 MeV. These two disintegra-
tion modes occur independently and model for their apparent mixing rate was proposed.
The configuration mixing between the two modes cause depletion of radioactive nuclei
which is subject to change with seasonal solar neutrino variability. Ability to detect this
variability was found to be dependent on the Q-value of the βν disintegration and detec-
tion instrument setup. Value of neutrino cross section, weighted by the ratio between
βν and β− detection efficiencies, was found to be in the range 10−44 to 10−36 cm2. For
experiments that uses the end point to determine the neutrino mass, interference due to
mixing should be taken into account.

1 Introduction

Anomalous behavior in radioisotopes activity was reported
by several scientists, they considered it as influence of solar
proximity and activity. Several scientist are in favor of the in-
fluence of solar activity/distance on the decay rate. Early re-
sults of Alburger et al. [3] are based on normalizing the count
rate ratio of 32Si/32P decay rate. Siegert et al. [34] had re-
ported oscillatory behavior of 226Ra, 152Eu, and 154Eu. Jenk-
ins et al. [44] had studied these cases and reported several
new data and measurements. Most investigator had reported
seasonal relation between oscillatory behavior and the earth’s
position with respect to its sun’s orbit; referring to the neu-
trino influence to the decay process.

Several other scientists oppose the connection between
sun and the phenomenon. In one of the oppose thoughts, sci-
entists may consider the rare neutrino events in experiments
like Ice Cube and Sudbury Neutrino Observatory [2]; yet, the
energy threshold of there detection system may not fall be-
low 71Ga border at 0.233 MeV (3.5-5 MeV for electron scat-
tering [7], 1.44 MeV for d(νe, e)pp interaction.) In all mea-
surements, no relation between half-life and the existence of
this phenomenon was reported. Several other oppose reports,
based on measurements by different techniques, were pub-
lished, see Refs. [5, 8, 10, 11, 29].

In the present work, full systematic analysis and treatment
of the oscillatory behavior was performed in order to recon-
cile these viewpoints. Based on the zero threshold energy for
neutrino absorption beta emitters, a model for configuration

mixing between distinct βν-disintegration (the electrons from
neutrino interaction) and the β−-disintegration (the electrons
from natural decay) was proposed.

2 Model for analysis

The majority of solar neutrino are with electron flavor asso-
ciated with proton burn-up processes (φνe,pp = 6±0.8×10

10

cm−1s−1) with maximum energy around 0.41 MeV [1].
During solar flares protons stimulates production of pions /

muons; π+ (π−) decays into νµ(νµ) with µ+ (µ−), later partners
decay and emit νe (νe) together with νµ (νµ) [30] total flux is
of order 109 cm−2s−1 and has energy up to 10 MeV.

Rare reaction of neutrino with stable isotopes is attributed
to its small coupling with W± and Z0 bosons, and higher
threshold of reaction kinematics. Coupling with Z0 may be
not appreciated due to non-existence of flavor changing neu-
tral currents. If happened, an electron neutrino in the vicinity
of the nucleus couples with a W boson emitting a βν and in-
duces beta transformation in the nucleus. Threshold energy
of neutrino capture in 37Cl is about 0.813 MeV compared to
0.233 MeV in 61Ga, these isotopes are used as monitor for
8Be neutrinos. Radioactive isotopes, on the other hand, have
excess energy to deliver due to positive Q-values as illustrated
in Table 1. Hence, one can conclude that the solar influence
on the apparent decay rate is associated mixing of specific
mode of disintegration in consequence of neutrino capture
in nuclei with the natural disintegration rate. The apparent
decay rate of radioactive isotopes, λ′ may be split into two
terms; a term for usual disintegration of the nucleus labelled
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λd and a terms for neutrino interaction. Presumably, neutral
current will contribute to scattering only. β−-decay rate is
proportional to the matrix element of the decay, |Md |

2 while
the reaction terms are associated with matrix elements of neu-
trino interaction with charged current, |MνW± |

2.

N(t)λ′ =N(t)λd + N(t)
∑

flavors

φν(t)NN

〈
Kβν (Q)

〉
σνn (1)

The summation is taken over all possible neutrino flavors.
Here, N(t) is the number of nuclei at time t, 〈K(Q)〉 is the
factor representing the modification of nucleon properties in
the nuclear medium, which can be investigated by nucleon
induced nuclear reactions [12,13]; 〈K(Q)〉 depends on the Q-
value of the reaction and the state of the nucleus upon inter-
action. The in-medium neutrino cross section σν can replace
〈K(Q)〉 σνn.

The flux would be altered with the change in earth to sun
distance R. Hence the time varying function is inversely pro-
portional to the area of a sphere centered at sun. The radius
vector has the form

R = a
1 − ε2

1 + ε cos(θ)
, θ ≈ ωt. (2)

Where ε is the eccentricity of earth’s orbit (now, 0.0167 [35])
and the cosine argument is the angle relative to the distance
of closest approach (2-4 January) in which value equals to
R = a(1 − ε). ω = 2π/Tω is the average orbital velocity, and
Tω is the duration of earth’s years in days. The approximate
sign is introduced because earth’s spend much more time at
larger distance from the sun than in the near distances. As-
suming that the average flux (φ(0)

ν ) occurs at time t0 during the
revolution around the sun, the flux at any other time will be

φν(t) = φ(0)
ν F(t), (3)

F(t) =
(1 + ε cos(ωt))2

(1 + ε cos(ωt0))2 . (4)

Here, φ(0)
ν is the average flux of neutrinos reaching earth’s sur-

face (about 6.65 × 1010 cm−2s−1 as average of all sun’s pro-
ducing routes [37], in which only 2.3×106 cm−2s−1 are from
8Be. Comparison between F(t) (taking t0 = 0) and normal-
ized seasonal variation of 8Be neutrons (data taken from Yoo
et al. [46] and normalised to its yearly average) is represented
in Fig. 1. F(t) gives the averaged trend of Yoo et al. data
within the experimental uncertainty of measurement.

For simplicity, and due to nature of available data of being
related to oscillatory behavior, effect of cosmological neutri-
nos will be disregarded. Additionally, non-predominant ra-
dioactive isotopes should have the neutrino-induced beta dis-
integration of contribution much smaller than that of the β−-
decay; hence, λd can be replaced by the laboratory decay con-
stant, λ, with good precision. The apparent decay rate for
specific interaction current can be described by the formulae

λ′ ⇒ λ + φ(0)
ν NNσνF(t). (5)
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Fig. 1: Normalized measurements of 8Be neutrino variation by Yoo
et al. [46] in comparison with predictions of F(t) function in Eq. 4.

Where, φ(0)
ν , NN , and σν = 〈K〉σνn are related to the con-

sidered current and the disintegrated nucleus. Differential
nuclear decay rate is simply described by the rate equation
dN(t)/dt = −N(t)λ′. Upon integration, the number of sur-
vived nuclei become

N(t) =N(0) exp
(
−λt − µ

(
1 +

ε2

2

)
t
)
×

exp
(
−2εµ

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
,

µ =
φ(0)
ν NNσν

ω (1 + ε cos(ωt0))2 .

(6)

The first exponential represent the depletion of nuclei with
neutrino interaction together with the radioactive decay. The
second exponential can be represented as

1 +
∑
i=1

(−1)i

i!

(
2εµ

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)i
. (7)

The value of 2εµ << 1; hence, only the first term in the sum-
mation is effective. I.e.,

N(t) =e
−λt−µ

(
1+ ε2

2

)
t
(
N(0) − A

(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
, (8)

which reveal seasonal variability. The amplitude of the oscil-
lation is A = 2 N(0) ε µ with the depletion factor exp

(
− λt

− µ
(
1 + ε2

2

)
t
)
; depletion factor reaches unity for long-lived

isotopes with relative short-term measurements.
The method of normalization of data, mentioned in con-

text, is intended to remove the effect of isotope decay rate
and give the residual of neutrino interaction. So, when nor-
malized to 1, the normalized fraction (proportional to decay
rate or detector count) becomes

N(t) =

(
1 − Ae−λte

−µ
(
1+ ε2

2

)
t
(
1 +

ε

4
cos (ωt)

)
sin (ωt)

)
. (9)
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Similarly, for normalization of the ratio between two isotope
1 and 2,

N1/2(t) ≈1 − 2
N1(0)
N2(0)

e−(λ1−λ2)te
−(µ1−µ2)

(
1+ ε2

2

)
t
×

εµ1

(
1 + ε

4 cos(ωt)
)

sin(ωt)

1 − 2εµ2

(
1 + ε

4 cos(ωt)
)

sin(ωt)
.

(10)

Which is not a complete sinusoidal variation. The amplitude
and depletion factors in case of two activity ratio becomes

A1/2 = 2
N1(0)
N2(0)

εµ1

1 − 2εµ2
e−(λ1−λ2)te

−(µ1−µ2)
(
1+ ε2

2

)
t
. (11)

This depletion term can be ignored if both isotopes have com-
parable half-life and mass.

3 Discussion

Normalized oscillatory data, were collected for the decay of
isotopes given in Table 1. Because we need to have a starting
point, data retrieved relative to 1 Jan. 1980. The time shift, t0,
was obtained using least square fitting of every data set with
Eq. 9 by shifting time with free parameter–say t1. Results are
illustrated in Table 1 in which a shift of -120±14(1σ-stat.) ±
5(1σ-syst.) days was found; i.e. the average flux received
on earth from the sun occurs around end of October (or, al-
ternatively, May first.) This is consistent with data given in
measurement of 8Be neutrino variation by Yoo et al. [46].

Before going further in the discussion, we must appre-
hend measurement techniques and circumstance of each ex-
periment. The correlation between earth sun distance and de-
cay rate for 32Si and 226Ra was reported by Jenkins et al. [17]
based on Alburger et al. [3] and Siegert et al. [34]; those
measurements are based on the β spectrum measurements.
Alburger and coworkers used end-window gas-flow propor-
tional counter system and a liquid/plastic scintillation detec-
tors and Siegert and coworkers used both 4π ionization cham-
ber and Ge and Si semiconductor detectors with reference to
ionization chamber measurements. Same group of Ref. [17]
and others in later work [24] had measured the 54Mn us-
ing the 834.8 keVγ-line during 2 years without significant
seasonal variation, they only report a connection with solar
storm. Similar results appeared after solar flare [16]. Varia-
tion of 36Cl decay rate was reported by BNL group [18] us-
ing Geiger-Müller counter and in PTB-2014 measurements
[22] using the triple-to-double coincidence ratio liquid scin-
tillation counting system. PTB-2014 detection system ex-
cluded the idea of time varying decay rate while the BNL
measurements prove the phenomenon. Power spectrum anal-
ysis [15, 18, 20, 26, 40, 43] reveal several spectral frequencies
especially at 1 y−1. Some explanations of seasonal variation
of decay rate were related to decoherence in gravitational
field [36] and internal sun modes [42]. An experiment was
performed for 222Rn decay in controlled environment showed

dependence on the angular emission of gamma ray [39] and
daily behavior [9,19,44]; however Bellotti et al. [9] excluded
the sun influenced decay rate in support with their earlier
work [8]. Ware et al. [45] returned the variation to change
in the pressure of counting chamber during the seasonal vari-
ation.

Opposition to the connection between sun’s and the vari-
ability phenomenon of apparent decay rate came out as a con-
sequence of measurements, as well. No significant deviations
from exponential decay are observed in Cassini spacecraft
power production due to the decay of 238Pu [11]. Bellotti
et al. [8] studied decay of 40K, 137Cs and 232Th using NaI
and Ge detectors with no significant effect of earth-sun dis-
tance. Same results had been reported by Alexeyev et al. [5]
in the alpha decay of 214Po measured by α-particle absorp-
tion. However, Stancil et al. [38] detected seasonal variation
in the gamma transition in 214Po due to 214Bi decay in ra-
dium chain. Others [4] had reported seasonal variation in life
time of 214Po. Recently, Pommé et al. [29] re-performed mea-
surements in several laboratories by all possible measurement
techniques including ionisation chamber, HPGe detector, sil-
icon detector, proportional counter, anti-coincidence count-
ing, triple-to-double coincidence, liquid scintillation, CsI(Tl)
spectrometer, internal gas counting. They returned the phe-
nomenon to lower stability of instruments. Bikit et al [10]
investigated the 3H decay rate by measured by liquid scintil-
lation and related the fluctuation of the high-energy tail of the
beta spectrum to instrumental instability.

The techniques of measurements is different among these
two parties. Among all measurements given above, all tech-
niques that are based on detecting β-radiation, or combined β-
γ-radiation coming from its daughter, had signaled variabil-
ity. Which can be explained as a consequence of the mixing
between βν and β− disintegrations. In such case, both terms
in Eq. 5 are effective and the apparent decay rate should be
influenced by solar proximity and activity. On the other hand,
techniques that uses specific decay parameter such as specific
γ-line from β±- or α-decay may not be able to recorded any
variability because the oscillatory part of configuration mix-
ing in Eq. 5 is not operative. With pure α-emitters like 241Am
and 226Ra, the mixing oscillatory term will change sign and
time shift of half-period may appear. In accordance to Siegert
et al. [34] results, time shift of a half period in the fluctuation
measured between 4πγ-ionization chamber measurement of
226Ra and measurements of 152,154Eu by GeLi semiconductor
detectors was found. Hence, both parties concluded existence
or non-existence of the phenomenon based on their technique
of measuring it. Each team draw the correct picture of his
viewpoint; that is determined by whether the mixing part of
Eqs. 5 and 9 were taken into account or not.

The βν energy spectrum should, in principle, reflects the
energy distribution of neutrino and the structure of residual
nucleus. In βν-decay, all energy of neutrino plus the major
contribution of mass access (Q-value) is transferred to the
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Table 1: Data of seasonal variability of radioactive disintegration. Unit of ξσν is cm2, Q-value is calculated from AME2003 atomic mass
evaluation [6] in the unit of MeV; t1 is the time shift in days.

