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From the Geometry of the FLRW to the Gravitational Dynamics

Alexander Kritov
E-mail: alex@kritov.ru

The approach when the scale factor that describes the expansion of space, being its
pure geometrical property, is derived from the dynamical (the Friedman) equations is
questioned. The opposite path when the geometry determines the dynamics is more
consistent, but not vice versa. Starting from the FLRW, the equivalent form of the metric
in static coordinates is proposed. Based of few models for a(t) the corresponding static
metrics are derived. Further dynamics and the analogue of the Friedman equations can
be obtained as consequence. The embedding of the FLRW geometry into the higher-
dimensional Minkowski space as the hypersurface can be considered as the base for
the model. The deceleration parameter for the Schwarzschild-de Sitter (SdS) case is
reviewed based on such approach.

1 Introduction

In recent author’s work [5] the hydrodynamic model of spher-
ically symmetric gravitational field was reviewed. As it was
shown the gravitational metrics can be modelled by expand-
ing parcels of the fluid based on the respective functions of
the volume change with time in co-moving frame. As it has
explicit similarity with the space expansion, the present at-
tempt is to use the geometrical approach to describe spher-
ically symmetric gravitational filed starting from the FLRW
metric.

2 The FLRW metric

Let’s consider the static pseudo-Minkowski coordinates with
the observer M at rest in the center. The static spherical co-
ordinates are to be denoted as t, r, θ, φ, where r is coordinate
distance to the observer P who is at rest, but is attached to
the point of expanding space. The co-moving coordinates are
given as T,R, θ, φ, where R is co-moving distance (from M
to P). Respectively, time T is measured by the observer P.
If space expands, the point P, attached to it, moves in the
static coordinate system, so as observed by M, the motion of
P represents the function of coordinate distance r(t). The cor-
respondence between the static coordinate and the co-moving
distance is given by

r = Ra (1)

where a(T ) is the scale factor. Then the proper velocity mea-
sured by the observed P,∗

v =
dr
dT

=
dR
dT

a + R
da
dT

(2)

and point P is at rest in its reference frame, so the first term is
identically zero therefore

v = Rȧ . (3)

∗This is not coordinate velocity. This velocity is ratio of coordinate dis-
tance change to time measured in co-moving observer’s clock.

Using (1) then

v =
dr
dT

= r(T )
ȧ
a
. (4)

This expression provides the velocity of the space motion due
to its expansion or the velocity of the reference frame attached
to point P in the static coordinate system where r is the coor-
dinate distance.

The Friedmann–Lemaı̂tre–Robertson–Walker (FLRW)
metric in the spatially flat case (k = 0) is given by

ds2 = −c2dT 2 + a(T )2
(
dR2 + R2dΩ2

)
(5)

where dΩ2 = sin2 θdφ2 + dθ2 and a(T ) is the scale factor. The
metric is written explicitly in comoving coordinates, attached
to the point of expanding space. Using (1) we may write

dr = ȧRdT + adR

from which

dR =
dr
a
− v

dT
a
.

Substituting it into the FLRW metric (5) leads to

ds2 = −c2
(
1 −

v2

c2

)
dT 2 − 2vdTdr + dr2 + r2dΩ2 (6)

which is the Gullstrand-Painlevé form of the metric which
is spatially flat and describes co-moving observer in its free
float with velocity v. The transformation of time coordinate
T from co-moving to fixed frame of reference t is given by

dT = dt −
v

c2

(
1 −

v2

c2

)−1

dr . (7)

The substitution of this expression into (6) leads to the re-
spective static metric

ds2 = −c2
(
1 −

v2

c2

)
dt2 +

(
1 −

v2

c2

)−1

dr2 + r2dΩ2 (8)
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where velocity v is to be determined from (4). The velocity
v is called the river velocity in [2, 4] and the shift in ADM
formalism. Importantly, the metric (8) is equivalent to the
FLRW, but written in the static coordinate systems of the ob-
server M. Such form of the metric is known, starting from
Lenz and Sommerfeld [11] and used in the river model of
black holes and similar analogous models [3,4] for the spher-
ically symmetric gravitational field.

The proposed approach starts from a certain function for
the scale factor a(T ), and then the solution of the equation
(4) provides the velocity v(r) resulting in the corresponding
metric in static coordinate system based on (8).

As it was stressed in the author’s previous work [5], the
sign of the velocity v does not play a role, as it comes to the
metric as squared value. In the present approach the value
of the velocity as given in (4) is obviously positive (ȧ > 0)
and as coordinate center is placed in the center point of M the
velocity is radial and directed outwards.

3 The case of the de Sitter metric

The easiest case to demonstrate the proposed approach is the
de Sitter metric. The starting point is a(T ) = eH0T , or equiva-
lently, the constancy of the Hubble constant with time

H0 =
ȧ
a
. (9)

Then using (4) gives
v = rH0 . (10)

And substitution into (8) leads to

ds2 = −

1 − H2
0r2

c2

 c2dt2 +

1 − H2
0r2

c2

−1

dr2 + r2dΩ2 (11)

which is the de Sitter metric as expected.

4 The case of the Schwarzschild metric

Let’s now assume that

a(T ) ∝ T 2/3 . (12)

Then, using (4), it follows that

v(r) =
c1

r1/2 (13)

where c1 - is an integration constant. Then the substitution
into (8) leads to the form the Schwarzschild metric with pre-
cision by constant c1. In order to determine the meaning of
the integration constant, it is required to normalize (12), for
example in such way that a(0) = 1

a = (ωT + 1)2/3 (14)

where ω is some constant. Then it would imply

r = r0 (ωT + 1)2/3 (15)

where r0 is the initial coordinate distance at time T = 0. Then
the velocity

v =
2
3

ω2r3
0

r

1/2

. (16)

The equation shows that the integration constant in (13) sho-
uld have correspondence to the initial volume and therefore
to the central mass, if one introduces a density in the equa-
tion. Proposed boundary conditions allow to put the scale
factor function in direct relation with the particle mass and to
remove the initial singularity.

Interestingly from (13) and (1) the scale factor in terms
of the coordinate distance is simply r = r0a. From that, us-
ing (1), the co-moving distance is R = r0. As expected, the
scale factor a changes with time instead of the co-moving
distance R which remains constant and always equals to its
initial value in the static coordinates.

5 The Schwarzschild-de Sitter (SdS) metric

As suggested in [10] the scale factor that describes current
Universe expansion within the frame of standard model of
the cosmology has following form

a(T ) = sinh
(

3
2

H0T
)2/3

. (17)

This corresponds (differing by factor of 2) to proposed in the
hyperbolic model [5]∗

a (T ) = (cosh(3H0T ) − 1)1/3 . (18)

Then using (4)

v =
dr
dT

= r0
H0 sinh (3H0T )

(cosh(3H0T ) − 1)2/3 (19)

from which

r(T ) = r0 (cosh (3H0T ) − 1)1/3 (20)

where r0 is integration constant with dimension of length. Ex-
pressing hyperbolic sine from this and substitution into (19)
leads to

v =

H2
0r2 +

2r3
0H2

0

r

1/2

. (21)

Exact determination of the constant r0 for the volume can be
found in [5]. It was suggested that such volume can be as-
sociated with the mass via the fluid density. The substitution
into (8) leads to the SdS metric

ds2 = −

1 − 2Gm
c2r

−
H2

0r2

c2

 c2dt2+

+

1 − 2Gm
c2r

−
H2

0r2

c2

−1

dr2 + r2dΩ2 .

(22)

∗Obviously the presented approach has direct correspondence to the
cited author’s fluid model via V̇ ∝ a2ȧ and V(t) ∝ a3.

146 A. Kritov. From the Geometry of the FLRW to the Gravitational Dynamics



Issue 3 (October) PROGRESS IN PHYSICS Volume 15 (2019)

6 The embedding the FLRW geometry

The embedding of the de Sitter geometry in the pseudo-Eucli-
dian five-dimensional space is well known and was obtained
by Robertson [7, 8]. This corresponds to embedding of the
spatially flat FLRW metric with a(t) = eH0t. However, as
demonstrated in [9] and reviewed in [1] the generalization
of the FLRW metric (k = 0) embedding is possible via re-
construction of the respective curve and the Minkowski five-
dimensional metric is

t′ =
1
2

∫
ȧ2 − 1

ȧ
dT , r′ =

1
2

∫
ȧ2 + 1

ȧ
dT ,

and x′ = x y′ = y x′ = z .

(23)

The embedding of the FLRWmetric with the hyperbolic func-
tion as (17) was reviewed in [6], however it was concluded
that the integral has no analytical expression.

7 On the deceleration parameter for the SdS metric

Presented approach provides a simple way to determine the
deceleration parameter

q0 = −
äa
ȧ2 . (24)

And as
α = äR v = ȧR r = Ra (25)

then for the SdS metric using the deceleration parameter can
be expressed via coordinate distance as

q0 =
Gm − H2

0r3

2Gm + H2
0r3

. (26)

In case of mass m is uniformly distributed within a sphere and
if the density is expressed in terms of ΩM = ρ/ρcrit then the
deceleration parameter is

q0 =
1
2

ΩM − 2
ΩM + 1

. (27)

In case of ΩM = 0.27 it gives the deceleration parameter q0 =

−0.68 which is close to the observed value. As example the
equation results in q0 = −1 for empty the de Sitter Universe,
and q0 = −0.4 in case of ΩM = 1.

8 The Friedman equations

In the frame of present approach the dynamical Friedman
equations appear as a result of the original scale factor func-
tion. In general case, as the resulting metric provides us with
the values for acceleration α(r) and the velocity v(r) and with
use of (25) the Friedman equations are derived. In case of
the SdS metric, the first Friedman equation can be directly
obtained from the result (21)( ȧ

a

)2
= H2

0

[
1 +

2
a3

]
. (28)

In the reverse way it obviously would reproduce (17). In case
of uniformly distributed matter it has following form( ȧ

a

)2
= H2

0 (1 + 2ΩM) . (29)

The second Friedman equation is from (21)
ä
a

= H2
0

[
1 −

1
a3

]
(30)

or for uniformly distributed matter in terms of ΩM

ä
a

= H2
0

[
−

1
2

ΩM + 1
]
. (31)

Another types of functions a(t) can be proposed and in that
way would originate different dynamical equations that could
be analysed for its compliance with the cosmological obser-
vations.

9 Conclusions

The spatial expansion phenomena is considered as the space
flow. The curvature of space-time in the static four-dimensio-
nal coordinate systems emerges as the consequence of such
motion. Then the dynamics and the physical forces are de-
rived from the resulting metric. The scale factor being the
primary property of space should have the fundamental sig-
nificance (instead of being secondary consequence of the dy-
namical equations). Because of the reviewed boundary condi-
tions the scale factor may originate on the elementary particle
level and can be a key for understanding the origin of grav-
ity. The function for a(t) that results in the SdS metric was
reviewed, the deceleration parameter is determined (27) and
the result is close to the observed value.

Received on July 1, 2019
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The Physics of Transcendental Numbers

Hartmut Müller

E-mail: hm@interscalar.com

The difference between rational, irrational algebraic and transcendental numbers is not
only a mathematical task, but appears to be a stability criterion in complex dynamic
systems. This paper introduces an approach to study the physical consequences of arith-
metic properties of real numbers being ratios of measured quantities. This approach al-
lows reformulating and resolving some unsolved tasks in particle physics, astrophysics
and cosmology.

Introduction

Natural systems are highly complex and at the same time they
impress us with their lasting stability. For instance, the solar
system hosts at least 800 thousand orbiting each other bodies.
If numerous bodies are gravitationally bound to one another,
classic models predict long-term highly unstable states [1, 2]
that contradict the physical reality in the solar system. In the
last century, advanced models [3–7] were developed, which
explain basic features of the solar system formation. How-
ever, many metric characteristics of the solar system they do
not predict. The problem is that Kepler’s laws, the Newton
law of gravitation and the Einstein field equations allow for
an infinite diversity of orbits.

In reality, however, planets in the extrasolar systems Trap-
pist 1, Kepler 20 and many others have nearly the same orbits
as some moons of Jupiter, Saturn, Uranus and Neptune [8].
Why they prefer similar orbits if there are infinite possibili-
ties? Up to now, there have not been sufficiently convincing
explanations why the solar system has installed the orbital
periods 87.97 days (Mercury), 224,70 days (Venus), 365.25
days (Earth), 686.97 days (Mars), 4.60 years (Ceres), 11.87
years (Jupiter), 29.46 years (Saturn), 84.02 years (Uranus),
164.80 years (Neptune) and 248.00 years (Pluto). In conven-
tional models, they appear as to be accidental.

Furthermore, celestial mechanics does not know any law
concerning the periods of planetary rotation. Though, if the
periods of rotation are accidental, why then have the Moon
and the Sun similar periods of rotation? Why have the Earth,
Mars and the planetoid Eris similar periods of rotation? Why
have Jupiter, Saturn and the planetoid Ceres similar periods
of rotation?

Not only orbital and rotational periods, but also the Earth
axial precession cycle (25,770 years), the obliquity variation
cycle (41,000 years) as well as the apsidal precession cycle
and the orbital eccentricity cycle (both 112,000 years) appear
as to be accidental. And this isn’t just a shortcoming of astro-
physics only.

In particle physics, bosons are considered to have no rest
mass, and there are no convincing explanations why the W/Z-
bosons must be 90 times as massive as the proton. A rough
shortcoming of the Higgs-mechanism of particle mass gener-

ation is that the origin of the Higgs-mass itself is not elabo-
rated and this leads to a vicious circle.

Furthermore, there is no convincing explanation why the
proton-to-electron mass ratio must be close to 1836 and why
these fermions are stable.

Of course, in the standard model, the electron is stable
because it is the least massive particle with non-zero electric
charge. Its decay would violate charge conservation. Actu-
ally, this answer only readdresses the question: What causes
then the stability of the elementary electric charge? In the
same model, the proton is stable, because it is the lightest
baryon and the baryon number is conserved. However, also
this answer only readdresses the question: Why then is the
proton the lightest baryon? To answer this question, the stan-
dard model introduces quarks which violate the conservation
of the integer elementary electric charge.

Measurements of the cosmic microwave background radi-
ation (CMBR) are critical to cosmology, since any proposed
model of the universe must explain it. However, in Big Bang
cosmology, its current average temperature of 2.725 K ap-
pears to be accidental, because CMBR is interpreted as a rem-
nant from an early stage of the observable universe when stars
and planets didn’t exist yet, and the universe was denser and
much hotter.

This paper introduces an approach that considers arith-
metic properties of the measured ratios of physical quanti-
ties. This approach allows not only answering our questions
above, but also reformulating and resolving some unsolved
tasks in paticle physics, astrophysics and cosmology.

Methods

Measurement is the source of data that allow us developing
and proofing theoretical models of the reality. The result of a
measurement is the ratio of two physical quantities where one
of them is the reference quantity called unit of measurement.
In general, this ratio is a real value that can approximate a
rational, irrational algebraic or transcendental number.

In [9] we have shown that the difference between rational,
irrational algebraic and transcendental numbers is not only a
mathematical task, but it is also an essential aspect of sta-
bility in complex systems. For instance, integer and rational

148 Hartmut Müller. The Physics of Transcendental Numbers



Issue 3 (October) PROGRESS IN PHYSICS Volume 15 (2019)

frequency ratios provide resonance interaction that can desta-
bilize a system.

With reference to the solar system and its stability, we
may therefore expect that the ratio of any two orbital periods
should be not rational. However, it is not so simple to clarify
the type of number a measured ratio approximates. In gen-
eral, there is no possibility to know it for sure. For example,
how can we find out if the Venus-to-Earth orbital period ratio
approximates a rational, irrational algebraic or transcendental
number?

From the first impression, the obtained value 0.615 seems
to be a rational number, but higher resolution data [10] de-
liver more digits, for example 0.615198 years = 224.701 days
= 224 days, 16 hours and 49 minutes. Indeed, also this value
is an average. In reality, the sidereal orbital period of Venus
is not constant, but varies between 224.695 days = 0.61518
years and 224.709 days = 0.61522 years. According to classic
models, that is due to perturbations from other planets, mainly
Jupiter and Earth. As well, the orbital period of the Earth is
not constant, but shows cyclic variations in the duration up to
7 minutes [11]. However, several authors [12, 13] have sug-
gested that the Venus-to-Earth orbital period ratio coincides
with 8/13 approximating the golden section φ = (

√
5–1)/2 =

0.618. . . that is an irrational algebraic number.
It is remarkable that approximation interconnects all types

of real numbers – rational, irrational algebraic and transcen-
dental. In 1950, the mathematician Khinchin [14] made an
important discovery: He could demonstrate that continued
fractions deliver biunique (one-to-one) representations of all
real numbers, rational and irrational. Whereas infinite con-
tinued fractions represent irrational numbers, finite continued
fractions represent always rational numbers. In this way, any
irrational number can be approximated by finite continued
fractions, which are the convergents and deliver always the
nearest and quickest rational approximation.