Isotope Ref A ×104 −t1 ξσν × 1041 Q Eth

3H [21, 27] 5.29 ± 2 ± 6 -10 ± 30 1.8 ± 0.4 ± 2 ×10−6 0.0186 0
3H [14] 38.4 ± 0.8 ± 35 138 ± 1 13 ± 0.1 ± 12×10−6 0.0186 0

32Si [3] 10.8 ± 2 ± 5 109 ± 12 1.15 ± 0.01 ± 0.5×10−3 0.2243 0
32Si/36Cl [3, 15, 17] 15.8 ± 0.67 ± 7 126 ± 5

36Cl [18] 19 ± 0.9 ± 10 160 ± 5 4.52 ± 0.01 ± 2.4 0.7097 0
152Eu [31, 32, 41] 8.4 ± 0.3 ± 2 113 ± 3 3.51 ± 0.01 ± 0.79 1.8197 0
154Eu [31, 32, 41] 8.5 ± 0.4 ± 3 121 ± 2 8.7 ± 0.004 ± 3 1.9688 0
214Bi [38] 31 ± 2 ± 17 119 ± 6 39.7 ± 0.02 ± 22 3.2701 0
214Bi [38] 30 ± 2 ± 12 118 ± 5 38.5 ± 0.02 ± 15 3.2701 0
85Kr [32, 41] 7.2 ± 0.35 ± 1.5 113 ± 3 0.687 0
90Sr [32, 41] 8.8 ± 0.4 ± 2 121 ± 3 0.546 0

108Ag [32, 41] 8.6 ± 0.3 ± 2 126 ± 2 1.76 0
133Ba [32, 41] 6.18 ± 0.6 ± 4 119 ± 5 -2.061 2.061
226Ra [15, 17] 10.1 ± 0.3 ± 3 105 ± 20 83 ± 0.02 ± 20×10−3 diverse
226Ra [34] 11.9 ± 0.2 ± 2 125 ± 2 99 ± 0.01 ± 20×10−3 diverse

beta particle. The higher the Q-value, the higher the energy of
the emitted βν. This is another source of disagreement among
both teams supporting and declining the phenomenon. Obser-
vation of the phenomenon is determined by the ability of their
system to detect βν or the specific γ-transition or mass loss
subsequent the disintegration. Detection volume, in general,
is selective to a band of radiation energy. Ionization chamber
detects gamma radiation and fraction of beta radiation above
few hundreds eV [31]. Additionally, higher energy of βν have
higher value of detection efficiency. Counting of βν, and β−,
and/or their corresponding γ-ray from nuclei, have different
efficiencies due to difference in energy distribution and end-
point(c.f. [33]); literally, βν has no end-point. Hence, each
count rate must be related to its efficiency; i.e. the amplitude
of the variation must be modified by a ratio–say ξ–between
βν counting efficiency and β− counting efficiency; which de-
pends on the βν energy and the measurement setup. If vari-
ation occurs, it would be reflected on the counting rate. The
value of ξσν represent a weighted cross section and it was
calculated as a whole in Table 1.

The amplitude of the variability was obtained from each
dataset by fitting using Eq. 9; results are represented in Ta-
ble 1. The value of N(0) (alternatively, mass or activity) was
found for 3H (assuming 1-20 g of 3H2O as for PTB measure-
ments catalogue of activity standards [25]), 32Si (0.0477 g of
32SiO2 [3]), 36Cl(0.4 µCi [22]), 152Eu (40 MBq [31, 32, 41]),
154Eu (2.5 MBq [31,32,41]), and 214Bi(2 µCi [38]), see Table
1. Mass, activity, and/or number of decaying atoms were not
reported for other datasets. Then, the value (ξσν) are calcu-
lated only for the said isotopes. A plot for the variation of ξσν
with Q-value is represented in Fig. 2. The known limit of

 (c
m

2 )

Q (MeV)

 n  at E =1 MeV

3H

32Si

36Cl
152Eu

154Eu

214Po via
 214Bi

Fig. 2: Value of the reduced cross section ξσν in the unit of cm2 in
correlation with the Q-value of the possible βν-disintegration. Line
represent the value of σνn=0.881×10−38 Eν(GeV) cm2 at Eν=1 MeV.
Insert: possible disintegration probabilities of represented isotopes
to levels in daughter nuclei.

νe-neutron cross section is σνn= 0.881×10−38 Eν(GeV) cm2

which is represented by the line in Fig. 2 for electron neu-
trino with Eν=1 MeV considering ξ = 1. The increase of
ξσν with Q-value confirms the mentioned hypothesis of exis-
tence of instrumental setting participation in the detection of
the variability of apparent decay rate.

In the insert of Fig. 2, decay schemes of said isotopes
are represented. The βν spectrum is expected to have definite
spectrum corresponding to direct transition to levels in daugh-
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ter nuclei in similarity to neutrinoless double beta decay; one
of the possible broadening that could occur is due to original
energy distribution of neutrinos. Sensitive detector like KA-
TRINE [23] can be used to detect such energy distribution in
3H; fortunately, neutrinoless double beta decay cannot occur
in case of 3H without fission of the whole nucleus. Disin-
tegration of 3H, 32Si and 36Cl have single possible transition
for both βν and β− decays. The maximum energy of βν-3H
decay is expected to be 0.42 MeV with ξσν = 1.82 ± 0.4
stat. ±2 syst. ×10−44 cm2 as calculated from Pomme et
al. [27] data, and 13.2 ± 0.1 stat. ± 11 syst. ×10−44 cm2

as calculated from Falkenberg [14] data. Systematic uncer-
tainties are mostly related to unknown mass of the material.
The BNL data of 226Ra and other data of radium had been
evaluated but was not represented in Fig. 2. 226Ra has thresh-
old for βν decay of 0.641 MeV, its daughters have possible
beta decay probability, that is why variability can be observed
[15,17,31,32,34,41]. The phenomenon disappeared when α-
detection system is used [28].

4 Conclusion

Rare mixed configuration between neutrino induced beta dis-
integration and natural beta disintegration may exists. These
two distinct classes of beta decay could, in principle, explain
the variation of apparent decay rate of radioactive isotopes
with sun proximity. The circumstances of detection and in-
strumental ability determine whether to detect pure natural
disintegration or the mixed mode. Configuration mixing be-
tween βν and β− is, presumably, happen among all existing
β− emitters. The mixing in configuration of decay and reac-
tion can be extended to all particles and nuclei. It must be
taken into account in the in high precision measurements of
neutrino mass. Mixing may be of significance for nucleosyn-
thesis in astronomical object.

Received on April 26, 2017
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Assuming the universe has permanent critical density gives energy non-conservation, a
linear increase of the universe total energy as a function of time. It enables to compute
the universe densities of matter, dark matter, and dark energy as distinct effects of a
unique source, where dark matter is stress. We show coherence with the Schwarzschild
and the Schwarzschild-de Sitter solutions from which we compute the term Λ as geo-
metrical effect of expansion. In this context, we show that MOND is consequence of
the universe expansion and compute its parameter value and time evolution.

1 Introduction

This paper follows [1], where we find that energy “is” the uni-
verse expansion, and complements the analysis. But here we
proceed from side-thinking: The next theory of gravity, if any,
will have to recover the Einstein field equations (EFE). There-
fore correlations between quantities considered independent
in general relativity (GR), are instructive as to the object and
contents of a better theory. Then in order to find new cor-
relations we shall rely on a) the geometry of existing EFE
solutions, and b) one coincidence which is critical density.

1.1 Coincidences

According to the Planck mission (PM) 2015 results [10], it
seems that the universe has critical density:

ρT =
3 H2

8πG
, (1)

where G is Newton’s constant, and H the Hubble parameter.
Note, with respect to [1], that we compute ρT from (1) instead
of the total dark fields density. Taking H = 1/T , where T is
the universe age and the distance to the cosmological event
horizon RU = c T , it also reads:

2 G =
RU c2

MT
, (2)

where MT c2 is the total energy of the observed universe.
Then (1-2) uncovers a symmetry of the Schwarzschild solu-
tion:

Rs

r
=

RU M
MT r

, (3)

where gravity is the interaction of all energies of the observed
universe; that is to say Mach’s principle. But (1) also reads:

MT c2 =
Pp T

2
, (4)

which means that the energy of the observed universe grows
linearly according to half the Planck power Pp = c5/G. We
see that the same equation (1) takes 4 forms which can be

given very large significance ranging from the simplest sys-
tem (3) to cosmology (4) and the absence of a big bang.
Now take the Bekenstein-Hawking area-entropy law:

S =
K A c3

4 G ~
, (5)

which states that the entropy S associated with an event hori-
zon is its area A divided by 4G [2] [3] (where K and ~ are
Boltzmann and the reduced Planck constants respectively). It
also applies to the de Sitter cosmological event horizon [4]
seen at RU :

S =
4πK R2

U c3

4 G ~
. (6)

Now injecting (1) in (6) gives:

~

K
×

S
MT c2 = 2πT , (7)

which means that the ratio between entropy S and energy
MT c2 at any given epoch, “is cosmic time” – or the oppo-
site, entropy is accumulation of action in the manner of an
old de Broglie conjecture about the physical significance of
h S = K A which associates an action A and an entropy S to
any piece of energy.

Using GR the probability for the “coincidence” (1) to be
observed is about zero, there is not even a theoretical reason
for the order of magnitude to ever come out; secondly (2) and
(7) establish a simple, clear, and unexpected quantitative fit
between gravity, cosmic time, energy, and entropy – where
energy is not supposed to be. So maybe this is a big deal
and we shall assume that (1) is not a coincidence but a law of
nature ruling the universe expansion together with its energy.

Consider now the FLRW metric with a positive cosmo-
logical term and homogeneous density - that is to say the
ΛCDM model. Assuming that (1) is not just a coincidence
implies that it is valid at any epoch; then using (4) since the
FLRW metric describes a simple 4-ball, we can slice it with
4-spheres centered at the origin, of radius r and thickness 2 lp

(both along the light cone), and each slice adds an identical
energy increment Mp, the non-reduced Planck mass, and it
looks like the universe is a Planck power space-time gene-
rator.
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The visible matter field exists “now” at the surface of the
4-sphere while MT , as defined from RU , is causal and occu-
pies the light cone. Then a geometrical ratio exists between
the two quantities, which evolve together. Simple integration
gives 2π2 the 4-sphere surface coefficient and removing the
“surface” we get the total dark field density ρD:

ρD = ρT ×
2π2

1 + 2π2 = 8.98 × 10−27 kg m−3 , (8)

which agrees with PM results. The difference ρV = ρT − ρD

is the visible matter density and represents 4.82% of the total
density ρT where the PM found 4.86 (8)%.

So, computing matter density ρV from geometry and (1) is
totally abnormal in GR; we can even say irrelevant. But at the
opposite, if those quantities and others are calculable, GR is
incomplete and we can even say that it misses a fundamental
point. In the remainder of this paper we shall analyze the
consequences of (1) and (8) and check if nature agrees.

1.2 Premises

Noether’s theorem is the basis of conservation laws; it is used
to evaluate energy conservation, and it works perfectly in
quantum field theory. In GR, an area in which energy is as-
sumed constant is defined by physical rods and clocks.

But how do we measure the rod? Essentially by decree
of conservation. We define a-priori what a meter is and the
postulate is that a rod does not evolve; up to now, there is
no experimental results which is recognized to require any
change to this postulate. But we cannot physically compare
rods between distinct epochs. Even though GR studies the
transfers of clocks and rods between distinct space-time lo-
cations, it assumes that no hidden source comes to expand
its energy – and this is what (2) states: G is assumed con-
stant, then the total energy MT evolves in proportion of RU ,
and we measure that the observable universe radius RU = c T
grows.

It can be interpreted in different manners and we have to
choose one that can be logically understood and requires min-
imal hypothesis. In the next sections we shall proceed from
the four premises hereafter which were chosen appropriately,
explaining how (2) physically works; we shall then use three
EFE solutions to show coherence with existing theory and
unexplained experimental data. Premises are:

P1: The universe proceeds from the FLRW metric with cos-
mological term Λ > 0.

P2: The observable matter field (particles) rests at the sur-
face of a 4-sphere.

P3: A mechanism exists inflating the 4-sphere and ex-
panding masses and energy; both effects are simulta-
neous.

P4: The metric expansion includes inflation of the 4-sphere
radius and a reduction of particles wavelengths; energy
condenses permanently and progressively.

Those premises are easily justified:

• P1 agree with the best verified model, and

• P2 is direct consequences of the “coincidences”.

• P3 and P4 must be taken together; the feed mechanism
in P3 could be just the radial expansion of a 4-ball
in a preexisting 4-dimensional space filled with con-
stant energy density. The sphere expands and masses
increase reducing wavelengths; this is permanent and
progressive condensation, hence P4.

2 The dark fields and the expansions

2.1 Expansion in the Schwarzschild solution

We first use the Schwarzschild solution to study the effects of
(2) and expansion at different heights in the gravitational pit
of a central mass M (the basic test case) and assume the sys-
tem far away from other gravitational sources. With respect
to (2), MT is variable in time but constant in space (MT ∼ T ),
so M is also variable in time. At the opposite since grav-
itation is a retarded interaction, the metric in r is retarded
and the Schwarzschild solution must be modified accordingly.
Hence, using P3-P4, r and M (or Rs) expand; with respect
to [1], introducing new ad-hoc parameters α, β to separate
the effects of energy and space expansion, we write from (2):

Rs

r
=

RU M
MT r

→
RU M
MT r

×
1 − αHr/c
1 + βHr/c

. (9)

Gravitation is retarded; a signal goes from M to r. Hence
the correction at the numerator of (9) denotes that when the
signal was emitted the mass M was lesser than expected in
GR. Secondly, the additional delay we introduce comes from
expansion. Then at the denominator, r “looks” advanced be-
cause the signal dilutes more than with a static r, and we ex-
pect β = 1. Second order limited development yields:

RU M
MT r

→
RU M
MT r

− (α + β)
M
MT

+ β(α + β)
M r

MT RU
. (10)

Now examine this expression:

• The first term is nominal and now corresponds to a
static field.

• The middle term cannot be seen negligible since it ad-
dresses identically all masses of the universe. It must
be integrated to MT , giving −1 which is the flat metric
and it denotes its production; from (8), α + β = 2π2.

• Therefore the right hand term must also be integrated
to MT giving H r/c, or a cosmological term H c with
unit of acceleration; and we find β = 1.
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Note that we use a limited development in r so we cannot
integrate to RU , but we can still integrate to MT as the middle
term of (10) requires. Overall, after integration to MT we get:

2 G M
r c2 =

RU M
MT r

→
2 G M

r c2 − 1 +
r

RU
. (11)

We shall now analyze this modified solution and show that
the two new terms correspond to dark energy (DE) and dark
matter (DM) – meaning exactly.

2.2 Dark energy and dark matter

The limited development above corresponds to a unique field
that we split in three non-independent components. In [1], we
analyzed the relations between the two new components; we
showed that considering the first as an energy field X and the
second as stress leads to:

Mse(R) c2 =
1
2

∫ R

0

(
4π ρX r2

)
(HR c r) dr =

3
8

MX(R) c2 ,

where MX(R) is the energy of the field X in a 3-sphere of radius
R � RU , while Mse(R) c2 is the stress given by the acceleration
H c, which is equivalent to a potential H c r. (Note that in the
integral energy is given by acceleration, then kinetic energy
p2/2m; thus the factor 1/2.) Therefore:

Mse(R)

MX(R)
=

3
8

= 0.375 , (12)

which agrees with the ratio of DM to DE given by the PM:

ΩC

ΩDE
=

0.2589
0.6911

= 0.3746 , (13)

and, since Mse is stress, identification is trivial; X is dark en-
ergy which creates stress interpreted as dark matter. Now we
solve the system of equations and coincidences:

ρD = 2π2 ρV =
2π2

2π2 + 1
ρT =

11
8
ρDE =

11
3
ρC . (14)

It leaves no freedom or randomness in cosmological energies.
In GR theory, those energy densities give four distinct effects:

• ρDE provides with a decreasing repelling force at the
origin of expansion and then of the flat metric.

• ρC is stress due to the same repelling force; in the EFE
stress comes in the stress-energy tensor, like mass, and
then this result agrees with the ΛCDM model.