It is notable that the nearest rational approximation of an
irrational number by a finite continued fraction is not a task
of computation, but only an act of termination of the fractal
recursion. For example, the golden number φ = (

√
5+1)/2 has

a biunique representation as simple continued fraction:

φ = 1 +
1

1 +
1

1 +
1

1 + · · ·

.

To save space, in the following we use square brackets to
write down continued fractions, for example the golden num-
ber φ = [1; 1, 1, . . . ]. So long as the sequence of denominators
is considered as infinite, this continued fraction represents the
irrational number φ. If we truncate the continued fraction, the
sequence of denominators will be finite and we get a conver-
gent that is always the nearest rational approximation of the
irrational number φ.

Let’s see how it works. Increasing always the length of
the continued fraction, we obtain a sequence of rational ap-
proximations of φ, from the worst to always better and better
ones (see Table 1).

Figure 1 demonstrates the process of step by step approx-
imation. As we can see, the rational approximations oscil-
late around the eigenvalue φ of the continued fraction that
is shown as dotted line. With every step the approximation
comes closer and closer to φ, never reaching it and describing
a damped asymptotic oscillation around φ.
In 1950 Gantmacher and Krein [15] have demonstrated that
continued fractions are solutions of the Euler-Lagrange equa-
tion for low amplitude harmonic oscillations in simple chain
systems. Terskich [16] generalized this method for the analy-
sis of oscillations in branched chain systems. The continued
fraction method can also be extended to the analysis of chain
systems of harmonic quantum oscillators [17].

The rational approximations of the golden number φ are
always ratios of neighboring Fibonacci numbers – the ele-
ments of the recursive sequence 1, 1, 2, 3, 5, 8, 13, 21, 34,
55, 89, . . . where the sum of two neighbors always yields the
following number [18].

As we can see, only the 10th approximation gives the cor-

Table 1: Approximations of the irrational number φ.

[1] = 1
[1; 1] = 2
[1; 1, 1] = 3/2 = 1.5
[1; 1, 1, 1] = 5/3 = 1.66
[1; 1, 1, 1, 1] = 8/5 = 1.6
[1; 1, 1, 1, 1, 1] = 13/8 = 1.625
[1; 1, 1, 1, 1, 1, 1] = 21/13 = 1.615384
[1; 1, 1, 1, 1, 1, 1, 1] = 34/21 = 1.619047
[1; 1, 1, 1, 1, 1, 1, 1, 1] = 55/34 = 1.61764705882352941
[1; 1, 1, 1, 1, 1, 1, 1, 1, 1] = 89/55 = 1.618

Fig. 1: The approximation steps 0 – 9 of the golden number φ =

1.618. . . (dotted line) by continued fraction [1; 1, 1, . . . ].
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rect third decimal of φ. The approximation process is very
slow because of the small denominators. In fact, the denomi-
nators in the continued fraction of φ are the smallest possible
and consequently, the approximation speed is the lowest pos-
sible. The golden number φ is therefore treated as the “most
irrational” number in the sense that a good approximation of
φ by rational numbers cannot be given with small quotients.

On the contrary, transcendental numbers can be approxi-
mated exceptionally well by rational numbers, because their
continued fractions contain large denominators and can be
truncated with minimum loss of precision. For instance, the
simple continued fraction of the number π = 3.1415927. . . =

[3; 7, 15, 1, 292, . . . ] delivers the following sequence of ra-
tional approximations:

[3] = 3
[3; 7] = 3.142857
[3; 7, 15] = 3.14150943396226
[3; 7, 15, 1] = 3.1415929. . .

We can see that the 2nd approximation delivers the first 2 dec-
imals correctly, and the 4th approximation shows already 6
correct decimals.

Much like the continued fraction of the golden number
φ contains only the number 1, a prominent continued frac-
tion [19] of Euler’s number contains all natural numbers as
denominators and numerators, forming an infinite fractal se-
quence of harmonic intervals:

e = 2 +
1

1 +
1

2 +
2

3 +
3

4 + · · ·

.

As Euler’s number is transcendental, it can also be repre-
sented as a continued fraction with quickly increasing denom-
inators:

e = 1 +
2

1 +
1

6 +
1

10 +
1

14 + · · ·

.

In this way, already the 4th approximation delivers the first
3 decimals correctly and returns in fact the rounded Euler’s
number e = 2.71828. . . of 5 decimals’ resolution:

1
3
2.714285
2.7183. . .

This special arithmetic property of continued fractions [20] of
transcendental numbers has the consequence that transcen-
dental numbers are distributed near by rational numbers of

small quotients or close to integers, like e3 = 20.08. . . or e4.5

= 90.01. . . . This can create the impression that complex sys-
tems like the solar system provide ratios of physical quanti-
ties that approximate rational numbers. More likely, they ap-
proximate transcendental numbers, which are located close to
rational numbers.

Namely, transcendental numbers define the preferred ra-
tios of quantities which avoid destabilizing resonance inter-
action [9]. In this way, they sustain the lasting stability of
periodic processes in complex dynamic systems. At the same
time, a good rational approximation can be induced quickly,
if the system temporarily requires local resonance interaction.
Though, algebraic irrational numbers like

√
2 or the golden

number φ do not compellingly prevent resonance, because
they can be transformed into integer or rational numbers by
multiplication.

Among all transcendental numbers, Euler’s number e =

2.71828. . . is unique, because its real power function ex co-
incides with its own derivatives. In the consequence, Euler’s
number allows inhibiting resonance interaction regarding any
interacting periodic processes and their derivatives. Because
of this unique property of Euler’s number, complex dynamic
systems tend to establish relations of quantities that coincide
with values of the natural exponential function ex for integer
and rational exponents x.

Therefore, we expect that periodic processes in real sys-
tems prefer frequency ratios close to Euler’s number and its
rational powers. Consequently, the logarithms of the fre-
quency ratios should be close to integer 1, 2, 3, 4, . . . or
rational values 1

2 ,
1
3 ,

1
4 , . . . In [21] we exemplified our hypoth-

esis in particle physics, astrophysics, cosmology, geophysics,
biophysics and engineering.

Thanks to Khinchin’s [14] discovery, any real number has
a biunique representation as a continued fraction. Now let’s
apply this to the real argument x of the natural exponential
function ex itself:

x = [n0; n1, n2, . . . , nk]. (1)

All denominators n1, n2, . . . , nk of the continued fraction in-
cluding the free link n0 are integer numbers. All numerators
equal 1. The length of the continued fraction is given by the
number k of layers.

The canonical form (all numerators equal 1) does not limit
our conclusions, because every continued fraction with partial
numerators different from 1 can be transformed into a canon-
ical continued fraction using the Euler equivalent transforma-
tion [22]. With the help of the Lagrange [23] transforma-
tion, every continued fraction with integer denominators can
be represented as a continued fraction with natural denomi-
nators that is always convergent [24].

Now we are going to study the fractal distribution of the
rational eigenvalues of the finite continued fractions (1). The
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first layer is given by the truncated after n1 continued fraction:

x = [n0; n1] = n0 +
1
n1
.

For the beginning we take n0 = 0. The denominators n1 follow
the sequence of integer numbers ±1, ±2, ±3 etc. The second
layer is given by the truncated after n2 continued fraction:

x = [n0; n1, n2] = n0 +
1

n1 +
1
n2

.

Figure 2 shows the first and the second layer in comparison.
As we can see, reciprocal integers ±1/2,±1/3,±1/4, . . . are
the attractor points of the distribution. In these points, the
distribution density always reaches a local maximum. Whole
numbers 0,±1, . . . are the main attractors of the distribution.

Now let’s remember that we are observing the fractal dis-
tribution of rational values x = [n0; n1, n2, . . . , nk] of the real
argument x of the natural exponential function ex. What we
see is the fractal distribution of transcendental numbers of the
type exp([n0; n1, n2, . . . , nk]) on the natural logarithmic scale.
Near integer exponents the distribution density of these tran-
scendental numbers is maximum.

Consequently, for integer exponents x, the natural expo-
nential function ex defines attractor points of transcendental
numbers and create islands of stability.

Figure 2 shows that these islands are not points, but ranges
of stability. Integer exponents 0,±1,±2,±3, . . . are attractors
which form the widest ranges of stability. Half exponents
±1/2 form smaller islands, one third exponents ±1/3 form
the next smaller islands and one fourth exponents ±1/4 form
even smaller islands of stability etc.
For rational exponents, the natural exponential function is al-
ways transcendental [25]. Increasing the length of the con-
tinued fraction (1), the density of the distribution of transcen-
dental numbers of the type exp([n0; n1, n2, . . . , nk]) is increas-
ing as well. Nevertheless, their distribution is not homoge-
neous, but fractal. Applying continued fractions and truncat-
ing them, we can represent the real exponents x of the natural
exponential function ex as rational numbers and make visible
their fractal distribution.

Here I would like to underline that the application of con-
tinued fractions doesn’t limit the universality of our conclu-
sions, because continued fractions deliver biunique represen-

Fig. 2: The Fundamental Fractal – the fractal distribution of tran-
scendental numbers of the type ex with x = [n0; n1, n2, . . . , nk] on the
natural logarithmic scale for k = 1 (first layer above) and for k = 2
(second layer below) in the range -3/26 x6 3/2.

tations of all real numbers including transcendental. There-
fore, the fractal distribution of transcendental eigenvalues of
the natural exponential function ex of the real argument x,
represented as continued fraction, is an inherent characteris-
tic of the number continuum. This characteristic we call the
Fundamental Fractal [26].

In physical applications, the natural exponential function
ex of the real argument x is the ratio of two physical quanti-
ties where one of them is the reference quantity called unit of
measurement. Therefore, we can rewrite the equation (1):

ln(X/Y) = [n0; n1, n2, . . . , nk], (2)

where X is the measured physical quantity and Y the unit of
measurement.

In this way, the natural exponential function ex of the ra-
tional argument x = [n0; n1, n2, . . . , nk] generates the set of
preferred ratios X/Y of quantities which avoid destabilizing
resonance and in this way, provide the lasting stability of real
systems regardless of their complexity. This is a very power-
ful conclusion, as we will see in the following.

Results

Now let’s apply this result to our first example of the Venus-
to-Earth orbital period ratio. In this case, X = 224.701 days
and Y = 365.256363 days. Following (2) we calculate the
natural logarithm ln (X/Y):

ln
(

Venus orbital period
Earth orbital period

)
= ln

(
224.701

365.256363

)
= −0.49.

We can see that this logarithm is close to −1/2. The deviation
is only 0.01. In accordance with (2), n0 = 0 and n1 = 2.
Consequently, the Venus-to-Earth orbital period ratio is close
to an attractor point of the Fundamental Fractal, the center of
a local island of stability.

In fact, the ratios of the orbital periods in the solar sys-
tem approximate Euler’s number and its rational powers [9].
Obviously, in this way, the solar system can ovoid destabiliz-
ing resonance of the orbital motions and reach lasting stabil-
ity. For instance, Saturn’s sidereal orbital period [27] equals
10759.22 days, that of Uranus is 30688.5 days. The natural
logarithm of the ratio of their orbital periods is close to 1:

ln
(

Uranus orbital period
S aturn orbital period

)
= ln

(
30688.5
10759.22

)
= 1.05.

Jupiter’s sidereal orbital period equals 4332.59 days, that of
the planetoid Ceres is 1681.63 days. The natural logarithm of
the ratio of their orbital periods is also close to 1:

ln
(

Jupiter orbital period
Ceres orbital period

)
= ln

(
4332.59
1681.63

)
= 0.95.

Not only neighboring orbits show Euler ratios, but far apart
from each other orbits do this as well. Pluto’s sidereal orbital
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period is 90560 days, that of Venus is 224.701 days. The
natural logarithm of the ratio of their orbital periods equals 6:

ln
(

Pluto orbital period
Venus orbital period

)
= ln

(
90560

224.701

)
= 6.00.

In [8] we have analyzed the orbital periods of the largest bod-
ies in the solar system including the moon systems of Jupiter,
Saturn, Uranus and Neptune, as well as the exoplanetary sys-
tems Trappist 1 and Kepler 20. In the result we can assume
that the stability of all these orbital systems is given by the
transcendence of Euler’s number and its rational powers.

The most stable systems we know are of atomic scale.
Because of their exceptional stability, proton and electron
form stable atoms, the structural elements of matter. The
lifespans of the proton and electron surpass everything that
is measurable, exceeding 1030 years. The proton-to-electron
ratio 1836.152674 is considered as fundamental physical con-
stant [28] and it has the same value for their rest energies and
rest masses, frequencies and wavelengths. The natural loga-
rithm is close to seven and a half:

ln (1836.152674) = 7.515427 . . . ' 6 +
3
2
.

This result suggests the assumption that the stability of the
proton and electron comes from the number continuum, more
specifically, from the transcendence of Euler’s number and its
rational powers. Already in the eighties the scaling exponent
3/2 was found in the distribution of particle masses by Valery
Kolombet [29]. Applying hyperscaling [26] by Euler’s num-
ber (tetration), we get the next approximation of the logarithm
of the proton-to-electron ratio:

6 +
ee

10
= 7.515426 . . .

We suppose that hyperscaling by Euler’s number causes the
exceptional stability of proton and electron.

In [17] we have analyzed the mass distribution of hadrons,
mesons, leptons, the W/Z and Higgs bosons and proposed
scaling by Euler’s number and its roots as model of parti-
cle mass generation [30]. In this model, the W±-boson mass
80385 MeV/c2 and the Z0-boson mass 91188 MeV/c2 appear
as the 12 times scaled up electron rest mass 0.511 MeV/c2:

ln
(

W±

electron

)
= ln

(
80385
0.511

)
= 11.97.

ln
(

Z0

electron

)
= ln

(
91188
0.511

)
= 12.09.

Expected, the square root of Euler’s number defines the next
island of stability – in fact, the corresponding state of matter
was discovered in 2012 and interpreted [31] as Higgs-boson
H0 with the rest mass 125.18 GeV/c2:

ln
(

H0

electron

)
= ln

(
125180
0.511

)
= 12.41.

Euler’s number and its rational powers are universal scaling
factors that inhibit resonance and in this way, stabilize peri-
odic processes bound in a chain system. This approach we
call Global Scaling [21]. The rest energy of the proton can be
seen as the 6+ 3

2 times scaled up rest energy of the electron. In
the same way, Pluto’s orbital period can be seen as the 6 times
scaled up by Euler’s number orbital period of Venus or as the
3 times scaled up by Euler’s number orbital period of Jupiter.
Here it is important to understand that only scaling by Euler’s
number and its rational powers inhibits resonance interaction
and provides lasting stability of bound processes and allows
for the formation of stable atoms or stable planetary systems,
for instance.

Now we could ask the question: Starting with the electron
oscillation period, if we continue to scale up always multi-
plying by Euler’s number, will we meet the orbital period, for
instance, of Jupiter?

Actually, it is so. If we multiply the electron oscillation
period 66 times by Euler’s number, we meet exactly the or-
bital period of Jupiter:

ln
(

TJupiter orb

τelectron

)
= ln

(
3.7434 · 108 s
8.093 · 10−21 s

)
= 66.00.

Jupiter’s orbital period TJupiter orb = 4332.59 days = 3.7434×
108 s. The oscillation period of the electron τelectron derives
from its rest energy Eelectron = 0.511 MeV:

τelectron angular = ~/Eelectron = 1.288 × 10−21s,

τelectron = 2π · τelectron angular = 8.093 × 10−21s.

~ is the reduced Planck constant. Data taken from [28]. Sim-
ilarly, the oscillation period of the proton τproton derives from
its rest energy Eproton = 938.272 MeV:

τproton angular = ~/Eproton = 7.015 × 10−25s,

τproton = 2π · τproton angular = 4.408 × 10−24s.

Within our approach, electron and proton define two comple-
mentary classes of stability in the sense of the avoidance of
destabilizing resonance. Here and in the following, we use
the letter E for electron stability and the letter P for proton
stability. In accordance with (2), we use rectangle brackets
for continued fractions. For example, E[66] means the main
attractor 66 of electron stability. In the solar system, this at-
tractor stabilizes the orbital period of Jupiter.

The main attractor E[63] stabilizes the orbital period of
Venus. The siderial orbital period of Venus TVenus orb equals
224.701 days = 1.9414 × 107 s:

ln
(

TVenus orb

τelectron

)
= ln

(
1.9414 × 107 s
8.093 × 10−21 s

)
= 63.04 = E[63].