• ρV lies at the 4-sphere surface and non-homogeneity
creates deviations to the flat metric.

• ρT is their sum and has critical density.

Each density finds its appropriate places in the EFE, and we
can use MT and RU to replace G in the equations; we could
compute Λ = 8πG ρDE but we shall deduce it differently.

2.3 Λ and the CDM

In recent papers, [5–7] P. Marquet formally showed that a
varying cosmological term restores in the EFE a conserved
energy-momentum true tensor of matter and gravity with a
massive source:

Gαβ =
8πG

c4

[
(Tαβ)matter + (tαβ)gravity

]
, (15)

Here (tαβ)gravity includes a background field tensor which per-
sists in the absence of matter:

(t αβ )background =
c3

8πG
δ α
β (Ξ/2) , (16)

where Ξ/2 is the variation of cosmological constant Λ. As a
result the de Sitter-Schwarzschild metric is slightly modified:

1 −
Rs

r
−

Λ r2

3
→ 1 −

Rs

r
−

Λ + δΛ

3
r2 ,

which we identify term to term with (11). But recall that the
factor 1/3 in this metric is given by integration, it is then ir-
relevant for a correspondence with a derivative. We also in-
troduce a parameter k to solve:

k Λ + k δΛ↔ −1 +
r

RU
, (17)

which means that since Λ is a constant, integration to RU is
now possible and will give the flat metric like in (11); then:

−k Λ

∫ RU

0
r2dr = 1→ k Λ =

1
3 R3

U

. (18)

Then for any r we have k δΛ(r) = −1/r2. Integrating the last
term to the full solid angle (as stress), multiplying by 1/2 for
kinetic energy and identifying with H r/c gives:

1
2

∫
4π k δΛ(r) r2 dr =

∫
2π k dr =

H r
c

→ k =
H

2π c
=

1
2πRU

, (19)

where k is also the ratio entropy/energy on the right-hand side
of (7). Here it links the expansion of RU (∼ energy) to that
of DE (∼Λ) through 2πRU . Now we have completed the
correspondence and using (18) and (19) we get:

Λ =
2π c

3 H R3
U

=
2π

3 R2
U

= 1.229 × 10−52 m−2 . (20)

The standard ΛCDM estimate is:

Λ ≈ 1.19 × 10−52 m−2 , (21)

and then our reasoning on energy expansion is appropriate.
But we found that the dark field has a unique source since
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ρDE → ρDM; then extending the source unicity to ρV explains
the difference between (20) and (21) as the share of dark en-
ergy invested at the surface, its share of ρV . Picking Λ in (20)
and following the ratios in (8) and (14):

Λ

1 + 1
2π2 ×

8
11

= 1.185 × 10−52 m−2 , (22)

which is well within precision of (21); here the complimen-
tary 3/11 of ρV comes from stress (12) in agreement with (8)
where ρV is the surface.

3 The classical field

As shown in [1], using the Bohr hydrogen model (or inspect-
ing the Dirac equation), we find the effects of H c/2π when
elementary particles mass increase linearly in time, and abu-
sively computing with respect to a fixed frame:

da0

dt
=

H c
2π ν

, (23)

where a0 is the Bohr radius and ν the electron pulsation (E =

h ν). In quantum theory, distances like a0 are quantized as the
inverse of mass, but in gravity the classical force is given by a
product of masses, which doubles the effect. Then in the very
weak gravitational field the acceleration H c gives measurable
effects in the form of anomalous acceleration; in circular orbit
it will be:

aHc =
H c
2 π

= 1.10 × 10−10 m s−2 , (24)

like in (7) and (19). Then Newton’s theory is no more the
weak field limit of GR as it also needs RU → ∞. Now
aHc is in range with Milgrom’s modified Newton dynamics
(MOND) limit acceleration [8, 9], which estimate is:

a0 = 1.20 (±0.2) × 10−10 m s−2 . (25)

Then we shall recover MOND in the weak field/circular orbit
problem. In the modified Schwarzschild solution in (11), the
term H c denotes that the classical potential is permanently
becoming steeper. Then aHc has specific direction; it just am-
plifies the local Newton acceleration. The simple sum gives:

A =
G M

r2 + aHc . (26)

Applying a force to an object in free fall gives reaction, so
denoting AN the Newton acceleration we can write:

AN

(
1 +

a
AN

)
⇒ −a , (27)

where −a corresponds to the effect of inertia, as a reaction to
a non-gravitational acceleration a when AN and a are paral-
lel. In GR this equation is given by the field transformation in

weak accelerations. Now denoting Ae f f the effective acceler-
ation in circular orbit we have Ae f f ⇒ 0; meaning that it is
Ae f f that transforms the field, and not AN . Then in order to
link AN , AE f f and AHc, we must write:

AN =
f
m

= Ae f f

(
1 +

aHc

Ae f f

)−1

, (28)

where, since (27) defines the field transformation, the denom-
inator of the right-hand side formally removes aHc from Ae f f

and then recovers the Newton force. This equation is MOND
simple interpolation function; needless to list the wide range
of astrophysical data it fits. It is then a formal approximation
of the modified Schwarzschild solution in (11). QED.

4 The Hubble parameter and accelerated expansion

The parameters α = 2π2 − 1 and β = 1 in (9), which values
are deduced reasoning on (10), show that the contribution of
space expansion to the metric is trivial (β = 1), and the contri-
bution of mass expansion is 1/2π2. Therefore the observable
r, which depends on massive clocks and rulers, expands more
than simple space expansion. Then we can approximate the
metric state at distance r from the observer with:

dτ(r)2 ≈ dτ(0)2 ×

 2π2

2π2 +
RU−r

RU

2

. (29)

Therefore, measurements of the Hubble parameter from the
CMB spectrum (r → RU) will give a value different from and
larger than H = 1/T ; we find:

H =
1
T
→ H0

CMB =
2π2 H

2π2 + 1
= 67.53 km/s/Mpc , (30)

which agrees with the PM results:

H0
CMB = 67.74 ± 0.46 km/s/Mpc .

Eq. (29) gives other measurable effects:
• When measuring H0 from baryon acoustic oscillations

(BAO) for which T is also close to zero, the same dis-
crepancy appears, H0

BAO ≈ H0
CMB, as shown in [10].

• At the opposite, H = 1/T = 71.1 km/s/Mpc is compat-
ible with most recent Hubble space telescope data [11]
taken from SN1A (73.24 ± 1.73 km/s/Mpc, currently
valid at ∼ 2 − 3σ), for which r → 0.

• A simple plot shows that the denominator of (29) per-
manently gives the illusion of accelerating expansion.

Last, the symmetry in (1) is:

λRU = const , (31)

where λ is the Compton wavelength of any piece of energy.
Taking the universe mass and λT = h/MT c yields:

λT
T
2

= lp tp ,
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where lp and tp are the non-reduced Planck length and time
respectively. It gives immediate significance to those units as
they define the symmetry of the field expansion versus con-
densation. It denotes an inversion between spaces and times
which reads:

T
tp

=
2 lp

λT
, (32)

and a similar equation also applies to any mass. Hence the
energy scales corresponding to lp and tp are epoch-relative
like clocks and rulers, and also other Planck units (Mp, Pp).
It just means that the laws of nature are constant but that the
scale at which they apply vary in time.

It makes a big difference when thinking of quantum grav-
ity which is expected to solve the big bang problem, because
(32) is a symmetry linking the expansions of space-time and
energy in a non-linear manner. To show this, from (32) and
since energies increase, we find that at any given epoch:

RU = c T0

∫
tp/t , (33)

where the quantum of time tp replaces dt, and T0 is a con-
stant. Integration gives a logarithm which implies that the
universe radius as observed from loopback time at any epoch,
but assuming energy conservation, starts with inflation.

5 Conclusion

Overall, we found 9 strong correlations (∗) giving distinct nu-
merical results agreeing with unexplained experimental data
in several domains of cosmology and astrophysics. We also
find inflation for which a quantitative fit is out of reach, and
the illusion of accelerating expansion. All come from a single
assumption, a limited development, and classical solutions of
the Einstein field equations.

The correlations above are totally irrelevant in GR, and
also in QFT, but nature agrees at all scales. Hence the answer
to the title is positive, and then GR and QFT miss the most
important point which is that the expansion of space-time is
identical to the expansion of energy. That is to say that space-
time and energy are the same phenomenon. Importantly, all
correlations are geometrical and all calculus use as input only
one parameter, namely the universe age T , and natural con-
stants G and c; then the next theory uses geometry and has no
free parameters.
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2Universidade do Vale do Paraı́ba, UNIVAP, São José dos Campos, Brasil.
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The Smaller Alignment Index (SALI) is a new mathematical tool for chaos detection
in the phase space of Hamiltonian Dynamical Systems. With temporal behavior very
specific to movements ordered or chaotic, the SALI method is very efficient in dis-
tinguishing between chaotic and regular movements. In this work, this method will
be applied in the study of stellar orbits immersed in a gravitational potential of barred
galaxies, once the motion of a test particle, in a rotating barred galaxy model is given by
a Hamiltonian function. Using an analytical potential representative of a galaxy with bar
(two degrees of freedom), we integrate some orbits and apply SALI in order to verify
their stabilities. In this paper, we will discuss a few cases illustrating the trajectories of
chaotic and regular orbits accompanied by the graph containing the behavior of SALI.
All calculations and integrations were performed with the LP-VIcode program.

1 Introduction
One of the schemes more used to classify galaxies according
to their morphology was proposed by Edwin Powell Hubble.
Basically, the Hubble fork separates galaxies in two types:
regular spirals (S) and barred spirals (SB). The galaxy bar,
spiral arms and even galactic rings are structures that can be
interpreted as disturbance to axisymmetric potential of the
galactic disk.

In this work, we study the nature of some orbits immersed
in analytical potentials with two degrees of freedom repre-
senting barred galaxies. In order to do this, we applied the
Smaller Alignment Index (SALI) [9–13], which is a mathe-
matical tool for distinguishing regular and chaotic motions in
the phase space of Hamiltonian Dynamical Systems in analyt-
ical gravitational potentials. It is possible because the motion
of a test particle in a rotating barred galaxy model is given by
a Hamiltonian function.

The orbits integration and the SALI calculation were per-
formed using the LP-VIcode program [2]. The LP-VIcode
is a fully operational code in Fortran 77 that calculates effi-
ciently 10 chaos indicators for dynamic systems, regardless
of the number of dimensions, where SALI is one of them.
To construct our barred galaxies models, two different sets
of parameters were extracted from the paper of Manos and
Athanassoula [5].

The main purpose of this paper is to show some regu-
lar and chaotic orbits, where the stability study was done us-
ing the SALI method. Such orbits were taken immersed in a
mathematical model for the gravitational potential that simu-
lates a barred galaxy in a system with two degrees of freedom.

2 Methodology
2.1 The SALI method
Considering a Hamiltonian flow (N degrees of freedom), an

orbit in the 2N-dimensional phase space with initial condition
P(0) = (x1(0), · · · , x2N(0)) and two different initial deviation
vectors from the initial point P(0), w1(t) and w2(t), we define
the Smaller Alignment Index (SALI) by:

SALI(t) = min
{
‖ŵ1(t) + ŵ2(t)‖, ‖ŵ1(t) − ŵ2(t)‖

}
(1)

where ŵi(t) = wi(t)/‖wi(t)‖ for i ∈ {1, 2}.
In the case of chaotic orbits, SALI(t) falls exponentially

to zero as follows:

SALI(t) ∝ e−(L1−L2)t (2)

where L1 and L2 are the biggest Lyapunov Exponents.
When the behavior is ordered, SALI oscillates in non-zero

values, that is:

SALI(t) ≈ constant > 0, t −→ ∞ . (3)

Therefore, there is a clear distinction between orderly and
chaotic behavior using this method.

2.2 Gravitational potential of a barred galaxy

We apply the SALI method in the study of stellar orbits im-
mersed in a gravitational potential of barred galaxies, once
the movement of a test particle in a rotating three-dimensional
model of a barred galaxy is given by the Hamiltonian:

H(x, y, z, px, py, pz) =

=
(
p2

x + p2
y + p2

z

)
+ ΦT (x, y, z) + Ωb(xpy − ypx)

(4)

where the bar rotates around z; x and y contain respectively
the major and minor axes of the galactic bar, ΦT is the gravi-
tational potential (which will be described later), and Ωb rep-
resents the standard angular velocity of the bar.
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(a) Initial Condition: (0,0.5436,0.1411,0) - Model S (b) Initial Condition: (0,0.1912,-0.1550,0) - Model S

(c) Initial Condition: (0,4.2280,-0.1491,0) - Model S (d) Initial Condition: (0,0.9090,-0.4139,0) - Model B

(e) Initial Condition: (0,5.7570,-0.2926,0) - Model B (f) Initial Condition: (0,0.4242,0.0602,0) - Model B

Fig. 1: Six orbits, each one with its SALI diagram. All orbits were integrated up to 10,000 Myr. Only the first 500 Myr were plotted in (a),
(b), (d) and (f), for clarity.

For this Hamiltonian, the corresponding equations of mo-
tion and the corresponding variational equations that govern
the evolution of a deviation vector can be found in [4]. With
such equations it is possible to follow the temporal evolution
of a moving particle immersed in the potential ΦT , as well as
verify if this orbit is chaotic or regular, following the evolu-
tion of deviation vectors by the SALI method.

In this work, the total potential ΦT is composed by three
components, representing the galactic bulge, disk and bar:

ΦT = ΦBulge + ΦDisk + ΦBar . (5)

We represent the bulge by the Plummer Model [8]

ΦBulge = −
GMS√

x2 + y2 + z2 + ε2
S

, (6)

where εS is the length scale and MS is the bulge mass.
We represent the disk by the Miyamoto-Nagai Model [6]

ΦDisk = −
GMD√

x2 + y2 + (A +
√

z2 + B2)2
(7)

where A and B are respectively the radial and vertical scale
lengths, and MD is the disk mass.

We represent the bar by the Ferrers Model [3]. In this
model, the density in given by

ρB(x, y, z) = ρc

(
1 − m2

)2
, m < 1

ρB(x, y, z) = 0 , m ≥ 1
(8)

where the central density is

ρc =
105
32π

GMB

abc
,

MB is the bar mass and

m2 =
x2

a2 +
y2

b2 +
z2

c2 ,

where a > b > c > 0 are the semi-axes of the ellipsoid which
represents the bar.

The potential created by the galactic bar is calculated with
the Poisson equation (see [1]):

ΦBar = −πG abc
ρc

3

∫ ∞

λ

du
∆(u)

(
1 − m2(u)

)3
(9)
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(a) Initial Condition: (0,0.0640,0.7960,0) - Model S (b) Initial Condition: (0,1.9932,0.0576,0) - Model S

(c) Initial Condition: (0,3.5032,-0.2931,0) - Model S (d) Initial Condition: (0,2.6664,-0.2257,0) - Model B

(e) Initial Condition: (0,3.5148,-0.0508,0) - Model B (f) Initial Condition: (0,5.5146,-0.2951,0) - Model B

Fig. 2: The SALI graphics has both axes in logarithmic scale. All orbits were integrated into 10,000 Myr. Only the first 5,000 Myr were
plotted in (b), for clarity.

where

m2(u) =
x2

a2 + u
+

y2

b2 + u
+

z2

c2 + u
,

∆2(u) = (a2 + u)(b2 + u)(c2 + u)

and λ is the positive solution of m2(λ) = 1 for the region
outside the bar (m ≥ 1) and λ = 0 for the region inside the bar
(m < 1).