Not only the orbits of planets and planetoids, but also the or-
bits of moons are stabilized by the Fundamental Fractal (2).
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For example, the main attractor E[61] stabilizes the orbital
period TMoon orb = 27.321661 days = 2.36059 × 106 s of the
Moon:

ln
(

TMoon orb

τelectron

)
= ln

(
2.36059 × 106 s
8.093 × 10−21 s

)
= 60.94 = E[61].

The attractor E[62] stabilizes the orbital period of Saturn’s
moon Iapetus TIapetus orb = 79.3215 days = 6.8534 × 106 s:

ln
(

TIapetus orb

τelectron

)
= ln

(
6.8534 × 106 s
8.093 × 10−21 s

)
= 62.00 = E[62].

As well, it is not surprising that Ceres, the largest body of the
main asteroid belt, orbits the Sun close to a main attractor.
The orbital period of Ceres TCeres orb equals 1681.63 days =

1.4529 × 108 s:

ln
(

TCeres orb

τelectron

)
= ln

(
1.4529 × 108 s
8.093 × 10−21 s

)
= 65.05 = E[65].

Now let us analyze some rotational periods. Although the ro-
tation of Venus is retrograde, its period TVenus rot = 5816.667
hours = 2.094 × 107 s is close to the main attractor E[65]:

ln
(

TVenus rot

τelectron angular

)
= ln

(
2.094 × 107 s

1.288 × 10−21 s

)
= 64.96 = E[65].

As well, the full rotational period of the Sun TS un rot = 34.3
days = 2.9635 × 106 s fits with a main attractor:

ln
(

TS un rot

τelectron angular

)
= ln

(
2.9635 × 106 s
1.288 × 10−21 s

)
= 63.00 = E[63].

As we have seen, the main attractor E[63] stabilizes the rota-
tional period of the Sun as well as the orbital period of Venus.
From this, directly follows:

TVenus orb = 2π · TS un rot

Although π is transcendental, its real power function πx does
not coincide with its own derivatives. Therefore, π cannot
inhibit resonance interaction regarding the derivatives of pe-
riodic processes, but it does not violate the transcendence [32]
of Euler’s number. Within our approach, 2π connects stable
rotation with stable orbital motion.

In addition, the main attractor E[65] stabilizes the orbital
period of Ceres as well as the rotational period of Venus.
From this, directly follows:

TCeres orb = 2π · TVenus rot

Obviously, preferred rotational periods are not accidental, but
follow the Fundamental Fractal (2) and are connected by 2π
with stable, avoiding resonance orbital periods.

Within our approach, the approximation level of an attrac-
tor of stability indicates evolutionary trends. For example,

the orbital period of Venus must still decrease for reaching
the center of E[63]. On the contrary, the orbital period of
the Moon must still increase for reaching the center of E[61].
Actually, exactly this is observed [33].

While all the orbital and rotational periods we have an-
alyzed are stabilized by main attractors of electron stability,
the rotational period of Mars TMars rot = 24.62278 hours =

88642 s approximates a main attractor of proton stability:

ln
(

TMars rot

τproton angular

)
= ln

(
88642 s

7.015 × 10−25 s

)
= 67.01 = P[67].

The rotational period of the Earth TEarth rot = 23.934 hours =

86164 s approximates the same attractor P[67]:

ln
(

TEarth rot

τproton angular

)
= ln

(
86164 s

7.015 × 10−25 s

)
= 66.98 = P[67].

This means that the main attractor P[67] stabilizes the rota-
tional periods of Mars and Earth. Furthermore, the attractor
P[71] stabilizes the orbital period TEarth orb = 365.25636 days
= 3.1558 × 107 s of the Earth:

ln
(

TEarth orb

τproton

)
= ln

(
3.1558 × 107 s
4.408 × 10−24 s

)
= 71.05 = P[71].

Obviously, the Earth’s orbital eccentricity variation cycle
TEarth orb ecc ≈ 112, 600 years = 3.5533 × 1012 s is stabilized
by the main attractor E[77]:

ln
(

TEarth orb ecc

τelectron angular

)
= ln

(
3.5533 × 1012 s
1.288 × 10−21 s

)
= 77.00 = E[77].

This attractor stabilizes also the Earth’s apsidal precession cy-
cle ≈ 112, 000 years. The Earth’s orbital inclination variation
cycle TEarth orb inc ≈ 70, 000 years = 2.209 ·1012 s is stabilized
by the attractor E[76; 2]:

ln
(

TEarth orb inc

τelectron angular

)
= ln

(
2.209 × 1012 s
1.288 × 10−21 s

)
=76.51 = E[76; 2].

The obliquity variation cycle of the ecliptic TEcliptic obliquity ≈

41, 000 years = 1.2938 × 1012 s is stabilized by the main at-
tractor E[76]:

ln
(

TEcliptic obliquity

τelectron angular

)
= ln

(
1.2938 × 1012 s
1.288 × 10−21 s

)
= 75.99 = E[76].

The Earth’s axial precession cycle TEarth axial prec ≈ 25, 770
years = 8.1328× 1011 s is stabilized by the attractor E[75; 2]:

ln
(

TEarth axial prec

τelectron angular

)
= ln

(
8.1328 × 1011 s
1.288 × 10−21 s

)
=75.52 = E[75; 2].

The Earth’s axial nutation period TEarth axial prec = 18.6 years
= 5.8696 × 108 s is stabilized by the main attractor P[74]:

ln
(

TEarth axial prec

τproton

)
= ln

(
5.8696 × 108 s
4.408 × 10−24 s

)
= 73.97 = P[74].
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The Chandler wobble of the Earth’s axis TChandler wobble = 433
days = 3.741× 107 s is stabilized by the main attractor P[73]:

ln
(

TChandler wobble

τproton angular

)
= ln

(
3.741 × 107 s

7.015 × 10−25 s

)
= 73.05 = P[73].

As we have seen, within our approach, the current orbital and
rotational periods in the solar system do not appear as to be
accidental, but correspond with islands of stability defined by
Euler’s number and its rational powers that allow avoiding
destabilizing resonance. This is valid not only for the solar
system, but also for exoplanetary systems as we have shown
in [8]. Furthermore, our approach explains the durations of
the axial precession cycle including the nutation period and
the Chandler wobble, the obliquity variation cycle, the orbital
inclination variation cycle, the apsidal precession cycle and
the orbital eccentricity cycle of the Earth.

In [21] we have shown that the divisibility of their inte-
ger logarithms interconnects all the main attractors of elec-
tron and proton stability and causes interscalar effects, which
stabilize also biophysical periodical processes.

Concluding this overview, I would like to mention that,
within our approach, the current average temperature T CMBR
= 2.725 K [34] of the cosmic microwave background radia-
tion (CMBR) does not appear to be accidental. On the con-
trary, obviously, this process is stable, because its average
temperature is close to a main attractor of proton stability:

ln
(

T CMBR

T proton

)
= ln

(
2.725 K

1.0888 × 1013 K

)
= −29.01 = P[−29].

The proton blackbody temperature T proton = Eproton/k derives
from the proton rest energy Eproton = 938.272 MeV and the
Boltzmann [28] constant k.

Consequently, the current temperature of the CMBR is
not accidental, and it is highly unlikely that this temperature
will still decrease.

In [35] we have shown that integer powers of Euler’s num-
ber define also the ratios of fundamental physical constants.
In our approach, this means that the transcendence of Euler’s
number stabilizes energy-frequency and energy-mass conver-
sions and makes possible the existence of fundamental physi-
cal constants. For instance, the 88th power of Euler’s number
stabilizes the ratio of the speed of light c, the Planck constant
~, the proton rest mass mp and the gravitational constant G:

~ · c
G · m2

p
= e 88. (3)

Quantum mechanics only postulates, but does not derive
the constancy of the Planck constant as well as general rel-
ativity postulates the constancy of the gravitational constant,
but does not derive it. Also special relativity postulates, but
does not derive the constancy of the speed of light. Up to
now, there have not been sufficiently convincing explanations

why the speed of light should be constant, why it should have
the value 299792458 m/s and why it should be the maximum
possible velocity in the universe.

Within our approach, we can derive the speed of light c
from other fundamental physical constants stabilized by in-
teger powers of Euler’s number. Naturally, the proton is not
the only stable particle. The electron is stable as well. Fur-
thermore, the proton-to-electron ratio is stabilized by Euler’s
number and its rational powers. From this and (3), directly
follows that 299792458 m/s is not the maximum speed. In-
deed, rational powers of Euler’s number define a logarithmi-
cally fractal set of stable velocities cn,m which are superlumi-
nal for n > 0:

cn,m = c · e n/m

where n,m are integer numbers. In general, the rational ex-
ponents are finite continued fractions (1). In [35] we verified
the fractal set cn,m of stable subluminal and superluminal ve-
locities on experimental and astrophysical data.

Conclusion

In this paper, we discussed the physical significance of tran-
scendental numbers approximated by ratios of physical quan-
tities. In particular, the transcendence of Euler’s number al-
lows avoiding destabilizing resonance interaction in real sys-
tems and appears to be a universal criterion of stability.

For instance, Euler’s number and its rational powers sta-
bilize the orbital and rotational periods of planets, planetoids
and moons in the solar system.

Our approach allows deriving the mass ratios of the fun-
damental elementary particles electron, proton, W±, Z0 and
H0-boson as well as the temperature 2.725 K of the cosmic
microwave background from Euler’s number and its rational
powers. Integer powers of Euler’s number stabilize also the
ratios of the fundamental physical constants ~, c, G.
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There are no theory on antimatter structure unless the mirror of its normal matter,
with the same mass but opposite qualities such as electric charge, spin,· · ·, etc. to its
matter counterparts holding with the Standard Model of Particle. In theory, a matter
will be immediately annihilated if it meets with its antimatter, leaving nothing unless
energy behind, and the amounts of matter with that of antimatter should be created
equally in the Big Bang. So, none of us should exist in principle but we are indeed
existing. A few physicists explain this puzzling thing by technical assuming there
were extra matter particles for every billion matter-antimatter pairs, or asymmetry
of matter and antimatter in the end. Certainly, this assumption comes into beings by a
priori hypothesis that the matter and antimatter forming both complying with a same
composition mechanism after the Big Bang, i.e., antimatter consists of antimolecules,
antimolecule consists of antiatoms and antiatom consists of antielectrons, antiprotons
and antineutrons without experimental evidences unless the antihydrogen, only one
antimolecule. Why only these antimatters are detected by experiments? Are there
all antimatters in the universe? In fact, if the behavior of gluon in antimatter,
i.e., antigluon is not like the behavior but opposites to its matter counterparts or
reverses gluon interaction Fgk to −Fgk , 1 ≤ k ≤ 8 complying with the Standard
Model of Particle, then the residual strong interaction within hadrons is repulsion.
We can establish a new mechanism of matter and antimatter without the asymmetry
assumption but only by composition theory of matter, explain the asymmetry of
matter-antimatter and why only these antimatters found, claim both the attractive
and repulsive properties on gravitation. All of the conclusions are consistent with
known experiments on matter and antimatter.

1 Introduction

Antimatter and dark energy are both physical reality in
the universe. An antimatter is literally, a mirror image
with the same mass but reversed electrical charges and
spin as its correspondent normal matter such as those of
positrons, antiprotons, antideuteron,· · · and antihydro-
gen. The most interesting phenomenon on antimatter M
is that if it collides with its normal matter M will com-
pletely annihilate into energy E in global energy shortage
today. For example,

e− + e+ → γ + γ,

i.e., an electron e− collides with a positron e+ will com-
pletely transforms to 2 photons γ, an energy form.

Antimatter was first theoretically considered by Paul
A.M.Dirac in 1928 for his equation E = ±mc2 which al-
lowed for the negative energy existence, corespondent to
anti-particles in the universe. And then, Carl Anderson
discovered positron, the first evidence that antimatter
existed in 1932. A few famous things signed the found-
ing of antimatter M are listed following ([2],[3]):

(1) Positron by C. Anderson in 1932;
(2) Antiprotons by E. Segrè and O. Chamberlain et

al at Bevatron of Berkeley in 1955;

(3) Antineutron by B. Cork et al at Bevatron of
Berkeley in 1957;

(4) Antideuteron by Antonino Zichichi et al at CERN
in 1965;

(5) Antihydrogen by W. Oelert et al at CERN in
1995.

In fact, modern physics convinces that there exists el-
ementary antiparticle for every elementary particle ([4]),
founded in its decay, scattering and radiation such as
those known rulers following:

(1)(β-Decay) n→ p+ e− + νe, i.e., a neutron n can
spontaneously decays to a proton p, a electron e− and
antineutrino νe;

(2)(Scattering) γ + γ → e− + e+, i.e., a photon γ
collides with another γ will scattering an electron e− and
a positron e+;

(3)(Radiation) e− → e−+γ, i.e., a high level electron
e− jumps to a low level e− will radiating a proton γ.

For explaining the observation that the universe is
expanding at an accelerating rate, the dark energy is
suggested in the standard model of cosmology in 1998
([15]). But, neither its detecting nor forming mechanism
is hold by humans unless it contributes 68% energy to
the total energy in the observable universe. Where does
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it comes from and how is it formed? Certainly, the dark
energy and antimatter are both related to Big Bang but
we have no a theory for explaining their born and rulers
in universe. The key point is holding on the forming of
antimatter with action on matter.

Usually, antimatter is understood as the mirror of its
normal matter with the same mass but opposite qualities
such as electric charge, spin,· · ·, etc. to its matter coun-
terparts, holds with the Standard Model of Particle, and
a priori hypothesis that the matter and antimatter form-
ing both comply with a same composition mechanism
after the Big Bang by humans, i.e., a matter consists
of molecules, a molecule consists of atoms, a atom con-
sists of electrons, protons and neutrons,· · ·, and an an-
timatter also consists of antimolecules, an antimolecule
also consists of antiatoms, an antiatom also consists of
antielectrons, antiprotons and antineutrons, · · ·, respec-
tively, a mirror composition theory on antimatter ([17]).
However, there are no antimatter unless elementary an-
tiparticles, and only one antimolecules, i.e., antihydrogen
found by experimental evidence. Then, why only these
antimatters are detected and where are other antimatters
hidden, or there are no other antimaters? Furthermore,
could we claim the composition mechanism of antimatter
is the same that of matter? We can certainly not unless
only by purely imagination. The central factor is the
behavior of antigluon in antimatter. Clearly, gluon is an
attraction in the composition of normal matter by the
Standard Model of Particle. But, is antigluon only an
attraction, or its counterpart, a repulsion? By its action
property, antigluon should be a repulsion, not a mirror
of a normal gluon complying with the Standard Model
of Particle.

However, if the action of antigluon is a repulsion,
we can easily explain why we exist, naturally abandon-
ing the asymmetry assumption and understanding well
the material constitution. We can therefore establish a
new mechanism of matter and antimatter without the
asymmetry assumption but only by composition theory
of matter, explain the asymmetry of matter-antimatter
and the scenery behind the Big Bang. We also discuss
the property of gravitation between matters, antimat-
ters, i.e., attraction and repulsion, the source of dark
energy and clarify a few confused questions on applying
antimatter in this paper.

2 Antimatter’s Composition

2.1 Antimatter’s Quark Structure

As is well known, atoms appear as a building block of all
matters with a microcosmic structure, i.e., a nuclei con-
sisting of electrons, protons and neutrons, · · ·, etc.. No-
tice that the action in QCD is an integral of Lagrangian

density over space-time following

SQCD =
1

4

∫
d4xF kµνF

kµν +

∫
d4xq (γνDν +mq) q

where, the first term is the gluon interaction described
by the field strength tensor F kµ , where

F kµν = ∂µF
k
ν − ∂νF kµ + gsλ

k
ijF

i
µF

j
ν ,

Dµ = ∂µ + igsF
k
µλk

and the second term is the quark action with quark mass
mq. In the Standard Model of Particle, baryons such as
those of the proton and neutron are bound of 3 quarks q
and antiquarks q, and mesons including gluon, W and Z
particles consist of a quark q and an antiquark q, explains
the strong and weak force well in an atom.

Notice that gluons are carrier of the strong interac-
tion in the Standard Model of Particle, which is attrac-
tion of quarks in hadrons such as those shown in Fig.1
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and each quark or antiquark carries one of red r, green
g, blue b or antired r, antigreen g, antiblue b, i.e., color-
charges resulting in 8 gluons listing following which char-
acterizes strong interaction of quarks with exchanging
gluons

g1 = rg, g2 = rb,

g3 = gb,

g4 = 1√
2

(
rr − bb

)
, (2.1)

g5 = gr, g6 = br, g7 = bg,

g8 =
√

6
(
rr + bb− 2gg

)
.

Moreover, gi is an attraction if R1 < r < R2, and a
repulsion if r < R1 for integers 1 ≤ i ≤ 8 by experiments
([5]) such as those shown in Fig. 2
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where r is the distance of 2 quarks and R1 = 5×10−14cm,
R2 = 4×10−12cm are respective the attractive, repulsive
radius of quark.