2.3 The LP-VIcode program with minor adjustments

To perform the orbits integrations and the SALI calculation,
we used the LP-VIcode program [2], which is an operational
code in Fortran 77 that calculates efficiently 10 chaos indica-
tors for dynamical systems, including SALI.

In this program, the user must provide the expressions
of the potential as well the expressions of motion and vari-
ational equations. However, the general structure of motion
and variational equations previously written in the main pro-
gram, take into account only a static reference frame, and it
is known that in order to model the galactic bar potential, it is
necessary to consider a coordinate system that rotates along
with the bar.

In this context, considering Ωb the bar angular velocity,
our reference frame should also rotate with angular velocity
Ωb. This affects the motion and variational equations since,
as can be seen in [4], they depend on Ωb. In order to solve
this problem, adjustments were made to the main program to
include the rotation in the coordinate system with the same
angular velocity of the bar.

2.4 Parameters sets

We used the two parameter sets shown in Table 1 for the po-
tential model, taken from the paper by Manos & Athanas-
soula [5]. The model units adopted are: 1 kpc for length,
103 km s−1 for velocity, 103 km s−1 kpc−1 for angular velocity,
1 Myr for time, and 2 × 1011 Msolar for mass. The universal
gravitational constant G will always be considered 1 and the
total mass G(MS + MD + MB) will be always equal to 1.

2.5 Initial conditions

We emphasize that in this paper we study orbits with two de-
grees of freedom. In order to do that, we consider z = 0 and
pz = 0 in the three-dimensional Hamiltonian (4).
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Table 1: Parameter Sets and the Bars Co-rotation.

MS εS MD A B MB a b c Ωb CR
Model S 0.08 0.4 0.82 3.0 1.0 0.1 6.0 1.5 0.6 0.054 6.04
Model B 0.08 0.4 0.82 3.0 1.0 0.1 6.0 3.0 0.6 0.054 6.06

The effective potential, which is the sum of the gravita-
tional potential with the potential generated by the repulsive
centrifugal force, is given by:

Φe f f (x) = ΦT (x) −
1
2
|Ω × x|2 . (10)

Written like that, this potential represents a rotating system.
The quantity

EJ =
1
2
|v|2 + Φe f f (x) (11)

is called Jacobi Energy and is conserved in the rotating sys-
tem.

The curve given by Φe f f (0, y, 0) = EJ is called Zero Ve-
locity Curve and provides a good demarcation for the choice
of initial conditions, since there is only possibility of orbits
when Φe f f ≤ EJ , in other words, below this curve (see [1]).

Therefore, we generated some random initial conditions
initially taking a value to y0 less than the highest possible
value of y for a given energy EJ , taking x0 = 0 and vy0 = 0.
This done, we could calculate vx as follows:

EJ =
1
2

(
v2

x0
+ v2

y0

)
+ Φe f f =

1
2
v2

x0
+ Φe f f (12)

and this implies

vx0 = ±

√
2(EJ − Φe f f ) . (13)

Then we constructed initial conditions (x0, y0, vx0 , vy0 ) to
integrate the orbits. As x0 = 0 and vy0 = 0, the launched
orbits will always be initially over the y axis and will have
initial velocity only in the x direction.

Notice that we have two possible velocities from equation
(13): one negative and one positive. We decided to take y0
always positive, so that when vx0 is positive, the orbits are
prograde (orbits that rotate in the same direction of the bar)
and when vx0 is negative, the orbits are retrograde (orbits that
rotate in the opposite direction of the bar).

3 Results

In our computational calculations, we consider SALI < 10−8

close enough to zero to consider the movement chaotic.

3.1 Regular orbits

In Fig. 1 we show 6 different orbits, each one with its SALI
diagram, from where we can identify them as regular orbits,
as explained in section 2.1.

3.2 Chaotic orbits

Fig. 2 shows a sample of 6 chaotic orbits, identified by their
SALI indexes that goes to zero after some time, as discussed
in section 2.1.

4 Conclusion

In this study, we were able to reproduce a mathematical mod-
eling of the gravitational potential of a barred galaxy and, in
order to verify the stability of the orbits within, we applied the
SALI method. We were able to prove the SALI efficiency in
distinguishing regular or chaotic orbits. In fact, this method
offers an easily observable distinction between chaotic and
regular behavior.

We also perceive the LP-VIcode efficiency, which proved
to be extremely competent in the orbits integration and study
of stability with SALI. To make an adjustment in the varia-
tional and motion equations programmed in the LP-VIcode,
we insert an adaptation in the main code to take into account
a rotating system.

Therefore, we conclude that we were successful in cal-
culating these orbits and confirm the SALI method as a new
important tool in the study of stellar orbits stability.
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Provence and University of Patras, 2008.
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The currently accepted kinetic theory considers that a gas’ kinetic energy is purely trans-
lational and then applies equipartition/degrees of freedom. In order for accepted theory
to match known empirical finding, numerous exceptions have been proposed. By re-
defining the gas’ kinetic energy as translational plus rotational, an alternative explana-
tion for kinetic theory is obtained, resulting in a theory that is a better fit with empirical
findings. Moreover, exceptions are no longer required to explain known heat capacities.
Other plausible implications are discussed.

1 Introduction

The conceptualization of a gaseous system’s kinematics orig-
inated in the writings of the 19th century greats. In 1875,
Maxwell [1] expressed surprise at the ratio of energies (trans-
lational, rotational and/or vibrational) all being equal. Boltz-
mann’s work on statistical ensembles reinforced the current
acceptance of law of equipartition with a gas’s energy being
equally distributed among all of its degrees of freedom [2–3].
The net result being that the accepted mean energy for each
independent quadratic term being kT/2.

The accepted empirically verified value for the energy of
a /textitN molecule monatomic gas is kT/2 with its isomet-
ric molar heat capacity (Cv) being (3R/2). An implication
is that a monatomic gas only possesses translational energy
[4–5]. The reasoning for this exception is that the radius of a
monatomic gas is so small that its rotational energy remains
negligible, hence its energy contribution is simply ignored.

Mathematically speaking equipartition based kinetic the-
ory states that a molecule with n′′ atoms has 3n′′ degrees of
freedom (f ) [5–6] i.e.:

f = 3n′′. (1)

This leads to the isometric molar heat capacity (Cv) for large
polyatomic molecules:

Cv =
3
2

n′′R. (2)

Interestingly, the theoretical expected heat capacity for N di-
atomic molecules is 7NkT/2. This is the summation of the
following three energies a) three translational degrees, i.e.
3NkT/2. b) three rotational degrees of freedom, however
since the moment of inertia about the internuclear axis is van-
ishing small w.r.t. other moments, then it is excluded, i.e.
NkT . c) Vibrational energy, i.e. NkT . This implies a molar
heat capacity Cv =7NkT/2 = 29.3 J/(mol*K). However, em-
pirical findings indicate that the isometric molar heat capacity
for a diatomic gas is actually 20.8 J/(mol*K), which equates
to 5RT/2 [6]. This discrepancy for diatomic gases certainly
allows one to question the precise validity of accepted kinetic
theory! In 1875 Maxwell noted that since atoms have internal
parts then this discrepancy maybe worse than we believe [7].

Various explanations for equipartition’s failure in describ-
ing heat capacities have been proposed. Boltzmann suggested
that the gases might not be in thermal equilibrium [8]. Planck
[9] followed by Einstein and Stern [10] argued the possibility
of zero-point harmonic oscillator. More recently Dahl [11]
has shown that a zero point oscillator to be illusionary. Lord
Kelvin [12–13] realized that equipartition maybe wrongly de-
rived. The debate was somewhat ended by Einstein claiming
that equipartition’s failure demonstrated the need for quantum
theory [14–15]. Heat capacities of gases have been studied
throughout the 20th century [16–19] with significantly more
complex models being developed [20–21].

It becomes a goal of this paper to clearly show that an
alternative kinetic theory/model exists. A simple theory that
correlates better with empirical findings without relying on
exceptions while correlating with quantum theory.

2 Kinetic theory and heat capacity simplified

Consider wall molecules 1 through 8, in Fig. 1. The total
mean energy along the x-axis of a vibrating wall molecule is

Ex = kT. (3)

Half of a wall molecule’s mean energy would be kinetic en-
ergy, and half would be potential energy. Thus, the mean
kinetic energy along the x-axis, remains

Ex =
kT
2
. (4)

In equilibrium, the mean kinetic energy of a wall molecule, as
defined by equation (4) equals the mean kinetic energy of the
gas molecule along the same x-axis. Herein, the wall in the
y-z plane acts as a massive pump, pumping its mean kinetic
energy along the x-axis onto the much smaller gas molecules.

In equilibrium each gas molecule will have received a
component of kinetic energy along each orthogonal axis. Al-
though there are six possible directions, at any given instant,
a gas molecule can only have components of motion along
three directions, i.e. it cannot be moving along both the pos-
itive and negative x-axis at the same time. Therefore, the
total kinetic energy of the N molecule gas is defined by
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Fig. 1: Ideal monoatomic gas at pressure Pg and temperature Tg

sourrounded by walls at temperature Tw = Tg. Gas molecules have
no vibrational energy.

equation (4) i.e. 3NkT/2. Up to this point we remain in
agreement with accepted theory.

Consider that you hit a tennis ball with a suitable racquet.
If the ball impacts the racquet’s face at a 90 degree angle, then
the ball will have significant translational energy in compar-
ison to any rotational energy. Conversely, if the ball impacts
the racquet at an acute angle, although the same force is im-
parted onto that ball, the ball’s rotational energy can be sig-
nificant in comparison to its translational energy. The point
being, in real life both the translational and rotational energy,
are due to the same impact.

Now reconsider kinetic theory. Understandably, momen-
tum transfer between both the wall’s and gas’ molecules re-
sult in energy exchanges between the massive wall and small
gas molecules. Moreover, the exact nature of the impact will
vary, even though the exchanged mean energy is constant.

Case 1: Imagine that a monatomic gas molecule collides
head on with a wall molecule, e.g. the gas molecule
hitting wall molecule no. 3 in Fig. 1. Herein, the gas
molecule might only exchange translational energy
with the wall, resulting in the gas molecule’s mean ki-
netic energy being purely translational, and defined by
equation (4).

Case 2: Imagine that a monatomic gas molecule strikes wall
molecule no. 1 at an acute angle. The gas molecule
would obtain both rotational and translational energy
from the impact such that the total resultant mean en-
ergy of the gas molecule would be the same as it was
in Case 1, i.e. defined by equation (4).

Case 3: Imagine a rotating and translating monatomic gas
molecule striking the wall. Both the rotational and tran-
slational energies will be passed onto the wall molecu-
le. Since the wall molecule is bound to its neighbors,

Fig. 2: Ideal diatomic gas at pressure Pg and temperature Tg sour-
rounded by walls at temperature Tw = Tg. Gas molecules have vi-
brational energy.

it cannot rotate hence both energies can only result in
vibrational energy of the wall molecules along its three
orthogonal axis.

After numerous wall impacts, our model predicts that an
N molecule monatomic gas will have a total kinetic energy
(translational plus rotational) defined by

EkT (t,r) =
3
2

NkT. (5)

Fig. 2 illustrates a system of diatomic gas molecules in a con-
tainer. The wall molecules still pass the same mean kinetic
energy onto the diatomic gas molecule’s center of mass with
each collision. Therefore the diatomic gas’ kinetic energy is
defined by equation (5). The diatomic gas molecule’s vibra-
tional energy would be related to the absorption and emis-
sion of its surrounding blackbody/thermal radiation. There-
fore, the mean x-axis vibrational energy within a diatomic gas
molecule remains defined by equation (3) and the total mean
energy for a diatomic gas molecule becomes defined by

Etot = EkT (t,r) + Ev =
3
2

kT + kT =
5
2

kT. (6)

Therefore the total energy for an N molecule diatomic gas
becomes

Etot = EkT (t,r) + Ev =
3
2

NkT + NkT =
5
2

NkT. (7)

For an N molecule triatomic gas:

Etot = EkT (t,r) + Ev =
3
2

NkT + 2NkT =
7
2

NkT, (8)

n′′ signifies the polyatomic number. Therefore for N
molecules of n′′-polyatomic gas, the vibrational energy is

Ev = (n′′ − 1)NkT. (9)
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Therefore, the total energy for a polyatomic gas molecule is:

Etot = EkT (t,r) + Ev =
3
2

NkT + (n′′ − 1) NkT

=

(
n′′ +

1
2

)
NkT.

(10)

Dividing both sides by temperature and rewriting in terms of
per mole (N=6.02 × 1023) then equation (10) becomes:

Etot

T
= nk

(
n′′ +

1
2

)
= R

(
n′′ +

1
2

)
. (11)

For most temperature regimes, the heat capacity of gases
remains fairly constant, hence equation (11) can be rewritten
in terms of the isometric molar heat capacity (Cv), i.e.

Cv = R
(
n′′ +

1
2

)
. (12)

The difference between molar isobaric heat capacity (Cp) and
molar isometric heat capacity (Cv) for gases is the ideal gas
constant (R) [see equation (15)]. Therefore, a gas’s isobaric
heat capacity Cp becomes

Cp = R
(
n′′ +

1
2

)
+ R = R

(
n′′ +

3
2

)
. (13)

The adiabatic index is the ratio of heat capacities, i.e. dividing
equation (13) by equation (12) gives the adiabatic index

γ =
Cp

Cv
=

(
n′′ + 3

2

)(
n′′ + 1

2

) . (14)

Table 1 shows the accepted isometric and isobaric mo-
lar heat capacities for various substances for 0 > n′′ > 27.
These values were calculated using data (specific heats) from
an engineering table (Rolle [22]) that is shown in Table 2.
Note: Engineer’s use specific heats (per mass), physicists and
chemists prefer heat capacity (per mole).

In Fig. 3, both our theoretical molar isometric and isobaric
[equations (12) and (13)] heat capacities are plotted against
the number of atoms (n′′) in each molecule. The accepted
empirically determined values for heat capacities versus n′′

(from Table 1) are also plotted. The traditional theoretical
values for molar heat capacities [eq. (2)] are also plotted.

The theory/model proposed herein remains a better fit to
empirical findings for all polyatomic molecules. Importantly,
it does not rely upon the exceptions that plague the tradition-
ally accepted degrees of freedom based kinetic theory.

Interestingly, there is a discrepancy, between our model
and empirical known values for 4 < n′′ < 9. Moreover,
the slope of our theoretical values visually remains close to
the slope of empirically determined values for n′′ > 8. Fur-
thermore, hydrogen peroxide (H2O2, Cv= 37.8, n′′ = 4) and

acetylene (C2H2, n′′ = 4, Cv= 35.7) are linear bent molecules
and good fit, while pyramidal ammonia (NH3, n′′ = 4, Cv =

27.34) is not. Could the gas molecule’s shape influence how
it absorbs surrounding thermal radiation, hence its vibrational
energy?

Table 2 shows the accepted adiabatic index versus our
theoretical adiabatic index for most of the same substances
shown in Table 1. Our theoretical adiabatic index compares
rather well with the accepted empirical based values, espe-
cially for low n′′ < 4 and high n′′ > 11, as is clearly seen
in Fig. 4. Although not 100% perfect, this new theory/model
certainly warrants due consideration by others.

3 Kinetic theory and thermal equilibrium

Kinetic theory holds because the walls act as massive energy
pumps, i.e. gas molecules take on the wall’s energy with ev-
ery gas-wall collision. For sufficiently dilute gases, this re-
mains the dominant method of energy exchange. Mayhew
[23–24] has asserted that inter-gas molecular collisions tend
to obey conservation of momentum, rather than adhere to ki-
netic theory. Therefore, when inter-gas collisions dominate
over gas-wall collisions, then kinetic theory, the ideal gas law,
Avogadro’s hypothesis, Maxwell’s velocities etc. all can start
to lose their precise validity.

It is accepted that there are changes to heat capacity in
and around dissociation temperatures. Firstly, at such high
temperatures, the pressure tends to be high; hence the inter-
gas collisions may dominate. This author believes that this
actually helps explain why kinetic theory falters in polytropic
stars, wherein high-density gases collide in a condensed mat-
ter fashion hence one must use polytropic solutions. Sec-
ondly, at high temperatures a system’s thermal energy density
is no longer proportional to temperature, i.e. a blast furnace’s
thermal energy density is proportional to T 4 [22].

Blackbody radiation describes the radiation within an en-
closure. For an open system and/or none blackbody, the ther-
mal radiation surrounding the gas molecules may be better
to considered. Herein thermal radiation means radiation that
is readily absorbed and radiated by condensed matter and/or
polyatomic gases, resulting in both intramolecular and inter-
molecular vibrations.

For a system of dilute polyatomic gas e.g. Fig. 2, ther-
mal equilibrium requires that all of the following three states
remain related to the same temperature (T):

1. The walls are in thermal equilibrium with the enclosed
blackbody/thermal radiation.

2. The gas’ translational plus rotational energy is in me-
chanical equilibrium with the molecular vibrations of
the walls.

3. The gas’ vibrational energies are in thermal equilib-
rium with the enclosed blackbody/thermal radiation.

Imagine that a system of dilute polyatomic gas is taken
to remote outer space, and that the walls are magically re-
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Table 1: Accepted isometric and isobaric heat capacities versus theoretical i.e. empirical findings versus Eqn. (12), Eqn. (13), as well as
Eqn. (2). Note: Accepted heat capacities were calculated from the engineer’s specific heats in Table 2 (Rolle [22]), exception being H2O2

which was taken from Giguere [19].

n′′ Accepted Eqn. (12) Accepted Eqn. (13) Eqn. (2)
Cv Cv Cp Cp Cv

Substance [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K] [J/mol*K]
Helium He 1 12.48 12.47 20.80 20.78
Neon Ne 1 12.47 12.47 20.79 20.78
Argon Ar 1 12.46 12.47 20.81 20.78
Xenon Xe 1 12.47 12.47 20.58 20.78
Hydrogen H2 2 20.52 20.78 28.83 29.09
Nitrogen N2 2 20.82 20.78 29.14 29.09
Oxygen O2 2 21.02 20.78 29.34 29.09
Nitric oxide NO 2 21.55 20.78 29.86 29.09
Water vapor H2O 3 25.26 29.09 33.58 37.40 37.40
Carbon dioxide CO2 3 28.83 29.09 37.14 37.40 37.40
Sulfur dioxide SO2 3 31.46 29.09 39.78 37.40 37.40
Hydrogen peroxide H2O2 4 37.4 37.73 46.05 45.71 49.86
Ammonia NH3 4 27.37 37.40 35.70 45.71 49.86
Methane CH4 5 27.4 45.71 35.72 54.0 62.33
Ethylene C2H4 6 35.24 54.02 43.54 62.33 74.79
Ethane C2H6 8 44.35 70.64 52.65 78.95 99.72
Propylene C3H6 9 53.82 78.95 63.92 87.26 112.19
Propane C3H8 11 65.18 95.57 73.51 103.88 137.12
Benzene C6H6 12 73.50 103.88 81.63 112.19 149.58
Isobutene C4H8 12 77.09 103.88 85.68 112.19 149.58
n-Butane C4H10 14 89.10 120.50 97.42 128.81 174.51
Isobutane C4H10 14 88.52 120.50 96.84 128.81 174.51
n-Pentane C5H12 17 111.91 145.43 120.20 153.74 211.91
Isopentane C5H12 17 111.69 145.43 119.99 153.74 211.91
n-Hexane C6H14 20 134.78 170.36 143.06 178.67 249.30
n-Heptane C7H16 23 157.62 195.29 165.94 203.60 286.70
Octane C8H18 26 180.60 220.22 188.83 228.53 324.09

moved and the gas disperses. Spreading at the speed of light
the blackbody/thermal radiation density decreases faster than
the density of slower moving gas molecules. As the radia-
tion density decreases, the rate at which polyatomic gaseous
molecules absorbs blackbody/thermal radiation decreases in
time. Hence their vibrational energy decreases although their
mean velocity remains constant. Now place a thermome-
ter in the expanding wall-less gas, what will it read? Tra-
ditional kinetic theory claims that the temperature will be the
same because the gas molecule’s velocity remains constant
i.e. temperature is only associated with the system’s kinemat-

ics [2–3]. However, without walls the blackbody/thermal ra-
diation decouples from thermal equilibrium i.e. the mean ve-
locity of the gas molecules are associated with one tempera-
ture, but the radiation density is no longer associated with that
temperature. This bodes the question: What is the real tem-
perature? Of course this means accepting that the thermome-
ter not only exchanges kinetic energy with the gas molecules,
but it also exchanges blackbody/thermal radiation with its
surroundings.

The above is another reason that this author hypothesizes
that kinetic theory can falter in systems without walls. The
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Table 2: Engineer’s accepted adiabatic index compared to theoretical: Eqn. (14). Note: Data in first six columns after Rolle [22]. Rolle’s
reference: J.F. Masi, Trans. ASME, 76:1067 (October, 1954): National Source of Standards (U.S.) Circ. 500, Feb. 1952; Selected Values
of Properties of Hydrocarbons and Related Compounds, American Petroleum Institute Research Project 44, Thermodynamic Research
Center, Texas, A&M University, College Station, Texas.

Molar Engineer’s Engineer’s Engineer’s Accepted Theoretical
n′′ mass R Cp Cv adiabatic index (γ)

Substance [g/mol] [J/kg*K)] [kJ/mol*K)] [kJ/mol*K)] index(γ) Eqn. (14)
Helium He 1 4.00 2079 5.196 3.117 1.67 1.67
Neon Ne 1 20.18 412 1.030 0.618 1.67 1.67
Argon Ar 1 39.94 208 0.521 0.312 1.67 1.67
Xenon Xe 1 131.30 63 0.1568 0.095 1.67 1.67
Hydrogen H2 2 2.02 4124 14.302 10.178 1.41 1.4
Nitrogen N2 2 28.02 297 1.040 0.743 1.4 1.4
Oxygen O2 2 32.00 260 0.917 0.657 1.4 1.4
Nitric oxide NO 2 30.01 277 0.995 0.718 1.39 1.4
Water vapor H2O 3 18.02 462 1.864 1.402 1.33 1.29
Carbon dioxide CO2 3 44.01 189 0.844 0.655 1.29 1.29
Sulfur dioxide SO2 3 64.07 130 0.621 0.491 1.26 1.29
Ammonia NH3 4 17.03 488 2.096 1.607 1.30 1.22
Methane CH4 5 16.04 519 2.227 1.708 1.30 1.18
Ethylene C2H4 6 28.05 297 1.552 1.256 1.24 1.15
Ethane C2H6 8 30.07 277 1.751 1.475 1.19 1.12
Propylene C3H6 9 42.08 198 1.519 1.279 1.19 1.11
Propane C3H8 11 44.10 189 1.667 1.478 1.13 1.09
Benzene C6H6 12 78.11 106 1.045 0.939 1.11 1.08
Isobutene C4H8 12 56.11 148 1.527 1.374 1.11 1.08
n-Butane C4H10 14 58.12 143 1.676 1.533 1.09 1.07
Isobutane C4H10 14 58.12 143 1.666 1.523 1.09 1.07
n-Pentane C5H12 17 72.15 115 1.666 1.551 1.07 1.06
Isopentane C5H12 17 72.15 115 1.663 1.548 1.07 1.06
n-Hexane C6H14 20 86.18 96 1.660 1.564 1.06 1.05
n-Heptane C7H16 23 100.20 83 1.656 1.573 1.05 1.04
Octane C8H18 26 114.23 73 1.653 1.581 1.05 1.04

other reason kinetic theory may falter without walls is that
wall-gas interactions no longer exist, hence kinetic theory’s
complete virtues may be limited to systems with walls
[24–25] i.e. experimental systems.

4 Discussion of other implications

This author [24–25] has hypothesized that blackbody/thermal
radiation within a system has a temperature associated with
it. So although the total energy associated with radiation of-
ten is infinitesimally small in comparison to the total energy
associated with the kinematics of matter, the idea that black-

body radiation has a temperature associated with it, should no
longer be ignored. In other words, even a vacuum can have
a temperature, although it has no matter and comparatively
speaking only contains a minute amount of energy.

Pressure is traditionally envisioned as being solely due to
change in translational energy i.e. “every molecule that im-
pinges and rebounds exerts an impulse equal to the difference
in its momenta before and after impact” [pg. 32, 20]. In-
terestingly, the analysis given herein does alter such explana-
tions just because the rotational energy plus the translational
energy of the gas molecules now combine to exert pressure.
Moreover, consider the tennis ball impacting a wall. Ask
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Fig. 3: Theoretical molar heat capacity based on our theoretical equations (12) and (13) versus empir-
ical values, plus the traditional theoretical isometric molar heat capacity plot [based upon degrees of
freedom, equation (2)].

Fig. 4: Theoretical adiabatic index [eq. (14)] versus number of atoms (solid line). Adiabatic index data
points based upon engineering table for gases.

yourself: Are not both the rotational and translational en-
ergy of that ball exchanged with the wall. So why would
a gas molecule behave any differently? Just because wall
molecules are bound i.e. cannot rotate, does not mean that
they don’t exchange rotational energy/momentum with an im-
pacting gas! The gas’ mean translational velocity (mv2/2) can
no longer be simply equated in terms of Boltzmann’s con-
stant (kT/2). This has consequences to fundaments such as
Maxwell’s velocity distributions for gases. In our analysis,
the magnitude of translational energy compared to rotational
energy is not defined beyond that they add up to and equal, the
summation of the walls molecule’s kinetic energies! Since the

gas’ total kinetic energy remains the same, then most of what
is known in quantum theorem still applies with the change
being how a gas’ kinetic energy is expressed.

Consider the hypothesis that rotational energy of a gas is
frozen out at low temperatures [26]. This is like claiming
that gas molecules never impact a wall at acute angles, when
in a cold environment. This author thinks in terms of ther-
mal energy being energy that results in both intermolecular
and intramolecular vibrations within condensed matter. Just
consider the blackbody radiation curve for 3 K, whose peak
is located at wavelength of 1 mm. Compare this to 300 K,
where the radiation curves’ peak occurs in the infrared spec-
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trum, wavelength equals 10 micrometers. Accepting that the
majority of thermal energy is in the infrared then this author
also believes that somewhere between 3 K and 300 K, a sys-
tem’s thermal energy density will no longer proportional to
temperature i.e. probably aroound 100 K. Perhaps it is the
gas’ vibrational energy that is frozen out? Understandably, at
low temperatures the blackbody/thermal radiation within the
system may be such that it does not provide enough thermal
energy (infrared) for measurable gas vibration. However, this
should equally apply to the system’s walls, unless the walls
have more thermal energy relative to the gas i.e. apparatus
considerations? This is conjecture, as remains the current no-
tion that rotational energies are frozen out.

For gases the accepted difference between molar isobaric
heat capacity and molar isometric heat capacity is the ideal
gas constant (R). Accordingly [2–3]:

Cp −Cv = R. (15)

The difference in heat capacities is obviously independent
of the type of gas. This implies that the difference depends
upon the system’s surroundings and not the experimental sys-
tem, nor its contents. This fits this author’s assertion that “the
ideal gas constant is the molar ability of a gas to do work per
degree Kelvin” [27]. This is based upon the realization that
work is required by expanding systems to upwardly displace
our atmosphere’s weight, i.e. an expanding system does such
work, which becomes irreversibly lost into the surrounding
Earth’s atmosphere. The lost work being [24, 28–29]

Wlost = Patm dV. (16)

This does not mean that the atmosphere is always up-
wardly displaced, rather that the energy lost by an expanding
system is defined by equation (17). This lost energy can be
associated with a potential energy increase of the atmosphere,
or a regional pressure increase. Note: A regional pressure in-
crease will result in either a volume increase, or viscous dissi-
pation i.e. heat created = lost work. This requires the accep-
tance that the atmosphere has mass and resides in a gravita-
tional field. It is no different than realizing that an expanding
system at the bottom of an ocean, i.e. a nucleating bubble,
must displace the weight of the ocean plus atmosphere. Ac-
cordingly, any expanding system here on Earth’s surface must
expend energy/work to displace our atmosphere’s weight and
such lost work, is immediately or eventually lost into the sur-
rounding atmosphere. Accepting this then allows one to ques-
tion our understanding of entropy [24, 29].

5 Conclusions

Kinetic theory has been reconstructed with the understand-
ing that a gas’ kinetic energy has both translational and rota-
tional components that are obtained from the wall molecule’s
kinetic energy. Therefore, the gas’ translational plus rota-
tional energies along each of the x, y and z-axis, are added

and equated to the wall molecules’ kinetic energy along the
identical three axes. No knowledge pertaining to the magni-
tudes of the gas’ rotational energy versus translational energy
is claimed. This is then added to the gas’ internal energy e.g.
vibrational energy, in order to determine the gas’ total energy.

The empirically known heat capacity and adiabatic index
for all gases are clearly a better fit to this new theory/model,
when compared to accepted theory. The fit for monatomic
through triatomic gases is exceptional, without any reliance
upon traditionally accepted exceptions! Moreover, our model
treats all polyatomic molecules in the same manner as con-
densed matter.

Seemingly, Lord Kelvin’s assertion that equipartition was
wrongly derived, may have been right after all. Accepting
that the traditional degrees of freedom in equipartition the-
ory may be mathematical conjecture rather than constructive
reasoning will cause some displeasure. Certainly, one could
argue that what is said herein is really just an adjustment to
our understanding. Even so, it will alter how pressure is per-
ceived that being due to the gas molecules’ momenta from
both rotation and translation, which is imparted onto a sur-
face. Ditto for the consideration of a gas’ energy in quantum
theory.