Clearly, the composition theory of matter by quarks
and gluons are essentially the new globally mathemati-
cal elements introduced in [14], i.e., continuity flows and
discussed extensively on their mathematical characters
in [9]-[13], or combinatorial geometry in [5]-[8].

Noticed that one Yin (Y −) and one Yang (Y +) con-
stitute everything of universe in Chinese culture. We
therefore know that there maybe 2 kind assumptions on
the behavior of gluons hold with the Standard Model of
Particle in the region R1 < R2 following:

Attraction Assumption. In this case, the compo-
sition of antimatters is the same as the ruler of matters,
i.e., antimatter consists of antimolecules, antimolecule
consists of antiatoms and antiatom consists of antielec-
trons, antiprotons and antineutrons. However, there are
no such composition evidences unless one antimolecule,
the antihydrogen H, and all other composition matters
are not found until today. In fact, such a composition
mechanism only is a wishing thinking of humans with a
priori hypothesis that all antigluons are attractive with
the same color-charges (2.1) that of gluons, and the resid-
ual strong interaction within hadrons and antihadrons
is attraction which forms the matter and antimatter.
However, experimental evidences allude that the reality
maybe not this case, resulting in the next assumption.

Repulsion Assumption. In this case, antigluons
are all repulsive or interactions Fgi listed following

Fg1 = −Fg1 = −Frg,
Fg5 = −Fg5 = −Fgr,
Fg2 = −Fg2 = −Frb,
Fg6 = −Fg6 = −Fbr,
Fg3 = −Fg3 = −Fgb,
Fg7 = −Fg7 = −Fbg,
Fg4 = −Fg4 = −F 1√

2
(rr−bb),

Fg8 = −Fg8 = −F√6(rr+bb−2gg).

(2.2)

where Fgi denotes interaction of gluon gi for integers
1 ≤ i ≤ 8. Notice that (2.2) will finally results in a re-
pulsion of residual strong interaction within antiprotons
and antineutrons such as those shown in Fig. 3.
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Although we have also no experimental evidences on
the repulsive behavior, likewise the attraction assump-
tion on antigluons, we can explain the behavior of an-
timatters and the source of dark energy in the universe
well by this assumption.

2.2 Antigluon’s Repulsive Behavior

Let R1, R2 be the attractive, repulsive radius of a quark,
respectively and let r be the distance to the center of
a quark. We know the interaction behavior of gluons,
antigluons gi, gi, 1 ≤ i ≤ 8 by Fig.2 and Fig.3 following.

Particle Name r < R1 R1 < r < R2 r > R2

Gluon Repulsion Attraction 0

Antigluon Attraction Repulsion 0

Table 2.1

Whence, the residual strong interaction within an an-
tiproton or an antineutron is repulsive, and an antipro-
ton can not be bound with an antiproton, an antiproton
can not be bound with an antineutron, and an antineu-
tron can not also be bound with an antineutron in theory.
We should discuss the residual strong interaction F com-
bining with electromagnetism in detail. Let D(p1, p2) be
the minimum distance of 2 particles p1, p2. Then, by the
ruler that like charges repel but unlike charges attract
each other in nature, we easily know that{

D(p1, p2) > 0 if p1, p2 both are antiproton;
D(p1, p2) ≥ 0 if one of p1, p2 is antineutron,

(2.3)

which implies that the minimum distance> 0 for 2 stable
antiprotons, ≥ 0 for a stable antiproton with a stable
antineutron or 2 stable antineutrons.

2.2.1 Antimatter’s Combination Mechanism

Surely, the repulsive property of antigluons generates the
antimatters following.

Antinucleon. We are easily know that there are no
other stable antinucleon unless antiproton P , antineu-
tron N by the antigluon’s behavior because the residual
strong interaction of antiprotons, antineutron is repul-
sive, i.e., there are no stable antinucleon composed of
more than 1 antiprotons or an antiproton with antineu-
trons.

Certainly, A.Zichichi et al at CERN of European and
L.Redman et al at Brookhaven of USA artificially syn-
thesized antideuteriumD in 1965 which is consisted of an
antiproton and an antineutron, and also followers such
as those of antitritiu nucleon T , antihelium nuclei He,
· · ·, etc. In fact, all of these antinucleons are made in
laboratory with high energy but not stable, i.e., they
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exist only a short time. Why this happens? It is subjec-
tively explained by the notion that the antinucleon was
finally annihilated with its nucleons counterpart. How-
ever, there are no experimental evidence for this explain-
ing, and there are no such an annihilation observed but
only the graspable feature of antinucleon disappeared
from the eyes of humans.

This phenomenon can be explained naturally by the
repulsive property of antigluons. Certainly, an antipro-
ton can composed with antiprotons, antineutrons ini-
tially under the bombing of particle beam of high en-
ergy. However, as soon as an antinucleon forms, i.e.,
D(p1, p2) < 0 for antiparticles p1, p2 consisting of the
antinucleon, the the residual strong interaction within
the antinucleon acts on each antiparticle. It is repul-
sive. It will spontaneously separates antiparticles until
D(p1, p2) ≥ 0 for all of them, never needs the assump-
tion that they are annihilated with their nucleon coun-
terparts.

Antimolecule. A nucleon captures electrons to bal-
ance charges, and similarly, an antinucleon also captures
positrons to make charge balance in theory, i.e. anti-
molecule. Thus, an antiproton P , an antideuterium nu-
cleus D, an antitritiu nucleus T or generally, an antinu-
cleon can be bound with one positron to produce antihy-
drogen H, antideuterium D, antitritiu T , and generally,
bound with positrons for balancing charges in the antin-
ucleon to produce antimolecule M because the nuclear
force between antinucleon and positrons is electromag-
netism, an attractive force.

However, all of these antimolecules M are unstable
unless the antihydrogen H because of the repulsive prop-
erty of antigluons. Thus, even we can artificially synthe-
size antimolecules M 6= H in high energy, M will sponta-
neously disintegrates to antihydrogen H or antineutrons
one by one, such as those shown in Fig.4 for an antideu-
terium D in the universe.

j qP

N

e+ -
q

iP

e+

N
Fig. 4

Whence, an antimolecule M is unstable if M 6= H. It
can only exists in high external pressure for resisting the
repulsion of residual strong interaction. We summary
the states of antimolecules Table 2.2.

M Existing State Synthesized
M 6= H High energy Unstable No

H Usual condition Stable Yes

Table 2.2

Indeed, W.Oelert et al artificially synthesized a few
antihydrogens at CERN in 1995 but these antihydrogens
only exist in 4 × 10−8s ([2]), seems likely to contradict
the stable behavior of antihydrogen listed in Table 2.2.
How do we explain this case? Notice that the experiment
of W.Oelert et al verified that all antihydrogens are an-
nihilated with hydrogens, not appearing of an unstable
behavior, i.e.,

H + H → Engery

because our earth is full of hydrogens, consistent with
Table 2.2. Thus, we can classify known and unknown
but maybe existing antimatters in Table 2.3.

M External Energy State Verified
e+ Usual energy Stable Yes

P Usual energy Stable Yes

N Usual energy Stable Yes

H Usual energy Stable Yes

Antideuteron High energy Unstable Yes

M 6= H High energy Unstable No

Table 2.3

As is well-known, positron was found in constituents
of cosmic rays, and we can imitate the Big Bang and get
antimatters in high energy laboratory. However, they
are unstable unless antiprotons, antineutrons and anti-
hydrogens implied by Repulsion Assumption in Table
2.3. Then, where are the hiding places of antimatters
M 6= H in the universe? Theoretically, we are easily to
get stable antimatters likewise to pick up a small stone
on the earth but unstable antimatters can be only ob-
tained in the situation of high energy, i.e., near or in
fixed stars or high energy laboratory hold with

Fepf > Frsa, (2.4)

where Fepf , Frsa are respectively the external pressure
force and the residual strong interaction within antipro-
ton or antineutron of repulsion. Certainly, the equation
(2.4) also explains the reason that why it is hard to get
an antimatter M 6= H in the laboratory of humans be-
cause it needs higher energy Fepf to bind antiprotons and
antineutrons and we have no such a powerful laboratory
until today. But, why are we also hard to get antiprotons
and antineutrons on the earth, both of them are stable?
It is because the earth is full of protons and neutrons,
or matters, which results in the transiently existing of
antiproton and antineutron after they come into beings
in the laboratory.

Then, where is the stable antimatter and why can we
not find them outside laboratory unless the positron? All
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stable antimatters should be far away from galaxy. Oth-
erwise, they will be annihilated with their counterparts
matter. Thus, stable antimatters can be only existing in
intergalactic spaces. There may be 2 existing forms of
antimatters following:

C1. Free Antimatter. The free antimatter in-
cludes free positron, free antiproton, free antineutron
and free antihydrogen. They are floating on space one
by one, and if one of them collides with its matter coun-
terpart it will annihilates into repulsive energy, which
will further separates free antimatters to avoid collision
again and finally, stable.

C2. Antimatter Star. The antimatter star in-
cludes antiproton star, antineutron star, antihydrogen
star or their combination. As it is well-known, there are
matters such as those of oxygen, nitrogen, argon, carbon
dioxide, hydrogen and other matters in space but no pro-
ton stars, and an antimatter on the star may be collided
with its matter star into annihilation. However, an anti-
matter star will be finally stable because if D(p1, p2) ≥ 0,
the residual strong interaction between antiparticles p1
and p2 is 0, i.e., stably existed. And why can they not
be annihilated with their counterparts matter completely?
Affirmatively, antimatters on surface of the star will be
annihilated with their matter counterparts. But, as soon
as the annihilation happens, a repulsion energy between
the matter and antimatter star appears, which will fi-
nally pushes the matter and antimatter away until their
distance D(p, p) > 0 and forms a neutral space. A sim-
ple calculation enables us knowing respectively the upper
density dp, dn and dc of antiproton star, antineutron star
and other antimatter stars as follows:

dp ≤
(

1

16× 10−16

)3

× (1.6726231× 10−27)kg/m3

= (2.44140625×1044)× (1.6726231×10−27)kg/m3

= 4.08355249× 1017kg/m3,

dn ≤
(

1

6.8× 10−16

)3

× 1.6749286× 10−27

= (3.18033788× 1045)× (1.6749286× 10−27)

= 5.32683887× 1018kg/m3,

dc < 5.32683887× 1018kg/m3.

3 Matter-Antimatter’s Scenery Behind the Big
Bang

Certainly, antimatter formed accompanying with mat-
ter after the Big Bang, i.e., the universe exploded into a
seething fireball consisting of equal particles and antipar-
ticles, and radiation. And then, the universe expanded
rapidly, cooling in the process, and finally the matter
and antimatter formed, which is in accordance with the

sentence: All things are known by their beings, and all be-
ings come from non-beings in Chapter 40 of TAO TEH
KING, a well-known Chinese book written by Lao Zi, an
ideologist in ancient China. We are able to build up a
scenery of what happened, i.e., the forming of universe
after the Big Bang ([16]) following.

STEP 1. Around 10−34 seconds, the universe burst
its banks in a rush of expansion, growing at an expo-
nential rate, i.e., inflation. During this period, energy,
first repulsion and then, attraction were created to fill
the expanding universe, which are the source of matter
and antimatter in the universe.

STEP 2. Around 10−10 seconds, both of the strong
repulsive and attractive force separated out. The pairs
of quark and antiquark, the gluon and antigluon would
have moved freely about in a very hot state called a
quark-gluon or antiquark-gluon plasmas. By the hot
pressure originated from the Big Bang, antimatter first
come into being with a process that antiquark-gluon
plasmas were composed to antiprotons, antineutrons and
antiatoms as they captured positrons, and then anti-
molecules or antimatters one by one.

STEP 3. In about 10−7 seconds, the universe had
cooled enough for the quark-gluon plasma to convert into
the proton, neutron, and antimatter be spontaneously
separated to antihydrogens, antiprotons, antineutrons
under the residual strong interaction within an antipro-
ton or an antineutron at the same time. All of them were
freely floating.

STEP 4. Around 1 second, a few pair of matter and
antimatter such as those of electron and positron, proton
and antiproton, neutron and antineutron were annihi-
lated into repulsive energy when they collided and then,
pushed the matter and antimatter away until a neutral
space appeared. Otherwise, the antimatter freely floated
with its counterpart matter in the space.

STEP 5. Once the universe was a few seconds old, it
became cool enough for the combination of protons and
neutrons to form hydrogens, heliums, and antimatter
were separated to antihydrogen, antiprotons, antineu-
trons, and positrons were thrown out from antimolecules.
Certainly, it may be annihilated if the hydrogens, heli-
ums collided with antihydrogen or antihelium existed in
this time.

STEP 6. In about half an hour after the Big Bang, the
amount of matter settled down but was constantly bat-
tered by the huge amount of light radiation, and in the
meanwhile, antimatter stars were formed along with the
cosmic inflation by their repulsion of interaction. Free
antimatter also exists if they were not annihilated with
its counterpart matter.

STEP 7. In about 3×105 years, the universe had be-
come dilute and cool enough for light to go its own way
unimpeded. More atoms and molecules started to form
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by nuclei capturing electrons, and matter was born grad-
ually, and antimatters were stable unless free positrons,
which will annihilated if they collided with electrons.

STEP 8. In about 109 years, there began to form
stars, fixed stars, planets, and appearing lives with ex-
isted stable antimatters in the universe. After 1.37×1010

years apart from the Big Bang, the universe evolves at
its present visible and observable state, both including
matters and stable antimatters.

Although antiproton or antineutron stars have not be
determined by humans today, they are indeed existing
and will be found in the universe someday.

4 Application’s Preconditions

As we discussed, there are no antimatter likewise matters
on the earth and there are no stable antimatter unless
free antimatter such as those of positrons, free antipro-
tons, free antineutrons, free antihydrogens and antimat-
ter stars, i.e., antiprotron star, antineutron star or their
combination in universe. It is completely different from
the normal matter’s world. There are no possibility for
the birth of living antibeings, no antipeoples, and it is
only a symmetrical mirror of elementary particles but
with a different mechanism on composing antimatters.

Certainly, the most interested character for humans
today is that antimatter can be completely annihilated
into clean energy if it collides with its counterpart mat-
ter, without any waste left over. However, where and
how to extract it, and how to reserve it are 3 typical
problems should be solved before its universal applied.

Problem 1. Antimatter Searching. By the re-
pulsion assumption, one could find antimatter only in its
2 states following.

1. High Energy. In this case, there are 2 places
maybe find antimatter, i.e., the place in or near fixed
stars in universe and the high energy laboratory. As we
known, all materials made by humans technology can
not arrive at any fixed stars unless new high heat re-
sistant material be created someday. Certainly, we can
artificially synthesize antimatter in laboratory but only
get very little used for scientific research, and the energy
needed for synthesized antimatter is far exceeding the
energy of annihilation, can not be universal applied for
humans ([1], [2]).

2. Stable. The stable antimatter includes free anti-
matter and antimatter stars. The former is sloppy, freely
floating without a fixed position in space. Thus, it is also
difficult to collect a good supply of antimatter in this
case. However, antiproton, antineutron or their combi-
nation star may be a good resource for getting plenty of
antimatter in universe, extracted for application.

Problem 2. Antimatter Extracting. There are

2 preliminaries for extracting antimatter from an anti-
matter star. One is to determine its accurate position in
space. Another is developed such a spaceship that can
arrive at the antimatter star with mining tools. Notice
that such a spaceship can not landed on and we can not
excavate antimatter from such an antimatter star like-
wise mining in the earth. Otherwise, the repulsion of
residual strong interaction within antiprotons and an-
tineutrons will push it away from the star, i.e., a maybe
extracting is the spaceship close to the antimatter star
as possible and mines antimatter like scooping water in
a pond by a spoon, on which there is a layer pushing
away matter and antimatter on surface.

Problem 3. Antimatter Retaining. Clearly, it
is difficult to retain antimatter in a container made by
normal matter because antimatter will annihilates with
the normal matter. Generally, the researchers construct
an electromagnetic filed between antimatter and normal
matter to separate them for retaining antimatter in lab-
oratory, i.e., Penning trap. However, it only exists in a
very short times in this way. For example, the antipro-
ton only exists in less than 1 second in 2010, and 16
minutes in 2016 at CERN ([1]). There are no possible
for applying antimatter to humans in such a retaining
way.

Notice that an antiproton will annihilates and pro-
duces repulsive energy if it collides with a proton. We
can construct a closed container filled with uncompressed
hydrogens for retaining a mount of antiproton if its wall
is strong enough to resist the repulsive energy produced
in the annihilation of surface antiprotons with protons
in all H ′s, where, it is assumed that the number of hy-
drogen is equal to that of antiprotons on the surface of
extracted antiprotons.