The consequence of a polyatomic gas’ thermal vibrations
being related to its surrounding thermal radiation may alter
our conceptualization of temperature, i.e. a vacuum now has
a temperature. The notion that rotation in cold gases is frozen
out was also questioned. Perhaps it is a case that the thermal
energy density does not remain proportional to temperature,
as T approaches 0, which also is the case for very high tem-
perature gases.

The difference between isobaric and isometric heat capac-
ity is gas independent. This fits well with this author’s asser-
tion that lost work represents the energy lost by an expanding
system into the surrounding atmosphere. Interestingly, for a
mole of gas molecules this lost work can be related to the
ideal gas constant.

To some, the combining of a gas’ rotational and transla-
tional energy may seem like a minor alteration, however the
significance to the various realms of science maybe shatter-
ing. Not only may this help put to rest more than a century of
speculations, it also may alter the way that thermodynamics
is envisioned. If accepted it actually opens the door for a sim-
pler new thermodynamics vested in constructive logic, rather
than mathematical conjecture.

A thanks goes out to Chifu E. Ndikilar for his helpful pre-
liminary comments, as well as both Dmitri Rabounski and
Andreas Ries for their insights in finalizing the paper.

6 Example calculations

1. Table 1 for n′′ = 3; our theoretical values:
[equation (12)]: I.e. Cv = 7

2 R = 7
2 8.31 J/(mol*K)

= 29.09 J/(mol*K).
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[eq. (13)]: I.e. Cp = 9
2 R = 9

2 8.31 J/(mol*K)
= 37.40 J/(mol*K).
For n′′=3, traditional accepted theoretical value is eq-
uation (2): I.e. Cv = 9

2 R = 9
2 8.31 J/(mol*K)

= 37.40 J/(mol*K).
2. Table 2, for n′′ = 3. Accepted adiabatic index (γ) for

carbon dioxide (n′′ = 3) based upon engineering data
[22] is γ = 0.844/0.655 = 1.29. Our theoretical adia-
batic index (γ) is equation (14): I.e.

γ =

9
2
7
2

= 1.29.

Submitted on June 16, 2017
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In this paper we suggest a possible theoretical way to produce negative energy that
is required to allow hyperfast interstellar travels. The term “Exotic Matter” was first
coined by K. Thorne and M. Morris to identify a material endowed with such energy
in their famous traversable space-time wormhole theory. This possibility relies on the
wave-particle dualism theory that was originally predicted by L. de Broglie and later
confirmed by electrons scattering experiments. In some circumstances, an electron in-
teracting with a specific dispersive and refracting medium, has its velocity direction
opposite to that of the phase velocity of its associated wave. However, it is here shown
that a positron placed in the same material exhibits a negative mass. Generalizing the
obtained equations leads to an energy density tensor which is de facto negative. This
tensor can be used to adequately fit in various “shortcut theories” without violating the
energy conditions.

Introduction

Introduction In this paper we show that it is possible to ob-
tain a negative energy provided the associated proper parti-
cle’s mass is variable. The basis for this study starts with
the associated wave that was originally detected on electrons
diffraction experiments [1]. In some circumstances, L. de
Broglie showed that a particular homogeneous refractive and
dispersive material may cause the tunnelling particle to re-
verse its velocity with respect to its wave phase propagat-
ing velocity [2]. In this case, and under the assumption that
the proper mass of the particle is subject to a ultra high fre-
quency vibration synchronized with the wave frequency, it is
formally shown that an anti-particle exhibits a negative mass
(energy). This energy could be extracted to sustain for ex-
ample the space-time wormhole, set forth by K. Thorne and
M. Morris [3, 4]. To be physically viable, it is well known
that it requires a so-called exotic matter endowed with a neg-
ative energy density which violates all energy conditions [5].
However, if the exotic matter threading the inner throat of
the wormhole is likened to the specific dispersive material
wherein circulates a stream of antiparticles, our model does-
not conflict with classical physics restrictions and can be fully
applied.

Notations

In this paper we will use a set of orthonormal vector basis
denoted by {e0, ea}, where the space-time indices are a, b =

0, 1, 2, 3, while the spatial indices are µ, ν = 1, 2, 3. The
space-time signature is {−2}.

1 Proper mass variation

1.1 Phase velocity and group velocity

It is well known that the classical wave with a frequency n

ψ = a(n) exp [2πi(νt − kr)] (1)

propagates along the direction given by the unit vector N.
Here k is the 3-wave vector, kr = φ is the wave spatial phase,
and n is the refractive index of the medium. Equation (1) is a
solution of the wave propagation equation

∆ψ =
1
w2

∂2ψ

c2∂t2 , (1)bis

where w is the wave phase velocity of the wave moving in
a dispersive medium whose refractive index is n(ν) generally
depending of the coordinates, and which is defined by:

1
w

=
n(ν)

c
. (2)

In our study, the medium is assumed to be homogeneous
but it can be anisotropic and ir will depend on the fequency ν.
In this material, the phase φ of the wave is progressing along
the given direction with a separation given by a distance

λ =
w

ν
=

c
nν

(2)bis

called the wavelength. Consider now the superposition of two
stationary waves along the x-axis having each close frequen-
cies ν′ = ν + δν and close velocities w′ = w + (dw/dν)δν, so
that their superposition can be expressed by:

sin 2π
(
νt −

νx
w

)
+ sin 2π

(
ν′t −

ν′x
w′

)
=

= 2 sin 2π
(
νt −

νx
w

)
cos 2π

[
δ
(
ν

2

)
t − x

d
dν

ν

w
δ
ν

2

]
.

The resulting wave displays a wave packet (or beat) that
varies along with the so-called group velocity (v = vµ):

1
vg

=
d
dν

ν

w
. (3)
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The wave mechanics shows that the momentum 3-vector of
an electron of a rest mass m0 (in vacuum) is given by the de
Broglie relation

p = m0v =
h
λ
. (4)

which completes the Einstein relation E = hν.

1.2 The plane wave spinor

Since we deal here with a spin 1/2-fermion, we must intro-
duce the four components wave function ΨA expressed with
the non local 4 × 4 Dirac trace free matrices γa (capital latin
spinor indices are A = B = 1, 2, 3, 0). They display here the
following real components [8]:

γ0 =


0 0 0 −1
0 0 −1 0
0 1 0 0
1 0 0 0

 , γ1 =


0 0 0 −1
0 0 1 0
0 1 0 0
−1 0 0 0

 ,

γ2 =


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

 , γ3 =


0 0 −1 0
0 0 0 −1
−1 0 0 0
0 −1 0 0

 .
These matrices are said standard representation as opposed
for example to the Majorana representation. Moreover, they
verify

γaγb + γbγa = −2ηabI (5)

where ηab is the Minkowski tensor and I is the unit matrix.
In what follows, Λ∗ is the complex conjugate of an arbitrary
matrix Λ, TΛ is the transpose of Λ, and Λ̃ is the classical
adjoint of Λ.

Introducing now the Hermitean matrix β = iγ0

β =


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 ,
which verifies β2 = I, we derive the important relation

β γa β
−1 = −γ̃a (5)bis

with β and the spinor Ψ, we form the Dirac conjugate [9]

◦Ψ = t Ψ̃ β , (5)ter

where t is the time orientation. or the electron, the Dirac equa-
tion is written as

[W − (m0)elec c] Ψ = 0 , (6)

where W = γa A
B ∂a is the Dirac operator and it is customary

to omit the spinor indices A, B by simply writing γa = γ a
a B

so that this operator becomes γa∂a, or in the slash notation
(Feynman), −∂a. The monochromatic wave associated with the

electron can be approximated to a plane wave spinor without
loss of generality [10]:

ΨA = a (xa) exp 2πi (paxa) , (6)bis

where
paxa = Et − pµxµ. (6)ter

The 4-vector pa is the 4-momentum of the electron . The
spinor “amplitude” a(xa) satisfies the Dirac equation[

γa(pa)elec
]
a = [(m0)elec c] a (7)

where the operator [γa(pa)elec] is here substituted to the Dirac
operator γa∂a. We now re-write (6)bis as

Ψ = a(xa) exp(2πi/h) φ , (7)bis

where the global phase is φ = h[ν − (αx + βy + γz)/λ] t (here
α, β, γ are the direction cosines). The energy and momentum
of the electron located at xa are then related with the wave
phase by:

E = ∂t φ , p = −grad φ . (7)ter

Now, if the electron moves at a velocity v = β c within
a slight variation β, β + δβ, corresponding to the frequency
interval ν, ν + δν, w and ν are functions of β. The wave phase
velocity (in vacuum) can be expressed as w = c2/v = c/β and
since ν = (1/h) m0c2/

√
1 − β2, it is easy to infer that:

vg =
dν
dβ

1
d

dβ
ν
w

= β c = v . (8)

The group velocity vg of the wave packet associated with the
electron of rest mass m0, coincides with its velocity v. The
group velocity is thus also expressed by the Hamiltonian form
vg = ∂E/∂k which corresponds to the particle’s velocity v =

∂E/∂p. Recalling (2) and (2)bis to as 1/w = n(ν)/c, λ =

w/nν, we easily infer the Rayleigh’s formulae [11]:

1
vg

=
1
c
∂nν
∂ν

=
∂
(

1
λ

)
∂ν

. (9)

1.3 Making the electron vibrate

In the framework of the special theory of relativity, the proper
frequency ν0 of a plane monochromatic wave is transformed
as

ν =
ν0√

1 − v2/c2
. (10)

Constraint A: We assume that the electron is subject to an
ultra high stationary vibration having a proper frequen-
cy ν0.

When moving at the velocity v, this frequency is known
to transform according to:

νe = ν0

√
1 − v2/c2 . (11)
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We clearly see that its frequency νe differs from that of its
associated wave denoted here by ν.

If N is the unit vector normal to the associated wave
phase, the electron subject to the frequency ν0 = m0c2/h has
traveled a distance dN during a time interval dt, so that we
may define an electronic phase φe which has changed by:

dφe = hν0

√
(1 − v2/c2) dt = m0c2

√
(1 − v2/c2) dt. (12)

Simultaneously, the corresponding wave phase variation is

dφ = ∂tφdt + ∂NφdN =
(
∂tφ + v grad φ

)
dt (12)bis

and by analogy to the classical formula (7)ter, one may write

p = −grad φ =
m0v√

1 − v2/c2
, E = ∂tφ =

m0c2√
1 − v2/c2

so we find

dφ =

 m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt. (13)

Constraint B: We set the following phase synchronization:

dφ = dφe , (14)

which leads to: m0c2√
1 − v2/c2

−
m0v2√

1 − v2/c2

 dt =

=
[
m0c2

√
1 − v2/c2

]
dt .

(15)

Dividing through by dt , we retrieve the famous Planck-Laue
equation

m0c2√
1 − v2/c2

= m0c2
√

1 − v2/c2 +
m0v2√

1 − v2/c2
, (15)bis

which holds provided the proper mass is slightly variable.
(see proof in Appendix A). In the frameworks of our pos-
tulate, the ultra high frequency vibration imparted to the elec-
tron can be viewed as apparently reflecting its stationary mass
variation which is likened to a fluctuation.

From now on, ]m0 will denote the variable rest mass of
the electron so that the Planck-Laue relation becomes:

]E =
]m0c2√

1 − v2/c2
=

= ]m0c2
√

1 − v2/c2 +
]m0v

2√
1 − v2/c2

.

(15)ter

This formulae will be required to determine the explicit form
of the dispersive material which is the key point of our theory.

2 Exotic matter

2.1 Dynamics in a refracting material

Let us first recall the relativistic form of the Doppler formu-
lae:

ν0 =
ν (1 − v/w)√

1 − v2/c2
, (16)

where as before, ν0 is the wave’s frequency in the frame at-
tached to the electron. With the latter equation and taking into
account the classical Planck relation E = hν, we find

E =
E0

√
1 − v2/c2

1 − v/w
. (17)

However, inspection shows that the usual equation

E =
E0√

1 − v2/c2
(18)

holds only if

1 −
v
w

= 1 −
v2

c2 (19)

which implies
w v = c2. (20)

The latter relation is satisfied provided we set

]E =
]m0c2√

1 − v2/c2
, (21)

] p =
]m0v√

1 − v2/c2
. (22)

Constraint C: ]E depends on a specific dispersive and re-
fracting material through which the electron is tunnel-
ling.

Let us define this influence by a function Q(n) where n
is the refractive index of the material. Note: The variation
of the proper mass is independent on Q(n). Equation (21) is
modified to as

]E =
]m0c2√

1 − v2/c2
+ Q(n) (23)

from which Eq. (22) can be expressed as:

] p =
]m0v√

1 − v2/c2
=

v
[
]E − Q(n)

]
c2 . (24)

Now taking into account the Doppler formulae (16), and
the Planck-Laue relation (15)ter, we find

]E −
v2

[
]E − Q(n)

]
c2 = ]E

(
1 −

v
w

)
(25)
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wherefrom is inferred

Q(n) = ]E
(
1 −

c2

w v

)
= hν

(
1 −

c2

w v

)
(26)

and with the Rayleigh formulae (4), we eventually obtain the
explicit form of Q(n):

Q(n) = ]E
[
1 −

n∂(nν)
∂ν

]
. (27)

2.2 Specific dispersive material

Depending on the nature of the dispersive material, thus its
index (n), it is well known that the tunelling electron’s 3-
velocity v can be directed either in the direction of the associ-
ated wave phase velocity w or in the opposite direction. The
electron then moves backward through the specific material.

Let N be the 3-unit vector directed to the wave phase di-
rection (chosen positive) so that the wave number is given by:

k =
Nh
λ
. (28)

By applying the Rayleigh formulae (4) to this particular case
where v is opposite to the wave phase propagation, we have
v < 0. Hence, from Q(n) = ]E (1 − c2/w v), we find

]E − Q(n) =
]Ec2

w v
(29)

which is negative.
Then, with p = ]m0v/

√
1 − v2/c2, we infer from (24):

]m0√
1 − v2/c2

=
]E − Q(n)

c2 . (29)bis

In order to maintain the variable proper mass ]m0 positive
i.e.

]m0 =

√(
1 − v2/c2) ]E

w v
> 0 (30)

we must have necessarily: p = −k.

2.3 Matching the exotic matter definition

Now consider a stream of electrons and positrons placed in
the specific material whose respective associated wave (pos-
itive) direction is given by the same unit vector N (i.e. w >
0). From the Dirac theory, we kwnow that the electron mo-
mentum 3-vector pelec and that of the positron momentum 3-
vector p pos are opposed. (See proof in Appendix B). There-
fore we have here ppos = k, however the dispersive material
yet imposes vpos < 0, hence, we are led to the fundamental
conclusion:

A positron moving at the backward velocity vpos through
the specific dispersive refracting material defined above and

subject to Constraints A, B and C, will exhibit a negative mass
given by:

(]m0)pos =

√
1 − v2

pos/c2
]E
w v

< 0 , (30)bis

where ]E − Q(n) = ]Ec2/vpos w) < 0 in accordance with
Eq. (29).