Similarly, we can construct such a closed container
for retaining antineutron if its wall material is stable
without neutrons in theory. However, it is more difficult
for retaining antineutron because of the β-Decay, i.e.,

n→ p+ e− + νe.

5 Further Discussions

There are a few topics related with antimatter further
discussed following which are all important for under-
standing our universe.

Unmatter. By definition, unmatter is neither mat-
ter nor antimatter but something in between such as
those of atoms of unmatter formed either by electrons,
protons, and antineutrons, or by antielectrons, antipro-
tons and neutrons discussed in [19],[20]. However, there
are no stable unmatter if the repulsion assumption on
anigluon is true because there are no matters when anti-
matter appeared after the Big Bang, and as the matter

L. Mao. A New Understanding of the Matter-Antimatter Asymmetry 161



Volume 15 (2019) PROGRESS IN PHYSICS Issue 3 (October)

turned up, the repulsion forced antimatters to decom-
pose into positrons, antiproton, antineutron, antihydro-
gen, blocked their combination naturally, and if they col-
lided with their counterpart matter, they will annihilated
into energy. Even if they combined on condition they
are unstable and break down into elementary antiparti-
cles and normal matter in a very short time. Whence,
unmatter can be only found by artificially synthesized in
high energy laboratory.

Gravitation. As it is well known by Newton, there
exists universal gravitation F = Gm1m2

r2 in 2 normal par-
ticles with masses m1, m2 respectively, where r is the
distance of the 2 particles and G the constant of grav-
ity, and Einstein understood it by space curvature ([7]).
But, what is it about antiparticles? Is it also attrac-
tive? As we discussed, if the behavior of antigluons is
repulsive, the residual strong interaction within hadrons
is repulsive, and the gravitation between 2 antiparticles
should be contrary to the attractive, i.e., the repulsive
F = −Gm1m2

r2 for 2 antiparticles with masses m1,m2 in
distance r. We then have the behaviors of gravitation in
particles and antiparticles following:

(1) Attractive in 2 normal particles;

(2) Repulsive in 2 antiparticles;

(3) Equilibrium in an antiparticle and its normal
particle with an equilibrium distance in space.

Obviously, such gravitational behaviors can be also
characterized by properties of space curvature.

Dark Energy. Clearly, the dark energy exists only
in a repulsive behavior for the observed accelerating uni-
verse, without substantial evidence ([15]). Where does it
comes from? And what is its acting mechanism? Why
we can not hold on the dark energy is because we always
understand the universe by its normal matter with an
assumption that antimatter is only a mirror and follows
the same rules of matter, only a partial view and results
in the asymmetry of matter and antimatter. However,
if we stand on a whole view, we can conclude that the
dark energy naturally originates from antimatter’s, i.e.,
antiproton’s and antineutron’s repulsion.

Conclusively, the Big Bang produced the equality of
particles and antiparticles but different forming mech-
anisms, i.e., attractive and repulsive with the 4 known
fundamental forces, respectively on matter and antimat-
ter, which formed the universe, observable or unobserv-
able by humans today.
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Within the proposed assumptions, including the existence of the discrete (minimally
uncertain) volume of space, the possibility of mapping of Euclidean 3D to 1D space in
the spherically symmetric case is considered. In introduced unified pseudo-Minkowski
2D spacetime (t,η) the river velocity for the Schwarzschild metric represents the uni-
form acceleration. The Rindler coordinate transforms in 2D spacetime lead to the
Schwarzschild-de Sitter metric in static 4D coordinates and result in the scale factor
that coincides with the one for cosmological expansion for the Universe with dark en-
ergy. The FLRW metric with such scale factor has the conformal form in unified 2D
spacetime, and the varying Hubble parameter can be expressed with conformal time via
the simple expression. The dynamic and continuity of the uniformly accelerated Rindler
flow in unified 2D spacetime are reviewed.

The river model of gravity and the analog gravity is an
alternative to the General Relativity (GR) approach to gravi-
tation. The purpose of this article is to exhibit the analogy be-
tween the radial river velocity in three spatial dimensions with
the motion along one spatial dimension. In the beginning, the
three new physical parameters are to be introduced: the mass-
radius, the discrete volume of space, and the new spatial co-
ordinate η that is mapped to three spatial dimensions which
allows introducing unified two-dimensional space-time (t, η).
Note: Only the case of spherical symmetry is reviewed.

1 The river model of gravity and the equivalence princi-
ple

The river model of gravity [5] and the analog gravity [2] is
the approach to gravity where the equivalence principle (EP)
holds. But it is interpreted in such a way that instead of equiv-
alence of gravity to the acceleration, it aligns gravity with
non-uniform velocity v(r) denoted as the river velocity. In
the analog gravity models, the velocity v(r) is considered to
be a movement of some physical medium in flat background
spacetime. The flow of the medium is considered to be sta-
tionary and irrotational. The use of non-uniform v(r) instead
of the acceleration provides the intuitively obvious connec-
tion to the metric in static coordinates

ds2 = −c2
(
1 −

v2

c2

)
dt′2 +

(
1 −

v2

c2

)−1

dr2 + r2dΩ2 (1)

where dΩ2 = sin2 θdφ2 + dθ2 and coordinate time is denoted
as t′. Contrary to that, attempts to embed the acceleration
from the EP to a similar form of the metric are still highly
disputable.

It was demonstrated in [8] using the coordinate transforms
that the static metric (1) in the comoving reference frame has
the following equivalent form

ds2 = −c2dτ2 + a(τ)2
(
dR2 + R2dΩ2

)
(2)

which is the Robertson-Walker (FLRW) metric for the spa-
tially flat case (k = 0) and a(τ) is the scale factor related to
the river velocity as v = Rȧ, and v is the proper velocity of the
comoving frame. Such equivalency of the static metric (1) to
(2) is known for the de Sitter metric only (for example [16]),
and the river velocity is associated with the Hubble flow. But
the conformity between an arbitrary static metric and the co-
moving metric (2) in general case is missing or avoided in the
literature. Recently, however, Mitra [10] proposed the clar-
ifying view on this problem, which supports the presented
approach.

2 The prerequisites of the model

Three postulates of the model are
1. The fundamental significance of the Hubble constant

H0
∗. The term “varying Hubble constant” can be mislead-

ing and is not applied to the approach. The constant is the
fundamental value that does not vary with time. Instead it
is proposed to use the varying parameter H(τ) = ȧ/a. The
significance of it is distinguished from the Hubble constant.
Further, the Hubble constant H0 is denoted as H for shortness.

2. The incompressibility of the fluid and its constant den-
sity. It was given in [7], based on the conformal factor issue
in the analog gravity and on the continuity equation. The sig-
nificance of the moving fluid and moving space is the same in
the presented approach which allows having aether overtones
in the interpretation of such models.

3. The outward direction of the fluid from the center of
mass. Czerniawski [4] pointed out that the Gullstrand-Painle-
vé metric can be written with negative and positive v equiva-
lently. The same is given in [7,8] for the analog gravity based
on the fact that the river velocity comes to the static metric as
squared value. If the river velocity depends on central mass
then it hardly can be modeled by ingoing flow as the flow at a

∗As an example, Dirac’s large number coincidence can indirectly sup-
port this point or as it was conjectured in [9] H0 = mec2/(2128~).
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distance r somehow should “know” the value of mass located
at the point r = 0, which intuitively would contradict to the
sense of the short-range action of the hydrodynamics.

3 Mass-radius rm and mass-volume Vm

Let m be a point mass of an elementary particle in the center
of a sphere with radius r. Let’s designate the certain radius rm

of the spherical volume Vm such as

m = ρ0

(
4
3
πr3

m

)
ρ0 = kρc (3)

denoting them respectively as mass-radius and the mass-volu-
me. The value of the fluid density ρ0 is expressed via the
critical density ρc and k is some coefficient of order of unity
and its estimates are given later. Then it can be also noted that

rm =

(
3

4π
m
ρ0

)1/3

=

(
2Gm
kH2

)1/3

. (4)

As an example, for the river velocity in case of the Schwarz-
schild gravity [3, 5]

v(r) =

√
2Gm

r
(5)

the equation motion of a fluid (directed outwards as postu-
lated) can be simplified as

r(t) =

(
3
2

√
2Gm t

)2/3

= k1/3rm

(
3
2

Ht
)2/3

. (6)

In such case the space is expanding in outwards direction and
its spherical volume within the radius r denoted further as V
increases with time as

V(t) = Vmk
(

3
2

Ht
)2

(7)

near the mass m. The definition of comoving distance R is
r = Ra. Then one can note that particularly the scale factor
can be represented as

r(t) = rmk1/3a(t) a(t) =

[
V(t)
kVm

]1/3

. (8)

Importantly, the scale factor defined in such does not depend
on the value of point mass. The reviewed case yields

a(t) =

(
3
2

Ht
)2/3

. (9)

The expression describes the scale factor near the point mass
m, for example, near the elementary particle that implies the
spatial flow with river velocity (5) corresponding to the Schw-
arzschild space-time geometry. Further, it will be referred as
the scale factor if one may still assume that it just coinci-
dences with the cosmological scale factor.

4 The discrete volume of space V0

The second parameter that has to be introduces is the minimal
measurable volume of space V0, the constant such as

V0 =
m0

ρ0
(10)

where m0 is minimal mass quanta that is defined as

m0 =
~

c2 βH (11)

based on the uncertainty relation and where β is some co-
efficient of order of unity, which is determined later∗. The
existence of such volume implies the uncertainty to measure
simultaneously three spatial coordinates as

∆x ∆y∆y ≥ V0 . (12)

The existence of a discrete value for the volume of space can
be conjectured as its fundamental property. As the Heisen-
berg uncertainty principle governs the linear 1D coordinate
measurement, the minimal 2D area that corresponds to one
bit of the information is the Planck area, then V0 represents
3D the volume of space with minimal entropy or unit of in-
formation that can be measured. The substitution of the value
for ρ0 into (10) leads to

V0 =

(
2β
3k

c
H

)
S Pl (13)

where S Pl is the Planck area. In order to evaluate the volume
V0 as sphere the large number relations from [9, the expres-
sions (1) and (2.3)] can be applied to obtain exactly

V0 =
4π
3

(
β

k

)
reλeλp (14)

where λp and λe are the de Broglie wavelength of proton and
electron and re is the classical electron radius†. Notably, the
expression shows that V0 can be expressed via the properties
of fundamental particles and λp with the dimensionless coef-
ficients, which are determined later.

The minimal volume V0 can also signify one bit of infor-
mation as in terms of the total entropy of the Universe within
the Hubble volume as substitution leads to

I =
VH

V0
=

(
k

2β

)
S H

S Pl
(15)

where S H is the area of the Hubble horizon, and the second
equality represents the Holographic principle, which should
have some the numerical factor here as the identity on the left-
hand side represents the entropy of pure space only (without
matter and energy). The expression to be used further for Vm

via V0 obviously can be obtained as

Vm = V0
m
m0

=
V0

λm

c
βH

(16)

where λm is the de Broglie wavelength of the mass m.
∗So V0 can be simply treated as the mass-volume of m0.
†with factor of 3/10, as per cited work.
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Fig. 1: The mapping of the spherical volume V(r) to unified coor-
dinate where η = φλm/4π is represented by the angle φ. The spiral
is given by the polar equation r = aφ1/3. Every turnover cycle cor-
responds to dV = V0 and to the line segment with length λm in η

coordinate.∗

5 The unified coordinate η

The existence of discrete volumes leads to the proposition that
3D manifold may represent a countable set. Therefore all
such V0’s within some spherical volume V(r) can be mapped
to fixed-line segments of one-dimensional coordinate. How-
ever, as V0 is the quantity but is not an actual shape; therefore,
such mapping is not uniquely defined. The new spatial-like
coordinate η can be introduced† as following

~η = λm
V(r)
V0

~eη . (17)

Such representation provides the mapping of the linear un-
certainty relation for λm to the uncertainty for 3D volume V0.
The appearance of λm in the definition of η is motivated by
its presence in (14), implying its fundamental significance as
one of V0’s dimension. The coordinate can be understood as
constituted of numbers of discrete deltas with the length of
λm. Each of these deltas corresponds to next in raw V0 within
the spherical volume of V(r).

The coordinate transformation likely represents the non-
conformal mapping as it all angular information (φ,θ) of co-
ordinates in 3D is lost as uses radial distance only. On an-
other hand, the spherical shell with the volume V0 = 4πr2dr
already does not have angular information due to the uncer-
tainty of V0. In such a way, the transformation is conformal.
The definition can be also written in terms of differentials as

dη = dV
λm

V0
. (18)

∗The spiral shows resemblance to the Theodorus spiral but constructed
with the cubic roots instead of the square roots as rn = r0[n1/3 − (n − 1)1/3].

†It can also be associated with the mass of space in spherical volume
with postulated uniform density.

The ratio dV/V0 corresponds to the natural number n (which
is the number of spiral cycles as depicted in Fig. 1). In case if
V(r) as is not constant or there is a non-zero flux of the fluid,
then it corresponds to the velocity

u =
∂η

∂t
=
λm

V0

(
∂V
∂t

)
. (19)

The equation provides the direct correspondence between flu-
id flow in three-dimensional space and the velocity along the
unified coordinate η. Then for the spherically symmetric case,
the radial river velocity can be obtained as

v =
V0

λm

u
4πr2 . (20)

The meaning of the expression is evident with the help of
Fig. 1, where the velocity u is angular velocity along the spiral
line, and v is its projection to the radial direction. Substitution
of (16) leads to

v = Vm
βH
c

u
4πr2 . (21)

Also, the substitution of (16) into (17) provides the spherical
volume expressed via η as

V = η Vm
βH
c
. (22)

Noting the special point on η coordinate

ηm =
c
βH

(23)

that corresponds to mass-radius rm in 4D spacetime.

6 The motion along η in non-relativistic approximation

With the use of introduced coordinate, the space flow (7) can
be represented as an equation of motion along η. The equa-
tion (19) for the Schwarzschild case above (7) (differentiating
it with respect to time) gives

u =
λm

V0

(
Vmk

9
2

H2t
)
. (24)

Applying (16)

u =

(
9k
2β

Hc
)

t (25)

which is the accelerated motion along coordinate η with con-
stant acceleration‡

α =
9k
2β

Hc . (26)

Those, the Schwarzschild gravity with the river velocity (5)
and for the scale factor a(t) as in (9) represent non-relativistic
approximation of motion with the constant acceleration (26)
along coordinate η when u � c or at near field of the point
mass.

‡In the author’s previous work [7] it was assumed that k = 1 and β = 3
2

leading to α = 3Hc and (16) corresponds to the volume conversion relation.
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7 The relativistic motion along η

It has to be considered now that unified coordinate η belongs
to two dimensional Minkowski spacetime with the invariant
line element

ds2 = −c2dt2 + dη2 . (27)

The relativistic motion with the constant proper acceleration
corresponds to the Rindler or also known as Kottler-Møller
coordinates transforms [12, 13]

t =
c
α

sinh
(
α

c
τ
)

(28)

where τ is proper time and t is coordinate time and α is given
by (26). The two-velocity is

ui = c
(
cosh

(
α

c
τ
)
, sinh

(
α

c
τ
))

(29)

where i = 0, 1. And the equation of motion along the coordi-
nate is

η = η0 cosh
(
α

c
τ
)
− η0 (30)

where the initial conditions are set in such way that η = 0 at
t = 0 (because of V(0) = 0 as (22)) and the Rindler horizon
distance is

η0 =
c2

α
=

(
2β
9k

)
c
H
. (31)

The significance of such distance is the fact that the mov-
ing object can not receive any information from the point of
its origin anymore. Therefore, the dependency of gravita-
tion from central mass should vanish∗. The substitution of
the equation of motion via η (30) to expression for spherical
volume (22) leads to

V(τ) = Vm
βHc
α

[
cosh

(
α

c
τ
)
− 1

]
. (32)

Expressing the hyperbolic cosine via half of argument of hy-
perbolic sine and using (8) the scale factor is

a(τ) =

(
2βHc

kα

)1/3 [
sinh

(
α

2c
τ
)]2/3

(33)

where expression for α can be easily substituted from (26).
The substitution of the proper velocity u1 from (29) into (21),
expressing the hyperbolic sine by the hyperbolic cosine from
(32) with the use of kr3

mH2 = 2Gm (4) lead to the solution
for the radial river velocity for spherically symmetric gravita-
tional field of point mass

v(r) =

([
2β
3k

α

3Hc

]
2Gm

r
+

[
α

3Hc

]2
H2r2

)1/2

(34)

which is the river velocity for the Schwarzschild-de Sitter
(SdS) metric with the additional repulsive Λ-term.

∗Starting from this distance the de Sitter model has to be valid, see Sec-
tion 9.

The scale factor (33) coincidences with the one used in the
standard cosmology for the current “dark energy dominated”
epoch where it has the following form (see for example [15])

a(τ) =

(
Ωm

ΩΛ

)1/3 [
sinh

(√
ΩΛ

3
2

Hτ
)]2/3

. (35)

Matching the Ω’s parameters with obtained result (33) leads
to

Ωm =

[
2β
3k

α

3Hc

]
ΩΛ =

[
α

3Hc

]2
. (36)

Comparing this with two factors multiplying respectively the
first and the second term in the expression (34) one can see
that they are surprisingly identical.

The presented approach, however, attaches the different
significance to these coefficients. The first one implies how
the Newtonian gravity deviates from its usual law by simply
multiplying the Newtonian potential. It should be set to unity,
therefore, which is the condition explicitly equivalent to set-
ting up the value of the acceleration α to (26). Then setting
the first parameter to unity and the substitution of the value
for α from (26)

v(r) =

2Gm
r

+

[
3k
2β

]2

H2r2

1/2

. (37)

The second factor signifies how repulsive Λ-term differs from
(H2r2), and it also consequently adds the pre-factor for H in
the de Sitter metric and multiplies the cosmological horizon
c/H with the same value (see also (13)).

Further, in the frame of this model, the second parameter
is set to unity which equivalently implies the following

3k
2β

= 1 α = 3Hc (38)

and the pre-factor in the expression for the scale factor (33)
becomes unity. In such case, the Rindler horizon (23) as the
radial distance from the center of mass

rR = rm

(
β

3

)1/3

(39)

and the distance where the SdS river velocity (37) as function
of r approaches its minimum†

r(vmin) = rm

(
k
2

)1/3

(40)

are both coincidences. The possible case can be considered
if one also equates the Rindler horizon distance η0 (23) with
ηm (31) then it would lead to β = 3 and k = 2 then the both
expressions above would have no prefactors.

†Equating the derivative to zero and using kr3
mH2 = 2Gm as per (4).

Another two extreme points of v(r) where it approaches c are given in [6].
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The substantial fact that the Rindler transforms in unified
2D spacetime of the form (28) results in the switch from the
Schwarzschild river velocity to the SdS gravity with the re-
pulsive Λ-term in 4D spacetime, by taking into account the
relativistic consideration for the uniform acceleration along
η. Importantly the obtained river velocity for the SdS metric
corresponds to the proper velocity of u1 in unified spacetime
and rationale for it is given in Section 10.

8 The FLRW metric in 2D and the conformal form

As it was done for 4D in Section 2 the scale factor a′ for 2D
spacetime can be introduced in the same way as

η = k ηm a′(τ) . (41)

Using (30), (31) and (23) with determined coefficients (38)
results in

a′(τ) = sinh2
(

3
2

Hτ
)

(42)

that corresponds to the following 2D metric

ds2 = −c2dτ2 +

[
sinh

(
3
2

Hτ
)]4

dz2 (43)

where z is the comoving distance, u1 = z ȧ′ and τ is the proper
time in the comoving frame∗. Such form is the mapping of the
Robertson Walker (FLRW) metric with the scale factor (33)
to 2D spacetime. The metric is written for the fluid while
it moves in pseudo-Minkowski spacetime (27). Contrary to
the FLRW metric with the scale factor (33), (35) this metric
has the conformal form. The conformal time τ′ such as dτ =

dτ′a′(τ) is given by the transform

τ′ =

∫
dτ

a′(τ)
= −

2

3H tanh
(

3
2 Hτ

) (44)

where the integration constant can be set to zero. Notably,
conformal time has reversed direction opposite to τ

τ′ ∈

(
−∞,−

2
3H

)
. (45)

The metric (43) takes the following form

ds2 = sinh4
(

3
2

Hτ
) (
−c2dτ′2 + dz2

)
. (46)

Or using (44)

ds2 =

1 − (
3
2

Hτ′
)2−2 (

−c2dτ′2 + dz2
)

(47)

∗The metric clearly differs from the known form in comoving Rindler
frame ds2 = −c2

(
1 + α2 x2

)
dτ2 + dx2 as the later uses different coordinate x

that is defined locally in the observer’s frame.

providing the conformal form of the FLRW metric in unified
two dimensional spacetime.

On another hand, in four-dimensional spacetime, there is
the parameterH†

H(τ) =
ȧ
a

=
v

r
=

V̇
4πr3 . (48)

Using (32) for V(τ) with the hyperbolic sine of half argument
leads to

H(τ) =
H

tanh
(

3
2 Hτ

) (49)

where the parameter belongs to the following interval

H(τ) ∈ (+∞,H) . (50)

Then the parameter can be written in terms of conformal time
τ′ as given by (44)

H(τ) = −
3
2

H2τ′ . (51)

This expression connects the “varying Hubble constant” with
conformal time in unified 2D spacetime. The range of H(τ)
is from +∞ to H andH(τ) is the infinitely approaching value
of H, as shown.

Interestingly that the metric (43) represents the embed-
ding class two geometry, implying that the minimal number
of dimensions of flat spacetime where it can be embedded is
four. The reason why at least two additional dimensions are
required is that the derivative ȧ(τ) has zero at τ = 0, see [1, the
Theorem 2.2].

9 The note on 3Hc and the number of spatial dimen-
sions, the de Sitter metric

The appearance of the factor 3 in the value of the uniform
acceleration (38) is closely related to the number of spatial
dimensions. It can be demonstrated by the example of the de
Sitter metric. Expressing the hyperbolic sine from the equa-
tion of motion (30) and substituting into the expression for
proper velocity u1 leads to

u(η) = c
η

η0

(
1 +

2η0

η

)1/2

. (52)

For far away distances when η � η0 the second term in the
equation can be neglected and using the value for η0 from
(31) it reduces to u(τ) = 3Hη(τ) with the solution

η(τ) = a1 exp (3Hτ) (53)

where a1 can be set to the Rindler horizon distance η0 as per
(39). Then it becomes

V =

(
β

3

)
Vm exp (3Hτ) . (54)

†Though the definition is the same as “varying Hubble constant” in the
standard cosmology, their meanings have to be distinguished.
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Using (8) and taking the cubic root result in

a(τ) =

(
β

3k

)1/3

exp (Hτ) (55)

which is the de Sitter metric where the factor 3 in the argu-
ment of the exponent disappears because of the cubic root. In-
terestingly pre-factor can not be unity in such way (the same
can be shown by approximating (33)).

10 Coordinate time in 2D and in 4D spacetimes

Time is an arbitrary coordinate in gravitational theories in-
cluding the GR [11] as it is not considered as absolute time.
The model uses the proper time of the moving space τ that
comes to the metric (2). The radial river velocity of the fluid
/ space v is the fluid’s proper velocity in pseudo flat 4D Min-
kowski spacetime [3, 8] and v is the projection of proper ve-
locity u1 in 2D (t, η) as shown. However, the projection of
coordinate velocity uc in 2D (t, η) does not correspond to co-
ordinate velocity of the fluid vc in 4D because the Lorenz in-
variance in 2D cannot be applied to the Lorenz invariance is
4D. Therefore coordinate time in (t, η) is not synchronized
with coordinate time in 4D (t′, r, θ, φ). Such disagreement in
coordinate times can be seen from the fact that time t in (t, η)
implies how an observer residing at rest in η = 0 (so r = 0)
measures its time. However, the coordinate time in 4D t′ (that
comes to the metric (1)) is time measured by static observer
residing far away from the gravity r = ∞ (so η = ∞).

Whereas proper time τ of the comoving fluid in 2D is the
same as proper time in 4D and such proper time invariance
may imply invariance of the energy for coordinate transform
from 2D to 4D but the topic requires further analysis. Coor-
dinate time t′ in four dimensional space time can be obtained
from τ using the transform for the Gullstrand-Painlevé met-
ric [3, 8]

dτ = dt′ −
v

c2

(
1 −

v2

c2

)−1

dr (56)

where τ is also proper time in 2D. As v represents proper
velocity (dr/dτ) then dividing both sides by dτ it takes fol-
lowing form

dt′ =
dτ

1 − v2

c2

(57)

Then the transform from proper time to coordinate time in 4D
is given by respective integral using v(τ).

11 The dynamic of the Rindler flow along η

One dimensional flow with constant acceleration and velocity
u provides certain simplification of the case study on the one
hand. The analogue of one dimensional density for example
becomes ρη = m0/λm. However, some of the parameters like
pressure can not be defined. The constant two-force acting on
a fluid element is

F i = m0 α
(
sinh

(
α

c
τ
)
, cosh

(
α

c
τ
))

(58)

where i = 0, 1 and α = 3Hc as per (38). Using definition for
m0 (25) the norm of the constant force is

|F| =
9k
2c
~H2 . (59)

It is easy to see that work done by such force at distance from
0 to the Rindler horizon given by (31) is exactly

|F| η0 = m0 c2 (60)

and does not depend on values of β and k. This expresses
the significance of the Rindler horizon distance in the frame
of the model. The relativistic energy density for such fluid is
e = ρηc2γ = ρηu0c. The integration yields the total energy
within the line segment (0, η) as

E =

∫ η

0
e dη = ρηc

∫ τ(η)

τ=0
u0u1dτ =

m0c4

2αλm
cosh2

(
α

c
τ
) ∣∣∣∣∣τ(η)

0

=
m0c4

2αλm

(
cosh2

(
α

c
τ
)
− 1

)
(61)

where in the last identity the value is taken at τ = 0. Notable
that the expression in brackets coincidences with (u1)2. Set-
ting the hyperbolic cosine to 2 at distance η0 as per (31) the
total energy of the fluid from 0 to the Rindler horizon distance
becomes

E(η0) =

(
β

2

)
mc2 (62)

where α = 3Hc (38), (16) to express m and (31) were used.
The energy invariance between 2D and 4D can be proposed
based of the invariance for proper time τ between two space-
times but it requires further analysis.

12 The continuity of the Rindler flow

The fluid flow with the relativistic uniform acceleration along
η has many notable properties. As an example with the source
placed at point η = 0 in case of incompressible fluid its stren-
gth is

σ =
∂m
∂t

= m0
∂u
∂t

= 0 . (63)

However further along the coordinate such sink-source term
is non-zero. It is easy to see using the equation of motion
(30) for two points with initial distance λm (where we fix the
initial line segment at dt = λm/c) then the distance between
them increases with time as∗

dη = λm sinh
(
α

c
τ
)
. (64)

In comoving frame of reference one can use proper velocity
u1 for the continuity equation. The divergence of proper ve-
locity can be obtained as

div(u1) =
∂u1

∂η
=
∂u1

∂t
∂t
∂η

=
α

uc
=

α

c tanh
(
α
c τ

) . (65)

∗Then the substitution of α from (38), using (17) leads to the element
of the fluid growth in 3D as V(τ) = V0 sinh (3Hτ) which is exactly the same
relation as suggested in [7] for the fluid parcel growth.
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Lemma. The divergence of the proper velocity in 2D
equals to divergence of the radial river velocity in 4D

div(u1) = div(v) . (66)

Proof. The radial velocity is irrotational as stated then

div(v) =
1
r2

∂

∂r

(
r2v

)
=

2v
r

+
∂v

∂r
. (67)

Expressing v with u as given in (21)

div(v) =
VmβH

c
∂u
∂r

1
4πr2 (68)

where two identical terms dropped. As

∂u
∂r

=
∂u
∂η

∂η

∂r
=
∂u
∂η

c
VmβH

4πr2 (69)

where (22) was used the substitution into (68) proves the
lemma.

Combining (65), (66) and (49), using the value for α (26)
and the trigonometric identities the divergence of the river
velocity becomes

div(v) =
3ȧ
2a

[
1 +

(a
ȧ

H
)2

]
. (70)

The equation provides the correspondence of the parameter
H(τ) = ȧ/a to the sink-source strength of fluid with constant
density.

13 The limitations of the model

The first limitation of the model is that it does not provide any
feasible solution for the Kerr-Newman neither for the Reiss-
ner–Nordström metrics. In the presented model, the rotation
of the in 3D can not be distinguished in η coordinate because
of the uncertainty of the volume V0 represented as the spher-
ical shell, as depicted in Fig. 1. Though it does not create any
issue for the model because the Kerr-Newman river velocity
does not have any dependency on angular coordinates (φ, θ)
but only on radial coordinate as shown in [5]

v(r) =

[
2Gmr − Q2

r2 + A2

]1/2

(71)

where A is the angular momentum per unit mass of a rotat-
ing mass, and Q is its charge. The model has difficulties in
obtaining the analytic expressions in the same way for such
velocity. There are two arguments to support the model, par-
ticularly is that the Kerr-Newman metric is a pure theoretical
consequence of the GR and is not anyhow verified experimen-
tally. The second argument is that the model is not unique in
the sense that the coordinate η can be introduced differently
but in the same manner for example

γdη = dV
λm

V0
(72)

where γ is u0 in the unified 2D spacetime. In such case spatial
3D coordinates (dV at right hand side) have “mixed” projec-
tion to both η and t (contrary to reviewed case where η→ dV
directly). Introduced in such way the river velocity for the
SdS metric would be simply

vp = vcγ =

(
r3

mH2

r

)1/2 (
1 +

r3

r3
m

)1/2

(73)

where kr3
mH2 = 2Gm. So the coordinate velocity is the Schw-

arzschild river velocity. Such alternative definition of η aligns
coordinate time t in 2D and t′ in 4D. The case for the mixed
projection can be elaborated in future work.

14 Free fall velocity and symmetries

In the frame of the presented approach, the acceleration α
along η has a positive value. Its projection to 4D results in
positive radial velocity v in an outward direction (that in the
Schwarzschild case corresponds to the negative deceleration
in outward direction). The free-fall velocity v f f is connected
to the river velocity as v f f = −v. The changing of sign in the
acceleration α corresponds to the transform of the river veloc-
ity to free-fall velocity as α → −α v → v f f Alternatively,
the transform of the river velocity to free-fall velocity can be
given via the change of sign of proper time τ because time
reversal changes a sign of u and therefore it changes a sign
of the radial river velocity v as per (20) τ → −τ v → v f f .
However, such time reversal does not change a sign of the
acceleration α. If one would extend the direction of η coordi-
nate to the negative values (understanding that it would corre-
spond to negative volume or negative ρ0) then mirroring the
coordinate η (to opposite direction) means the equivalently
the change of sign of the acceleration as per the equation of
motion (30) η→ −η α→ −α.

15 Conclusions

The proposed analogy of unified two-dimensional spacetime
brought a few convenient advantages to study the cosmolog-
ical metrics and gravitation via the simplification. From the
perspective of unified 2D spacetime the Schwarzschild grav-
ity can be viewed as a non-relativistic approximation of flow
with the constant acceleration. Then the relativistic consider-
ations of such movement in unified 2D spacetime lead to the
appearance of the repulsive Λ-term corresponding to the SdS
metric. And this is far from being analogy as the case is only
possible if the unified 2D spacetime is considered as physical
spacetime. It can be interpreted as the “internal” spacetime of
the moving fluid of the analog gravity and the River model.

As shown, the FLRW metric in unified 2D spacetime has
the conformal form. The conformal time is connected to the
parameter H(τ) that is usually associated with the “varying
Hubble constant”. The parameter H varies from the infinity
in the past to the Hubble constant, which will be approaching
infinite time (49). Therefore the model has no place for the
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cosmological Big Crunch. The cosmological Big Bang is also
absent. The model suggests that the Big Bang is going on
continuously, equivalently signifying the emission of the fluid
from the center of the point mass of every elementary particle
where it is represented by the Rindler coordinate singularity
at η = 0, τ = 0. The Universe can be static as the equivalence
of the metrics (1) and (2) is stressed.

The parallel of the model with the Conformal Quantum
Mechanic that utilizes a 1D coordinate is yet to be analyzed.
Possible outlook to the quantum properties of the Rindler
fluid with constant force (59) (the linear potential) in unified
2D coordinates can be interesting. Embedding the electric
charge to the metric in the frame of the model (where some
of the parameters are to become imaginary) can be challeng-
ing.

Mathematical topics such as the topological coordinate
transformation of 4D to 2D manifold and conformal mapping
with the discrete maps in application to the presented model
require further attention.

The exploration of additional coordinates is a strong trend
since the foundation of Special Relativity. However, the op-
posite direction in the unification of known dimensions may
also be surprisingly advantageous. The introduced unified
2D spacetime (t,η) via certain simplification offers a new per-
spective to look at gravitation and cosmology.

The presented intuitive approach reveals the significant
parallel between gravity and motion in two-dimensional spa-
cetime. As always, the analogy may be evidence of a hidden
pattern in Nature; therefore, more thorough research and for-
mal analysis are required.