Let us write the mass (30)bis as:

(]m0)pos =

∫
(]ρ0)pos

√
−g dV, (31)

where (]ρ0)pos is the variable proper density of the positronic
massive flow. The integral is performed over the 3-volume
V delimiting the variable proper mass (]m0)pos boundary. We
then readily infer the familiar form of the energy density ten-
sor in the static case

(]T 0
0 )pos = (]ρ0)pos c2, (32)

which is de facto negative.
So, within the scheme of the wave-particle picture, we

have been able to give a consistent picture of what could be
the united conditions to reach our goal :

The so-called “exotic matter” required to assemble a
space-time distortion can be provided by the negative energy
extracted from a stream of vibrating antifermions interacting
with a specific dispersive refracting material adequately en-
gineered.

3 Concluding remarks

Without going into details of a sound engineering, we have
here only scratched the surface of a basic theory describing
the ability of a system composed of antiparticles to interact
with a specific refracting and dispersive material in order to
exhibit a dynamical negative mass.

Thus, our approach mainly relies on de Broglie’s theory
which has been verified for the electron.

Upon Constraints A, B, and C, we might as well consider
other heavier particles such as the antiproton to produce neg-
ative energy.

Once these conditions are fulfilled, the concept of hyper-
fast interstellar tracel is viable if one can “handle” routinely
antimatter, and envision a sufficient amount of negative en-
ergy density. These orders of magnitude are beyond the scope
of this text.

Without any doubt, some advanced civilizations have al-
ready long mastered the negative energy obtained by this pro-
cess, to achieve superluminal travels as described by space-
time warp drive theories [12–14].

For us, a huge research work is still ahead, but if we have
contributed to open a small door, then the challenge is widely
available for physicists.
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Appendix A: The Planck-Laue relation

The Planck-Laue relation is a relativistic equation which has
been derived when the proper mass is assumed to sligthly
fluctuate. This proper mass is here denoted by ]m0. Under
this circumstance, the relativistic dynamics of ]m0 can now
be extended as follows.

We first write the Lagrange function for an observer who
see the particle moving at he velocity v

L = − ]m0c2
√

1 − v2/c2

so that the least action principle applied to this function is still
expressed by

δ

∫ t1

t0
Ldt = δ

∫ t1

t0
− ]m0c2

√
1 − v2/c2 = 0 .

From this principle the equations of motion

d
dt

(
∂L
∂ẋa

)
=
∂L
∂xa

, ẋa =
dxa

dt
,

are inferred, which lead to

d ]p
dt

= − c2
√

1 − v2/c2 grad ]m0 (A.1)

(since ]m0 is now variable). Hence, by differentiating the rel-
ativistic relation ]E2/c2 = ]p2 + ]m2

0c2, we obtain

d ]E
dt

= c2
√

1 − v2/c2 ∂
]m0

∂t
. (A.2)

Combining (A.1) and (A.2) readily gives

d ]E
dt
− v

d ] p
dt

= c2
√

1 − v2/c2 d ]m0

dt
, (A.3)

where d ]m0/dt = ∂ ]m0/∂t + grad ]m0 is the variation of the
mass in the course of its motion. On the other hand, we have

d (] p · v)
dt

=
v · d ] p

dt
+ ]m0c2 (v/c) d(v/c) dt√

1 − v2/c2
=

= v
d ]p
dt
− ]m0c2 d

dt

(
1 − v2/c2

) (A.4)

i.e.

d
dt

[
]m0c2

√
1 − v2/c2

]
=

= c2
√

1 − v2/c2 d ]m0

dt
+ ]m0c2 d

dt

√
1 − v2/c2

hence (A.3) can be re-written as

d
dt

[
]E − v · ] p− ]m0c2

√
1 − v2/c2

]
= 0 (A.5)

which is satisfied when the particle is at rest, that is: v = 0⇒
]E0 = ]m0c2. Therefore, we must always have:

]E =
]m0c2√
1− v2/c2

= ]m0c2
√

1− v2/c2 +
]m0v2√
1− v2/c2

. (A.6)

It is important to note that this variable (proper) mass,
]m0, is purely intrinsic, i.e. its motion is unaffected.

Equation (A.6) is known as the Planck-Laue formula.

Appendix B: Dirac currents

Let us consider the real Dirac current as

Ja = i ( ◦Ψ γ aΨ ) = (Ja) 1 − (Ja) 2 ,

where

(Ja) 1 = i ◦ΨA γ
aA
B ΨB, (Ja) 2 = i ΨB γaA

B
◦ΨA .

The charge conjugate of Ja is first calculated

[(Ja) 1](C) = i Ψ∗A γ
aA
B Ψ∗B = i t TΨA β

A
B γ

aB
C Ψ∗C

i.e.
[(Ja) 1](C) = i t ΨA TβB

A
TγaC

B
TΨ∗C .

From the antisymmetry of β, and remembering that the γa are
here real, we have

Tγa Tβ = − γ̃a β = β γa

from which we infer

[(Ja) 1](C) = i t ΨA γaB
A β

C
B
◦Ψ̃C = i ΨA γaB

A
◦ΨB

hence, we see that

[(Ja) 1](C) = (Ja) 2

and similarly
[(Ja) 2](C) = (Ja) 1

therefore, we obtain the most important relation:

−(Ja)(C) = Ja (B.1)

The Dirac current orientation is opposed to that of its
Dirac conjugate [15]. The Dirac conjugate ◦Ψ of the plane
wave spinor (6)bis is here:

◦Ψ = ◦a exp−2πi (pa xa) . (B.2)

With the Dirac conjugate spinor amplitude ◦a = a∗ γ0, that is
equivalent to (5)ter, we first set the normalization condition:

◦a a = m0c . (B.3)

Besides, the Dirac equation reads:

(γa pa)◦ a = m0c ◦a . (B.4)
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Due to the property of (γa)2, Equations (7) and (B.4) are both
satisfied for:

(pa)2 = (m0c)2. (B.5)

Multiplying now Equation (7) on the left with ◦a, we obtain
with (B.2) and (B.5)

(◦a γa a) pa = (m0c)2 = (pa)2 (B.6)

from which we infer:

◦a γa a = pa. (B.7)

The Dirac current density vector Ja = ◦Ψ γa Ψ will here yield

Ja = ◦a γa a = pa (B.8)

with
pa = m0c2 + pµ (B.9)

( [16]: compare with formulae (23.6) there).
From the charge conjugate Ψ(C) corresponding to the posi-

tron plane spinor, we define the Dirac current for the positron
(Ja)(C). However, it was shown that (Ja)(C) = −Ja. Therefore,
assuming that (m0)elec = (m0)posit in vacuum, we must then
have

(Jµ)(C) = (pµ)posit = −(pµ)elect . (B.10)

This clearly means that in vacuum, vposit = −velect.

Submitted on May 15, 2017
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3. Morris M., Thorne K. Wormholes in spacetime and their use for inter-
stellar travel. Am. J. Phys., 1988, v. 56, 395.

4. Morris M., Thorne K., Yurtzever U. Phys. Rev. Letters, 1988, v. 61,
1446.

5. Hawking S.W., Ellis G.F.R. The Large Scale Structure of Space-Time.
Cambridge University Press, 1987.

6. Kramer D., Stephani H., Hertl E., MacCallum M. Exact Solutions of
Einstein’s Field Equations. Cambridge University Press, 1979.

7. Marquet P. A space-time wormhole sustained by the electromagnetic
field. The Abraham Zelmanov Journal, 2011, v. 4, 92–107.
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100.

9. Moret-Bailly F. Le champ neutrinique en Relativité Générale. Ann. In-
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Testing 5D Gravity with LIGO for Space Polarization by Scalar Field
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Whether LIGO detectors can directly detect the scalar field dark energy and thus test
the five-dimensional (5D) gravity or not is examined analytically in terms of the author
previously well-developed 5D fully covariant theory of gravitation with a scalar field.
It is shown that an object with some thousand kilograms (e.g. 4700 kg), if electrically
charged up to some ten kilovolts (e.g. 40 kV), can polarize the space or vacuum by
the scalar field dark energy of the charged object and thus be able to extend the optical
path length of a laser beam that travels through one LIGO arm with some hundred
reflections (e.g. 280) by approximately 4 × 10−19 m (or the space-polarization strain
of 10−22), which is the amount of 4 times greater than that to be detected by the LIGO
detectors. Switching on and off the power to the object, we can carry out tests of this
5D gravity by examining whether the converging laser beams become out of phase and
thus the interference pattern varies or not. We can also apply a harmonically varying
voltage with a frequency, e.g. 100 Hz, to charge the object and thus produce a varying
optical length difference in the specific frequency range of LIGO detectors. Therefore,
being added a highly charged sphere into the experimental setup, LIGO, which has
recently detected first ever the gravitational waves from binary black hole mergers, can
directly examine the existence of the scalar field dark energy of 5D gravity in a ground-
base experiment. This study provides a design criterion for this new approach and
experiment of discovering dark energy as well as testing 5D gravity.

1 Introduction

The observed acceleration of the present universe is generally
attributed to the existence of dark energy throughout the uni-
verse [1-2]. A direct detection of the dark energy, whose true
nature remains elusive, has become one of the most impor-
tant issues in the modern astrophysics and cosmology since
the discovery of acceleration of the universe. Two commonly
accepted candidates of dark energy are the cosmological con-
stant and the quintessence. Unlike the cosmological constant,
which Albert Einstein first introduced into his general the-
ory of relativity in order for the universe to be static, the
quintessence is a scalar field Φ that varies throughout space-
time and has been modeled in various theories of gravita-
tion such as the four-dimensional (4D) Brans-Dicke scalar-
tensor gravity [3] and the five-dimensional (5D) Kaluza-Klein
scalar-vector-tensor gravity (shortened by 5D gravity) [4-6].

The scalar field of 5D gravity, which has been recently
related to the Higgs field of 4D particle physics in[7], were
theoretically shown to be capable of polarizing the space or
vacuum [8-9] and thus able to extend the optical path length
of a laser beam that travels through the polarized vacuum.
The vacuum polarization by a scalar field has been studied in
the Schwarzschild spacetime [10] , in a waveguide [11], in
the de Sitter spacetime with the presence of global monopole
[12], and in a homogeneous space with an invariant metric
[13]. Recently, the author, in terms of his 5D fully covariant
theory of gravitation, has quantitatively determined the di-
electric constant of the polarized vacuum in accordance with

the charge-mass ratio of a charged object [14].
In this paper, we will further analytically demonstrate that

the vacuum polarization by the scalar field dark energy of 5D
gravity can increase the relative optical path length (i.e. the
strain) above a factor of 10−22 and therefore can be directly
detected via the extremely accurate LIGO detectors that have
recently detected first ever the gravitational waves from the
binary black hole merger as declared in [15]. We will use
a harmonic voltage to charge the object, which leads to a
varying optical length difference in the frequency range of
the LIGO detection. A positive result of detecting the scalar
field dark energy by LIGO will provide a fundamental test of
5D gravity.

2 5D gravity and vacuum polarization by scalar field
dark energy

2.1 5D gravity with scalar field and field solution

A 5D gravity is a Kaluza-Klein theory that unifies the 4D
Einsteinian general relativity (GR) and Maxwellian electro-
magnetism (EM). Without a scalar field (i.e. Φ = 1), the 5D
unification is trivial because, in the (4+1) split form, it is iden-
tical to GR and EM. With a scalar field, however, a 5D grav-
ity can lead to a sequence of new effects such as the space or
vacuum polarization [8-9, 14], electric redshift [16], gravita-
tional field shielding [17-18], gravitationless black hole [19],
modified neutron star mass-radius relation [20], and so on. A
5D gravity with the Friedmann-Lemaitre-Robertson-Walker
(FLRW) metric of the universe modifies the Friedmann equa-

180 T.X. Zhang. Testing 5D Gravity with LIGO for Space Polarization by Scalar Field



Issue 3 (July) PROGRESS IN PHYSICS Volume 13 (2017)

Fig. 1: Characteristics of 5D gravity with and without a scalar
field dark energy (ΦDE). Without a scalar field (i.e. Φ = 1),
5D gravity just trivially unifies the 4D Einsteinian general relativ-
ity (GR) and Maxwellian electromagnetism (EM). Combining with
the Friedmann-Lemaitre-Robertson-Walker (FLRW) metric of 4D
spacetime, the field equation given in GR derives the Friedmann
equation (FE) that governs the dynamic and development of the
universe. Including the cosmological constant dark energy (ΛDE),
FE explains the acceleration of the universe (ΛAU). With a scalar
field (i.e. Φ > 1), 5D gravity modifies the general relativity (ΦGR)
and electromagnetism (ΦEM) through the scalar field dark energy
(ΦDE). These modifications lead to a sequence of new effects such
as the space or vacuum polarization (SP) and the gravitational field
shielding (GS). Combining with the FLRW metric of 4D spcatime,
ΦGR derives a modified Friedmann equation (ΦFE), which can also
explain the acceleration of the universe (ΦAU) but due to the scalar
field dark energy (ΦDE). The space polarization (SP) or the effect
on light by the ΦDE of 5D gravity can be significant enough for the
accurate LIGO detectors to detect.

tion with a scalar field, which plays the role of dark energy
and explains the acceleration of the universe [21-23]. These
new effects are results of the scalar field that modulates both
gravitational and electromagnetic fields as shown in the (4+1)
split form of the 5D field equation or as seen in the field so-
lutions [14, 24]. Figure 1 shows the characteristics of a 5D
gravity with and without a scalar field dark energy and its
role to the cosmology.

The metric of 5D spactime is usually given by [25]:

ḡαβ =

(
gµν + q2Φ2AµAν qΦ2Aν

qΦ2Aµ Φ2

)
(1)

where α and β are the subscripts for the 5D coordinates, run-
ning through 0 - 4; µ and ν are the subscripts for the 4D coor-
dinates, running through 0 - 3; gµν is the metric of 4D space-
time; Aµ is the standard 4D electromagnetic potential; Φ is
the scalar field, which is an effectively massless 4D scalar;
q is a scale constant defined by q = 2

√
G with G the grav-

itational constant. The fifth dimension is compact [26]. In
isotropic coordinates, the line element ds2 of 4D spacetime
can be represented according to the metric as [27]

ds2 = −gµνdxµdxν

ds2 = −eνdt2 + eλ
(
dr2 + r2dθ2 + r2 sin2 θdϕ2

)
, (2)

where eλ and eν are the metric rr− and tt−components as
functions of the radial distance r. Then, the exact static spher-
ically symmetric solution of gravitational, electromagnetic,
and scalar fields of a charged body is given by [24]

eλ =
(
1 − B2

r2

)2

Ψ−2, (3)

eν = Ψ2Φ−2, (4)

H01 = −H10 = −
Q
r2 e(ν−λ)/2, (5)

Φ2 = a1Ψ
p1 + a2Ψ

p2 , (6)

where the function Ψ is defined by

Ψ =

( r − B
r + B

)C/2B

, (7)

and the seven constants (K, p1, p2, B, C, a1, and a2) are con-
strained by the following five relations:

K = 4(4B2 −C2)C−2, (8)

a1 + a2 = 1, (9)

p1 = 1 +
√

1 + K, (10)

p2 = 1 −
√

1 + K, (11)

Q2 = −a1a2C2(1 + K)G−1. (12)

Here H01 and H10 are non-zero components of the effective
4D electromagnetic field Hµν ≡ ϕ3Fµν with Fµν = ∂νAµ −
∂µAν. At r → ∞, the limits of eλ, eν, and Φ are the unity. The
parameter Q denotes the electric charge. It is obvious that
the above 5D solution of the fields includes two independent
constants.