Received on October 7, 2019
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By expressing the Boltzmann statistical weight function (W) in terms of the Boltzmann
thermodynamic probabilities pr, i.e. W = W (p1, p2, . . . , pr−1, pr, pr+1, . . . , pm), and
thereafter evoking the here set-forth Thermodynamic Probability Evolution Hypothesis
– namely that, at the very least, a microstate can only evolve from a state of low ther-
modynamic probability to one of a higher thermodynamic probability, we demonstrate
a simple and veritable proof of the Second Law of Thermodynamics (SLT), namely
that the entropy of an isolated thermodynamic system always increases. Effectively and
resultantly, this proof requires or points to the idea that the SLT holds not only statisti-
cally for an isolated system as currently understood, but must hold exactly for each of
the microstates making up the system, hence, the restriction that the SLT holds only for
an isolated thermodynamic system, may have to fall by the wayside.

The Law that entropy always increases – holds – I
think, the supreme position among the Laws of Nature.
If someone points out to you that your pet theory of the
Universe is in disagreement with Maxwell’s equations,
then – so much the worse for Maxwell’s equations. If
it is found to be contradicted by observation[s], well
– these experimentalists do bungle [up] things some-
times. But if your [pet] theory is found to be against
the Second Law of Thermodynamics, I can give you
no hope; there is nothing for it but to collapse in [the]
deepest humiliation . . . Sir Arthur Stanley Eddington
(1882–1944), adapted from [1, pp. 37-38].

1 Introduction

The paramount Second Law of Thermodynamics (SLT) is one
of the deepest, most profound and single-most important laws
of physics. This seemingly sacrosanct law is born out of the
solid and veritable soils of experimental philosophy. Be that
as it may, this law has no corresponding fundamental theo-
retical justification except from the great Austrian theoreti-
cal physicist and philosopher – Ludwig Eduard Boltzmann
(1844-1906)’s first (significant – albeit, failed) attempt at a
proof via his all-famous and important H-theorem [2]. Boltz-
mann’s attempt [2] was swiftly rejected (by Zermelo [3] and
Leoschmidt [4]) as a complete proof and this is due to the
assumptions made therein – i.e. critical assumptions which
were rendered contrary to physical and natural reality as we
know it, hence, to this day – despite the many spirited at-
tempts at a proof, there is no accepted fundamental theoretical
proof of the SLT; thus, it remains an open challenge to find
a proof of the SLT. Herein, by way of writing down Boltz-
mann’s statistical weight function W, as a function of the re-
spective thermodynamic probabilities (pr) of all the different
microstates making up the given isolated thermodynamic sys-

tem – i.e.:

W = W (p1, p2, . . . pr−1, pr, pr+1, . . . pm−1, pm) , (1)

we humbly make an attempt at a proof that may shade some
light on the very foundations and meaning of the SLT.

2 The four manifestations of entropy

Entropy manifests itself in four different forms. The first form
is via Clausius’ entropy, second is via Boltzmann’s entropy,
third is via Gibb’s entropy and lastly is via the information
theoretic entropy through Shannon’s entropy. The main thrust
of the present section is to try and link these four manifesta-
tions of entropy so that a proof of just one of them is sufficient
proof for the rest of the entropies. Herein, we prove for the
case of Boltzmann’s entropy.

2.1 Clausius entropy

The great German physicist and mathematician – Rudolf Ju-
lius Emanuel Clausius (1822-1888), is – by and large – gener-
ally regarded as one of the central figures and founders of the
science of thermodynamics. In his most important paper [5]
entitled “On the Moving Force of Heat”, Clausius first stated
the basic ideas of the SLT and later, he introduced the concept
of entropy (Clausius [6]). Further, in 1870, Clausius intro-
duced the Virial Theorem which applies to heat [7]. Clausius’
most famous statement of the SLT was published in both the
German [8] and the English language [9]:

Heat can never pass from a colder to a warmer body
without some other change, connected therewith, oc-
curring at the same time.

Further, in this famous paper [5], Clausius showed that there
was a contradiction between Carnot’s principle and the con-
cept of conservation of energy and realising this, he restated
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the two laws of thermodynamics to overcome this contradic-
tion. For a system initially at temperature Ti and final tem-
perature T f and in-between these two temperature changes a
net heat d̄Q takes place, for such a system, Clausius defined
the entropy change, as:

dSC =

∫ T f

Ti

d̄Q
T
. (2)

For an isolated thermodynamics system, the entropy always
increases [6], and this is stated in the famous Clausius Law
as:

dSC =

∮
d̄Q
T
≥ 0 . (3)

The landmark 1865 paper [6] in which he introduced the con-
cept of entropy ends with the following summary of the First
and Second Laws of Thermodynamics:

The energy of the Universe is constant.
The entropy of the Universe tends to a maximum.

2.2 Boltzmann entropy

Boltzmann’s goal in his work [10] was to explain the be-
haviour of macroscopic systems in terms of the most fun-
damental dynamical laws governing their microscopic con-
stituents. For example, consider clear and clean water in a
container. In this container pour a drop of say potassium
permanganate. If left to itself, the potassium permanganate
will gradually spread in the water until the water is color blue
i.e. the potassium permanganate is evenly spread throughout
the water. Why does the water and potassium permanganate
mixture prefer to be in the equilibrium macrostate where the
potassium permanganate is evenly spread? Why?

To the mundane, the answer is that this is the way things
are and to expect anything different is nothing short of asking
for a miracle. The pedestrian mind will insatiably absorb this
as an effect and consequence of the natural order of the world
– not to Boltzmann. According to Boltzmann, this requires
an answer that penetrates deep into the microscopic nature
of reality at its most elementary and most fundamental level.
That is, this has something to do with the evolution of the
entropy of the system.

Boltzmann (1877) published his statistical interpretation
of the SLT in response to objections from Loschmidt who had
said that the H-theorem singled out the direction in time in
which his H-function decreases, whereas the underlying me-
chanics was the same whether time flowed forward or back-
ward. It is this paper that Boltzmann published his famous
equation – where accordingly, at any give time – the Boltz-
mann entropy SB of this system is given by:

SB = kB ln W , (4)

where kB is the Boltzmann constant. Later, the reluctant Ger-
man physicist [11], Max Karl Ernst Ludwig Planck (1858-

1947), based the derivation of his black body radiation for-
mula [12–14] on (4). Boltzmann’s Eq. (4) has been success-
ful in describing systems with minimal-most interactions in
Maxwell-Boltzmann, Fermi-Dirac and Bose-Einstein statis-
tics. For later instructive purposes, in the subsequent sec-
tions, we shall write down the corresponding thermodynamic
weights (W ).

2.2.1 Maxwell-Boltzmann statistics

Maxwell–Boltzmann statistics (hereafter MB-statistics) de-
scribethe average distribution of non-interacting material par-
ticles over various energy states (microstates) in thermal equi-
librium, and this kind of statistics is applicable in conditions
where the temperature is high enough or where the particle
density is low enough to render quantum effects negligible.

Suppose we have a gas of N identical point particles in
a box of volume V . By “gas”, we here-and-after mean that
the particles are non-interacting with one another, or more re-
alistically, the effects of the interactions are negligibly small.
Suppose we know the single particle states in this gas. In
MB-statistics, what we would like to know is what are the
possible macrostates of the system as a whole. That is, how
many ways are there of arranging the microstates? If nr is
the number of particles occupying the energy state εr, then,
an appeal to statistics will tell us that the multiplicity W of
different ways of arranging such a system is:

WMB =

m∏
r=1

N !
nr!

. (5)

It was pointed out by Gibbs, that the above expression for W
does not yield an extensive entropy, and as such – it must be
faulty somehow. This problem is known as the Gibbs para-
dox. The problem is that the particles considered by the above
equation are not indistinguishable. In other words, for two
particles (A and B) in two energy sublevels the population
represented by [A,B] is considered distinct from the popula-
tion [B,A] while for indistinguishable particles, they are not.

2.2.2 Bose-Einstein statistics

If we carry out the same argument presented above in the MB-
statistics – albeit, this time for indistinguishable particles, we
are led to the Bose-Einstein (BE) multiplicity expression WBE
i.e.:

WBE =

m∏
r=1

(nr + gr − 1)!
nr!(gr − 1)!

. (6)

The MB-distribution follows from this BE-distribution for
temperatures well above absolute zero, implying that gr ≫
1. The MB-distribution also requires low density, implying
that gr ≫ nr. The BE-theory of was developed in 1924-
5 by the Indian theoretical physicist Satyendra Nath Bose
(1894-1974) and in full collaboration with Bose [15], the idea
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was later adopted and extended by the great Albert Einstein
(1879-1955). Due to Dirac [16, 17], particles that follow the
BE-theory are called bosons.

2.2.3 Fermi-Dirac statistics

First derived in 1926 by the great Italian physicist – Enrico
Fermi (1901-1954) [18, 19] and later in the same year by the
finest and greatest English theoretical physicist of the mod-
ern age, Paul Adrian Maurice Dirac (1902-1984) [20], Fermi-
Dirac statistics (here-and-after FD-statistics) describe a dis-
tribution of particles over energy states in systems consist-
ing of many identical particles that obey the Pauli Exclusion
Principle, where according no two particle can occupy the
same quantum state and this has a considerable effect on the
properties of the system. Further, FD-statistics apply to iden-
tical particles with half-integer spin (fermions) in a system
in thermodynamic equilibrium. Additionally, the particles in
this system are assumed to have negligible mutual interaction
(gas) and this allows the many-particle system to be described
in terms of single-particle energy states.

As is the case in the derivation of WBE: suppose we have
a number of energy levels, labelled by index i with each level
having energy εr and containing a total of nr particles. Fur-
ther, suppose each level contains gr (degeneracy) distinct sub-
levels, all of which have the same energy, and which are dis-
tinguishable. The Pauli exclusion principle allows that only
one fermion can occupy any such sub-level. The number wr

of ways of distributing nr indistinguishable particles among
the gr sub-levels of an energy level, with a maximum of one
particle per sub-level, is given by the binomial coefficient, us-
ing its combinatorial interpretation:

wr =
gr!

nr!(gr − nr)!
. (7)

The number of ways that a set of occupation numbers nr can
be realized is the product of the ways that each individual
energy level can be populated, i.e.:

WFD =

m∏
r=1

gr!
nr!(gr − nr)!

. (8)

2.3 Gibbs entropy

The great theoretician – Josiah Willard Gibbs (1839-1903),
after whom the Gibbs entropy is named, was an American
mathematician, chemist and physicist who made important
and fundamental theoretical contributions to mathematics,ch-
emistry and physics. Gibbs argued that for a thermodynamic
system with W macrostates, if Pr is the thermodynamic prob-
ability of occurrence of the ith macrostate, then the entropy SG
of this system measured over all the macrostate r = 1, 2, . . . ,

m − 1,W is defined [21, 22]:

SG = −kB

W∑
r=1

Pr ln Pr , (9)

where Pr is the probability of occurrence of the rth macrosta-
te. This definition, like Boltzmann’s entropy, is a fundamental
postulate whose ultimate justification is its ability to explain
experimental facts, especially for systems of interacting par-
ticles.

The work of Gibbs on the applications of thermodynam-
ics was instrumental in transforming physical chemistry into
a rigorous inductive science. In Statistical Mechanics (a term
coined by Gibbs himself), he combined the work of James
Clerk Maxwell and Ludwig Boltzmann on the kinetic theory
of gases, thus explaining the macroscopic laws of thermo-
dynamics as a consequence of the underlying fundamental
statistical properties of ensembles of the possible states of a
physical system composed of many particles.

Gibbs’ approach is very useful in the study of “equilib-
rium” statistical mechanics and solid state physics [22], whe-
reas Boltzmann’s approach is very useful in the study of gas-
like systems such as electrons, photons, etc. However, Gibbs’
approach in the treatment of nonequilibrium systems presents
contentious problems [22, 23].

The American – Wayman Crow Distinguished Professor
of Physics at Washington University in St. Louis – Edwin
Thompson Jaynes (1922-1998), demonstrated [24] in 1965
that the Gibbs entropy is equal to the classical “heat engine”
entropy of Clausius (dS =

∫ T f

Ti
d̄Q/T ). Therefore, the Gibbs

entropy is the same as the Clausius entropy, i.e.:

SG = SC , (10)

hence, a proof that dSG ≥ 0 is as well a proof that dSC ≥ 0.
Later in the paper, we will prove that dSG ≥ 0, thus, accord-
ingly, this proof is a proof of the Clausius entropy as well.

2.4 Shannon entropy

The concept of entropy in Information Theory describes how
much information there is in a signal or event. The Entropy
Information Theory was advanced by the American mathe-
matician, electrical engineer, and cryptographer – Claude El-
wood Shannon (1916 − 2001) in his now famous 1948 pa-
per [25,26] entitled “A Mathematical Theory of Communica-
tion”. The Shannon entropy is a carefully constructed func-
tion of a set of probabilities that satisfies a number of con-
straints. These constraints are chosen such that entropy mea-
sures the uncertainty associated with a probability distribu-
tion.

An intuitive understanding of information entropy relates
to the amount of uncertainty about an event associated with a
given probability distribution. As an example, consider a box
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containing many coloured balls. If the balls are all of differ-
ent colours and no colour predominates, then our uncertainty
about the colour of a randomly drawn ball is maximal. On
the other hand, if the box contains more red balls than any
other colour, then there is slightly less uncertainty about the
result: the ball drawn from the box has more chances of be-
ing red (if we were forced to place a bet, we would bet on a
red ball). Telling someone the colour of every new drawn ball
provides them with more information in the first case than it
does in the second case, because there is more uncertainty
about what might happen in the first case than there is in the
second. Intuitively, if we know the number of balls remain-
ing, and they are all of one color, then there is no uncertainty
about what the next ball drawn will be, and therefore there
is no information content from drawing the ball. As a result,
the entropy of the “signal” (the sequence of balls drawn, as
calculated from the probability distribution) is higher in the
first case than in the second.

Shannon, in fact, defined entropy as a measure of the av-
erage information content associated with a random outcome.
Shannon’s definition of information entropy makes this intu-
itive distinction mathematically precise. His definition satis-
fies these desiderata:

1. The measure should be continuous – i.e. changing the value
of one of the probabilities by a very small amount should only
change the entropy by a small amount.

2. If all the outcomes (ball colours in the example above) are
equally likely, then entropy should be maximal. In this case,
the entropy increases with the number of outcomes.

3. If the outcome is a certainty, then the entropy should be zero.

4. The amount of entropy should be the same independently of
how the process is regarded as being divided into parts.

In his paper [25, 26], Shannon makes the claim that the only
function satisfying the above requirement will be of the form:

Ss = −ks

m∑
r=1

pr log2 pr (11)

where ks is the Shannon constant. If the Shannon constant
were to be set such that: ks = kB ln 2, then, the Shannon en-
tropy will equal the Gibbs entropy, i.e.:

Ss ≡ SG. (12)

Now, having discussed the four different manifestations of en-
tropy, we shall proceed to describe our thermodynamic sys-
tem.

3 Description of thermodynamic system

Key to our proof here is the clarity in the definition of what
we here term the:

1. Occupational Frequency of a Thermodynamic Microstate
(OFTM).

2. Thermodynamic Probability (TP).

As depicted in Table 1, we envisage a thermodynamic system
to constitute discrete, finite and countable cells (microstates).
These cells can each be numbered 1, 2, 3, . . . , r − 1, r, r + 1,
. . . , m − 2, m − 1, m and in these cells we are to fit a total of
N particles. The number of particles in each of these cells at
a given material time is n1, n2, n3, . . . , nr−1, nr, nr+1, . . . , . . . ,
nm−2, nm−1, nm, respectively.

Now, the OFTM, fr, of each of these microstates is such
that:

fr =
nr

N
, (13)

where fr is the total fraction of particles in the rth cell at a
given material time. We must note that:

m∑
r=1

fr = 1 . (14)

Now, todefine the thermodynamic probability pr, we need
to introduce some new idea. This is the idea of the potential
holding capacity of a given microstate. That is, take say the
rth microstate. This microstate has nr particles occupying it,
whereas the maximum possible number of particles that can
occupy this microstate is qr. What this means is that the mi-
crostate is not completely filled, but partially so. The ten-
dency is to fill this microstate rather that empty it. The most
probable state is that when this microstate is completely filled
and the most unlikely is – likewise, when this microstate is
empty.