In a traditional 5D gravity, one usually assumes or hy-
pothetically forms the fifteenth component (T̄ 44) of the 5D
energy-momentum tensor by including an undetermined pa-
rameter called scalar charge S , e.g. T̄ 44 = S ρ as done by
[24] with ρ the density of matter. Since it lacks of any mea-
surement and short of any observational support, the unde-
termined parameter makes all results obtained from the tra-
ditional 5D gravity to be non-decisive and hence non-con-
clusive in comparison with other theories of gravitation, ob-
servations, and experiments. Describing the matter to be also
covariant in the 5D spacetime as the fields are, however, this
author analytically derived the fifteenth component of the 5D
energy-momentum tensor without assuming any unknown
parameter ([14] and references therein such as the early stud-
ies by the author [28-29]),

T̄ 44 =
ρα2

Φ2
√
Φ2 + α2

, (13)
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where α is a non-dimensional constant (or charge-mass ratio)
defined by

α =
Q

2
√

GM
, (14)

with M the mass of matter, and therefore analytically deter-
mined all the constants in the solution as follows

K = 8, p1 = 4, p2 = −2, (15)

a1 = −α2, a2 = 1 + α2, (16)

C =
2GM

3c2
√

1 + α2
, B =

GM

c2
√

3(1 + α2)
. (17)

Here the cgs or Gaussian unit system is adapted. This set of
constants is the simplest and most elegant, because of K = 8
that leads to p1 and p2 to be whole numbers, for the solu-
tion to be non-trivial. Therefore, according to this solution
with the constants obtained, the gravitational, electromag-
netic, and scalar fields of a charged spherically symmetric
object are completely determined from the charge and mass
of the object.

In the Einstein frame, this field solution simply reduces
to the Schwarzschild solution of the Einsteinian general rel-
ativity when matter is neutral and fields are weak [14,17].
This guarantees that the fundamental tests of the Einsteinian
general relativity in the case of weak fields are also the tests
of this 5D gravity. In the case of strong fields, especially
when matter is electrically charged, however, the results ob-
tained from this 5D gravity are significantly different from the
Einsteinian general relativity. These new strong field effects
include the space polarization [8, 14], electric redshift [16],
gravitational field shielding [17-18], and so on. At Φ = 1,
the 5D gravity is trivially equivalent to GR and EM, where
the Reissner-Nordstrom solution determines the standard GR
metric of a charged, massive particle [30-31]. The solution
of this 5D gravity Eq. (3) is obtained at Φ , 1 and thus
cannot be limited to the Reissner-Nordstrom solution for a
charged, massive particle. But when fields are weak and mat-
ter is weakly charged, the effect of the scalar field on both
gravitational and electromagnetic fields are negligible.

2.2 Vacuum polarization by scalar field

In terms of this 5D gravity and the field solution obtained, the
electric field of a charged body can be defined as

E ≡ H10 = −H01 =
Q
r2 e(ν−λ)/2, (18)

and then the dielectric constant (or relative permittivity) ϵr of
the vacuum that is polarized by the scalar field can be deter-
mined by

ϵr ≡
EC

E
= e(λ−ν)/2 =

(
1 − B2

r2

)
ΦΨ−2, (19)

Fig. 2: The relative permittivity ϵr or the electric field ratio EC/E
versus the normalized radial distance r/B for a charged object with
α = 0, 1, 10, 100, 1000, respectively.

where EC = Q/r2 is the Coulomb electric field of the charged
object. To see how significant the space or vacuum polariza-
tion is, we plot, in Figure 2, the relative permittivity ϵr as a
function of the normalized radial distance r/B for a charged
object with five different charge-mass ratios α = 0, 1, 10, 100,
1000.

The result indicates that the electric field of the charged
object asymptotically approaches the Coulomb electric field
(i.e. ϵr → 1), when r is getting larger (r ≫ B) or approaches
infinity. When r becomes small, however, the electric field
significantly deviates from the Coulomb electric field (i.e.
ϵr ≫ 1) due to the vacuum space to be extensively polar-
ized by the strong scalar field. When r tends to B, the rel-
ative permittivity approaches infinity and the electric field
becomes weaker and weaker as compared with the strength
of the Coulomb electric field, especially when the object is
highly charged. In the limit case of ϵr = ∞, the vacuum
space is completely polarized by the extremely strong scalar
field. It should be noted that a big deviation at r ∼ B still
exists even if the object is weakly charged (α ≪ 1) or neu-
tral. The deviation increases as the charge increases. For
instance, at α = 100 and r/B = 103, the electric field is
only 10% of the Coulomb electric field. The electric field
is significantly weakened as compared with the strength of
the Coulomb electric field and the vacuum space is greatly
polarized, especially when the object is highly charged.

Only for a massive, compact and charged object, we can
have a B not to be too small in comparison with its radius
and can see a significant polarization of the vacuum. For
a lab-sized object, the polarization of the vacuum can only
be extremely weak. Figure 3 plots the deviation of the rel-
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Fig. 3: The change of the relative permittivity ϵr − 1 or the change
of relative electric field (Ec − E)/E versus the radial distance r for a
charged object with mass of 1000-kg and charge-mass ratio α = 0,
1, 10, 100, 1000, respectively.

ative permittivity of the vacuum from the unity, ϵr − 1, due
to the polarization as a function of the radial distance r for a
charged object with mass of 1000 kilograms and charge in a
range of α = 0 − 1000. It is seen that, because the fields of a
non-massive object are too weak, the polarization of the vac-
uum by the scalar field dark energy of 5D gravity is very very
small and thus extremely difficult to be detected in laboratory,
except for us to have an extremely accurate detector with an
appropriate approach. In the following section, we will exam-
ine whether the LIGO detectors can detect such small vacuum
polarization or not. The answer as shown in the next section
is positive when the charge-mass ratio of the charged body is
much greater than 1.

3 Can LIGO detect the scalar field dark energy?

In accordance with the relative permittivity determined
above, we can find the refractive index of the vacuum that
is polarized by the scalar field of 5D gravity as,

n ≡ √ϵr = e(λ−ν)/4. (20)

For the non-polarized vaccum, we have n = 1 and ϵr = 1.
Substituting Eqs. (3) and (4) into Eq. (20), we have

n = Φ1/2Ψ−1
(
1 − B2

r2

)1/2

. (21)

In the case of weak fields, we can obtain the change of the
refractive index for the polarized vacuum as,

δn = n − 1 ≃
√

1 + α2 GM
c2r

, (22)

Fig. 4: A schematic diagram for LIGO with a charged object to
detect the scalar field dark energy of 5D gravity. When we place
a highly charged object, whose strong electromagnetic fields are
shielded by a conductor shell that is grounded, nearby one path of
the LIGO laser beams. The space surrounding the charged object
and the vacuum travelled through by the laser beam back and forth
are polarized by the scalar field of the charged object. This polariza-
tion extends the optical path length of the laser beam to be significant
enough for the accurate LIGO to detect the scalar field dark energy.

When α ≫ 1, δn is about linearly increasing with α. Then,
the change of the optical path length of the polarized space or
vacuum can be obtained by the following path line integration

δl =
∫

C
δn ds. (23)

To quantitatively estimate the polarization, we consider a
metal (e.g. copper) sphere with radius R = 0.5 m. From the
mass density of copper ρ = 9 × 103 kg/m3, we can find the
mass of the sphere to be M = 4πρR3/3 ∼ 4.7 × 103 kg. Now,
if the sphere is electrically charged up to V = 105 V, we can
also calculate the charge Q and charge-mass ratio α of the
sphere as Q = 4πϵ0RV ∼ 5.6 × 10−6C = 1.7 × 104 esu and
α ∼ 7, respectively. Then, from Eq. (22), we can find the
change of the refractive index in the space surrounding the
charged sphere to be δn = 1.2 × 10−23. Here, we have chosen
as an example the radial distance to be 4 radii of the object,
i.e. r = 2 m. This result indicates that the scalar field of the
charged object can extend the optical path length relatively by
∼ 1.2 × 10−23 m for each meter, which is significant enough
for the accurate LIGO detectors to detect.

Now, we suggest to place this charged object into the
LIGO system nearby the middle of the path of one of the two
perpendicular arms or laser beams (Figure 4). Then, the vari-
ation of the optical path length due to the space polarization
by the scalar field dark energy can be estimated by,

∆L = (N + 1)
∫ L/2

−L/2
δn ds
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∆L =
(N + 1)

√
1 + α2 GM
c2 ln

L +
√

L2 + 4d2

−L +
√

L2 + 4d2
, (24)

where N is the number of reflections of the laser beam, L is
the geometric length of the arm, d is the minimum distance
from the center of the charged object to the laser beam, and
s is the coordinate of position to be integrated along the path
from −L/2 to L/2. For the LIGO working parameters, we can
choose N = 280 and L = 4 km. The distance can be chosen
again as 4 radii of the charged object, i.e. d = 2 m. Then,
we can obtain that the optical length of the 4 km path of the
LIGO laser beam with 280 times reflections is increased due
to the space polarization by ∆L ∼ 10−18 m, about the amount
of one order higher than that being detectable by LIGO. Sim-
ilarly to the gravitational-wave strain defined in [15], we can
define a strain for the space polarization by scalar field, h, as
the change of the optical length dividing by the length of the
LIGO arm L,

h ≡ ∆L
L
≃ 2(N + 1)

√
1 + α2 GM

c2L
ln

L
d
. (25)

Here, we have approximate the expression or Eq. (24) by
considering d ≪ L. For α ≫ 1, we have that the strain is
proportional to the charge Q but independent of the mass M.

h ≃ (N + 1)
√

G Q
c2L

ln
L
d
∝ Q. (26)

Here, the cgs units are adapted since we have used Eq. (14).
To see the charge dependence, we plot in Figure 5 the in-

crease of the optical path length as a function of the voltage of
the charged object. The result indicates that the extension of
the optical path length remains a constant as the mass is fixed
when the object is weakly charged (V < 500 V) and linearly
increases with the voltage when the object is highly charged.
For instance, when V = 40 kV, the charged object can cause
the optical path length of one laser beam in a LIGO arm with
280 times reflections to extend up to about ∆L ∼ 4 × 10−19

m (or the strain h ∼ 10−22), which is the amount of 4 times
greater than that to be detectable by the LIGO detectors [15].
For LIGO to detect the scalar field dark energy or to test the
5D gravity, we can switch on and off the power to the object
and check whether the converging laser beams become out of
phase and thus the interference pattern varies or not. In ad-
dition, to have a timely varying optical length difference in a
specific range of 20-2000 Hz that LIGO can measure, we con-
sider a harmonically varying voltage or power to charge the
sphere, V(t) = V0 sin(2π f t), with V0 = 105 V and f = 100
Hz. Figure 6 plots the the varying optical length change be-
tween two laser beams as a function of time. Therefore, the
accurate LIGO detectors that have recently detected first ever
the gravitational waves from a binary black hole merger are
capable to be detectors and testers for the scalar field dark en-
ergy of 5D gravity. This study provides a creative approach
for LIGO to detect the vacuum polarization by the scalar field

Fig. 5: Space polarization by the scalar field dark energy of 5D grav-
ity. The increase of the optical path length of a laser beam in one
LIGO arm that is polarized by a charged object is plotted as a func-
tion of the voltage applied to the object. In the case of the object to
be only weakly charged (V < 500 V), the extension of the optical
path length remains a constant as the mass is fixed. When the object
is highly charged, however, the optical path length linearly increases
with the voltage. At V = 40 kV, the charged object can extend the
optical path length of one laser beam in a LIGO arm with 280 times
reflections up to about ∆L ∼ 4 × 10−19 m (or the strain h ∼ 10−22),
about one order higher than that to be detected by LIGO.

of 5D gravity, a candidate of dark energy that drives the uni-
verse in its accelerating expansion. It should be noted that
this paper only focuses on the variation in optical length due
to the vacuum polarization by the scalar field. To include the
variation in optical length due to other fields, we need com-
pute it based on the full solution of all fields. This leaves for
future study.

4 Discussions and conclusions

LIGO uses the interference pattern where the beams combine
to determine if the optical length down the two laser arms is
changing. Possible physical causes for the change of the op-
tical length down the two laser beams can be various sources
such as seismic disturbances, gravitational waves from binary
black hole mergers, space polarizations by scalar field, and
so on. When a gravitational wave passes through the interfer-
ometer, the spacetime in the local area is altered, disturbed,
and curved. This results in an effective change in the optical
length of one or both of the laser beams, which is estimated
by ∆L(t) = h(t)L, where h(t) is the gravitational-wave strain
amplitude projected onto the detector [15]. The advanced
LIGO detectors can have sensitive responses to a strain of
h(t) ∼ 10−21 −10−23. This change of the optical length causes
the light currently very slightly out of phase with the incom-
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Fig. 6: The optical length difference between the two laser beams is
plotted as a function of time when a 100-Hz harmonically varying
voltage is applied to charge the sphere. LIGO detectors that have
detected the gravitational waves from binary black hole mergers can
measure the varying optical length change.

ing light and thus varies the interference pattern. The effective
optical length change due to the spacetime disturbances and
distortions by the passing of gravitational waves is calculated
from the solution of the deviating geodesics equation with a
gravitational wave from a binary black hole merger. For the
space polarization by scalar field, as analyzed in this paper,
we calculate the change of the optical length in accordance
with the solution of the deviating index refraction. Seismic
disturbances can also result in the converging laser beams be-
ing out of phase.

As a consequence, we have in terms of a 5D gravity found
that a some-thousand-kilogram (e.g., 4700 kg) sphere electri-
cally charged to some ten kilovolts (e.g. 40 kV) can polarize
the vacuum by its scalar field dark energy and thus extend the
optical path length of a laser beam that travels through one
LIGO arm with some hundred (e.g. 280) reflections by ap-
proximately 4 × 10−19 m (or the strain of h ∼ 10−22), which
is the amount of 4 times greater than that to be detected by
the LIGO detectors. Switching on and off the power to the
object allows to check whether the LIGO detectors can de-
tect the scalar field dark energy and thus test the 5D gravity
or not. For a harmonic voltage with frequency, e.g. 100 Hz,
we have a varying optical length difference between the two
laser beams in the frequency range of the LIGO detection.
Therefore, being added a highly charged sphere into the ex-
perimental setup, LIGO, which has recently detected first ever
the gravitational waves from the binary black hole merger,
may directly discover first ever the scalar field dark energy of
5D gravity. This study also provides a design criterion for a

new approach and experiment of discovering dark energy.
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