Under such a setting, it follows that the ratio:

pr =
nr

qr
, (15)

must give the probability that the rth microstate is occupied
and fr is simply the fraction of the number of particles oc-
cupying this microstate at a given material time relative to
the total number of particles making up the entire system.
Clearly:

0 ≤ nr ≤ qr , (16)

hence:
0 ≤ pr ≤ 1 , (17)

thus: m∑
r=1

0 ≤
m∑

r=1

pr ≤

m∑
r=1

1

 −→ 0 ≤ m∑
r=1

pr ≤ m

 . (18)

Writing (18) in a more succinct manner, we will have:

0 ≤
1
m

 m∑
r=1

pr

 ≤ 1 . (19)

Now, having defined the occupational frequency of a ther-
modynamic microstate ( fr) and the thermodynamic probabil-
ity (pr), we shall proceed to lay bare the assumption or work-
ing hypothesis that will lead us to our desired proof of the
SLT.

174 G. G. Nyambuya. A Simple Proof of the Second Law of Thermodynamics



Issue 3 (October) PROGRESS IN PHYSICS Volume 15 (2019)

Table 1: Arrangement of Particles in the Different Cells

Parameter Cells

Cell Number 1 2 3 . . . . . . r − 1 r r + 1 . . . . . . m − 2 m − 1 m

nr n1 n2 n3 . . . . . . nr−1 nr nr+1 . . . . . . nm−2 nm−1 nm

fr
n1

N
n2

N
n3

N
. . . . . .

nr−1

N
nr

N
nr+1

N
. . . . . .

nm−2

N
nm−1

N
nm

N

qr q1 q2 q3 . . . . . . qr−1 qr qr+1 . . . . . . qm−2 qm−1 qm

pr
n1

q1

n2

q2

n3

q3
. . . . . .

n j−1

q j−1

n j

q j

n j+1

q j+1
. . . . . .

nm−2

qm−2

nm−1

qm−1

nm

qm

4 Hypothesis (assumption)

We shall put forward our working hypothesis which we shall
coin the name – Thermodynamic Probability Evolution Hy-
pothesis (TPE-hypothesis), and this hypothesis states that:

Thermodynamic probability changes are always posi-
tive, i.e. dpr ≥ 0. That is to say, at time ti, if the rth

state has energy εr(ti), and if this energy state were to
change to its next state εr(t j), at a later time t j (i >
j), then the accompanying thermodynamic probability
changes dpr, from the state εr(ti), to the state εr(t j), are
always such that: dpr ≥ 0.

Given the above hypothesis (assumption), we shall now pro-
ceed to our most simple proof of the SLT from a Boltzmann
entropy standpoint. But before that, we shall argue in the
next section that a proof that the Boltzmann entropy always
increases is sufficient proof that all the other three forms of
entropy are bound by the same law, hence, a proof that the
Boltzmann entropy always increases is a general proof of the
SLT.

5 Boltzmann and Gibbs entropies

Our proof of the SLT to be presented in the next section makes
use of the Boltzmann entropy. If we wanted a general proof
that entropy always increases, this would mean we must prove
the SLT for the four different manifestations of entropy. But,
we do not need to do this because the Clausius and Shannon
entropies are – one way or the other – equivalent to the Gibbs
entropy, the meaning of which is that we would only need
to prove for the two cases of the Gibbs and Boltzmann en-
tropy. Again, because the Gibbs and Boltzmann entropy can
be linked, it is sufficient to prove only for one of the two cases
and in this paper, we prove for the case of the Boltzmann en-
tropy.

To that end – i.e. in order to demonstrate this link between
the Gibbs and Boltzmann entropy, we know that in the event
that the probability of occurrence of all the W macrostate, the
Gibbs entropy reduces to the Boltzmann entropy. To see this,

we know that in this event where all the W macrostates are
equally likely, we will have Pr = 1/W , so that:

SG = −kB

W∑
r=1

(
1

W

)
ln

(
1

W

)
= kB ln W = SB . (20)

In all other cases:
SB < SG , (21)

hence, in general, we have that:

[SB ≤ SG] ⇒ [if (dSB ≥ 0) , then, (dSG ≥ 0)] , (22)

hence, a proof that: dSB ≥ 0, is also a proof that: dSG ≥ 0.
Consequently and according to the foregoing, a proof that:
dSB ≥ 0, is indeed a general proof of the SLT for all the four
different manifestations of entropy.

6 Proof

As a starting point, we shall as has been done in (1), assume
that the Boltzmann statistical weight function W , of an ar-
bitrary thermodynamic system is a function of the thermody-
namic probabilities (pr). With this assumption safely in place,
we note that if we are to have:

W = W0 exp

 m∑
r=1

pr −

m∑
r=1

pr ln pr

 , (23)

where W0 is a constant for the given isolated thermodynamic
system in question, then, we can very easily proffer a proof
of the SLT on the basis of the TPE-hypothesis, because, from
the Boltzmann Eq. (4), it follows from (1) that:

SB = kB ln W0 + kB

m∑
r=1

pr − kB

m∑
r=1

pr ln pr , (24)

hence, taking a differential of (24), one obtains that:

dSB = −kB

m∑
r=1

dpr ln pr . (25)
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Now, since 0 < pr ≤ 1, it follows from this – that ln pr ≤ 0,
and from the TPE-hypothesis where one is given that dpr > 0,
it further follows that dpr ln pr ≤ 0, hence:

m∑
r=1

dpr ln pr ≤ 0 ,

thus, inserting all these conditions into (25), we will have that:

dSB ≥ 0 , (26)

hence result. Clearly, the SLT follows directly from a simple
definition of W in terms of the thermodynamic probabilities
of all the different microstates and as well as from the TPE-
hypothesis.

7 General discussion

On the basis of the seemingly self-evident and reasonable
Thermodynamic Probability Evolution Hypothesis here put
forward, we have just “proved” (demonstrated) the SLT. If
anything, the “proof” appears to us (and perhaps to the reader
as well), to not only be very simple, but quite straight for-
ward. Be that as it may – given the amount of effort that has
gone into seeking a proof of the SLT, one can not help but
wonder if this proof is really correct – are we not missing
something here? How does it come about that such a very
simple pedestrian proof has escaped the reach of those that
have vigorously sought it? We do not know! All we can say
is that, what we have before our eyes appears very strongly to
be not only a veritable proof but a perdurable proof as well.
We leave it up to the esteemed reader to be the judge on the
validity or lack thereof the proof.

In addition, we do not know whether to call this a proof
or a demonstration. The reason for this self-doubt is that,
for a proof, the basis on which it stands must be firm – yet,
in what we have presented, the basis is a mere hypothesis
which we only evoked after we noted after a meticulous ex-
amination that if one were to express SB, as function of pr,
i.e. SB = SB(p1, p2, . . . , pr, . . . pm); the experimental result,
dSB ≥ 0 can be deduced from a number-theoretic viewpoint
provided that dpr > 0. Realising this, we evoked this as our
working hypothesis wherefrom the proof flowed smoothly. In
this way, it would not appear – but strongly so that, what
we have is a reverse engineered proof. In this way, it, ulti-
mately, would mean that the SLT directly implies the TPE-
hypothesis. Even if this were the case, it is still a great leap
forward in our understanding of the SLT as this would mean
the source of this law is the manner in which the thermody-
namic probabilities evolve from one value-state to the next.

That is to say, the SLT holds because the dynamic thermo-
dynamic probabilities pr(t), of the different microstates only
change to attain at least higher values than their previous, that
is, the given energy state only evolves (i.e. changes its state)
to allow at least a greater thermodynamic probability. Thus,

whether one decides that this is not a genuine proof because
it has worked backwards from a experimental result (dS ≥ 0)
in which process the TPE-hypothesis is implied, one thing is
pristine clear:

It must be acknowledged that at the very least,
the present demonstration (proof) has surely pee-
red deeper into the nature of the SLT to unearth
the TPE-hypothesis as a driver of this fundamen-
tal, paramount and sacrosanct law of Nature.

Hence, this paper may very well be a great – if not a giant leap
forward, in humankind’s endeavour to understand the myste-
rious and arcane foundations of the Second Law of Thermo-
dynamics.

Entropy is (and has always been) one of those physics
concepts that are difficult to define, let alone understand. Thr-
ough his entropy function [Eq. (4)], Boltzmann defined it as
a measure of the multiplicity of a thermodynamic system. Of
the three definitions i.e. Boltzmann, Gibbs and Clausius en-
tropy), the Clausius energy has been and is – the most dif-
ficult to define and understand. According to what we have
presented herein, one can safely define entropy as:

a measure of the probability of evolution of a thermo-
dynamic system.

With entropy having been given this definition, it becomes
much easier to understand the SLT as a simple statement ab-
out the dynamical evolution of the thermodynamic probabil-
ity of the system.
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Just like the rest of the Laws of Thermodynamics, the First Law of Thermodynamics
(FLT) is an empirical law firmly anchored on the unshakeable fertile soils of verifiable
experimental philosophy. Be that as it may, this law (FLT) does not have a fundamental
theoretical basis on which it is founded or rests upon. In the present paper, we demon-
strate that Liouville’s Theorem (in physics) can be cast or can be seen as an expression
of the FLT. In this way, one can thus envisage Liouville’s Theorem as a fundamental
theoretical basis for the FLT.

A theory is the more impressive the greater the sim-
plicity of its premises [are], the more different kinds of
things it relates, and the more extended is its area of
applicability . . . Classical Thermodynamics . . . is the
only physical theory of universal content concerning
which I am convinced that within the framework of
the applicability of its basic concepts, it will never be
overthrown . . . Albert Einstein (1879-1955). Adapted
from [1, p. 227].

1 Introduction

The First Law of Thermodynamics (FLT) is a version of the
General Empirical Law of Conservation of Energy (GELCE)
applicable to thermodynamic systems. The GELCE states
that the total energy of an isolated system is a constant of
time; energy can only be transformed from one form to an-
other, but can never be created nor destroyed. The FLT is
often stated as follows:

d̄Q = d̄U + d̄W , (1)

where d̄Q, d̄U and d̄W are the change in the heat content of a
thermodynamic system that accompanies a change in the in-
ternal energy d̄U of the system, for an amount of work d̄W
performed on the system. Simple stated: the heat content of a
thermodynamic system d̄Q, equals the change in the internal
energy d̄U, plus the amount of work d̄W done by the system
on its surroundings. The FLT is an empirical law founded and
strongly anchored on the fertile soils of experimental philoso-
phy. There is no theoretical furnishment of this law. This pa-
per makes an endeavour to proffer a theoretical justification
of this law on the basis of Liouville’s theorem [2], i.e. we
demonstrate that Liouville’s theorem can be viewed or can be
seen as a statement of the FLT.

2 Liouville’s theorem

In physics, Liouville’s theorem [2], named after the great
French mathematician Joseph Liouville (1809-1882), is a key

theorem in classical statistical thermodynamics and in Hamil-
tonian mechanics∗. The theorem asserts that the probability
density function %, is a time-constant along the trajectories
describing the system – in other words, the density of states
in an ensemble of many identical states with different initial
conditions is constant along every trajectory in phase space.
This time-independent density of states is in statistical me-
chanics known as the classical “a priori probability” where
an “a priori probability” is a probability that is derived purely
from deductive reasoning.

The probability density function (or phase space distribu-
tion function) % is assumed to depend on position (~r = ~r(t))
and momentum (~p = ~p(t)), i.e. % = %(~r, ~p), and this prob-
ability density function is constant along the trajectories of
the system – i.e. the density of states of the system points in
the vicinity of a given system point traversing through phase
space remains constant through the passage of time. Liou-
ville’s theorem succinctly summarizes this through the equa-
tion:

d%
dt

=
∂%

∂t
+

N∑
j=1

~̇r j ·
∂%

∂~r j
+

N∑
j=1

~̇p j ·
∂%

∂~p j
= 0 . (2)

Writing ~̇r j = ~v j and ~̇p j = ~F j, the above can be written as:

−
∂%

∂t︸︷︷︸
Term (I)

=

N∑
j=1

~v j ·
∂%

∂~r j︸       ︷︷       ︸
Term (II)

+

N∑
j=1

~F j ·
∂%

∂~p j︸         ︷︷         ︸
Term (III)

, (3)

where~v j and ~F j, are the velocity and resultant force acting on
the jth particle respectively. The task of the present paper is
to identify Terms (I), (II) and (III) of (3) with d̄Q, d̄U and d̄W,
appearing in (1), respectively. In order for us to achieve this,
it will require us to justly define – in an explicit manner – the

∗There is also in complex analysis, Liouville’s theorem, named after
the same Joseph Liouville, and this theorem states that every bounded entire
function (i.e., integral function) must be constant.
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probability density function %, thereby resulting in Liouville’s
theorem being nothing more (albeit – very insightful) than a
statement of the FLT. Before we can do this, we need to set
up in the next section, a theory that can explain or describe
the evolution of thermodynamic fluctuations.

3 Theory of thermodynamic fluctuations

In our theory of thermodynamic fluctuations, we begin in Sec-
tion 3.1 by defining what these fluctuations really are and hav-
ing done that, we proceed in Section 3.2 to define the phase
space on which the evolution of these thermodynamic fluctu-
ations is defined.

3.1 Definition of thermodynamic fluctuations

That fluctuations are an intrinsic and inherent part and parcel
of physical and natural reality is – indeed – common knowl-
edge. Every observable (say, O) is – one way or the other –
associated with some kind of random fluctuation (here-and-
after denoted, δO). These fluctuations that we are talking
about are different from the fluctuations in the measurement
induced by random statistical human error. These are fluc-
tuations that will manifest even when the impossible feat of
reducing the intrinsic and inherent random statistical human
error to zero.

In deeper terms, these fluctuations are no ordinary fluc-
tuations encountered in statistics, but are intrinsic and inher-
ent Statistical Random Thermodynamic Fluctuations (SRTF),
they can not be eliminated even in the most idea of situ-
ations. These thermodynamic fluctuations are the quantum
mechanical fluctuations that Niels Henrik David Bohr (1885-
1962) and his followers in Copenhagen, Denmark envisaged
(or dreamt of) in their historic, spirited and concerted effort to
finding a meaningful, perdurable and lasting interpretation of
Schrödinger’s seemingly arcane quantum mechanical wave-
function Ψ.

About these thermodynamic fluctuations, we must hasten
and categorically state that while there exists theories that at-
tempt to explain the evolution of thermodynamic systems (in
Γ-space), there does not exist similar attempts to describe the
evolution of these SRTFs though some structured space as
phase space. The present section makes an endeavour at such
a feat.

3.2 Definition of the δΓ-space

Now, we shall promulgate three postulates that form the ba-
sis of our theory of thermodynamic fluctuations. In the first
postulate, we shall set up an arena where these fluctuations
are defined. In the second postulate, we shall propose a gov-
erning equation that describes the evolution of these fluctua-
tions on the space on which they are defined, and lastly, in the
third postulate, we set up some rules that define how changes
in these fluctuations relate to changes in their corresponding
canonical variables.

1. Postulate (I): Just as there exists the six-dimensional Γ-space
(Γ = Γ(x, y, z; px, py, pz)) on which the trajectory of a ther-
modynamic system can be traced via their evolution through
this space as dictated to and governed by Liouville’s theorem,
there exists a corresponding six-dimensional space (which
for our purposes, we shall call δΓ-space) on which the tra-
jectory of the statistical random thermodynamic fluctuations
(δx, δy, δz; δpx, δpy, δpz) can be traced.

2. Postulate (II): The dynamic and spatial evolution of these
random statistical thermodynamic fluctuations (δx, δy, δz;
δpx, δpy, δpz) on δΓ-space is governed by Liouville’s equa-
tion d (δ%) /d (δt) = 0, i.e.:

∂ (δ%)
∂ (δt)

+

N∑
j=1

δ~v j ·
∂ (δ%)

∂
(
δ~r j

) +

N∑
j=1

δ~̇p j ·
∂ (δ%)

∂
(
δ~p j

) = 0 . (4)

3. Postulate (III): The partial differential elements of the cano-
nical four-position (∂x, ∂y, ∂z, ∂t) and that of the canonical
four-momentum (∂px, ∂py, ∂pz, ∂E) are equal to the corre-
sponding partial differential elements of the statistical random
thermodynamic fluctuations (∂ (δx) , ∂ (δy) , ∂ (δz) , ∂ (δt)) for
the four-position and (∂ (δpx) , ∂

(
δpy

)
, ∂ (δpz) , ∂ (δE))for the

four-momentum – i.e. written explicitly:

∂t = ∂ (δt)
∂x = ∂ (δx)
∂y = ∂ (δy)
∂z = ∂ (δz)
∂E = ∂ (δE)
∂px = ∂ (δpx)
∂py = ∂

(
δpy

)
∂pz = ∂ (δpz) .

(5)

With these three postulates (rules), we will go on to show that
the Liouville Eq. (4) yields the FLT.

4 Derivation – First Law of Thermodynamics

With the theory governing the SRTFs having been set up in
the previous section, we realise that if we are to set δ% so that
it is defined:

δ% = exp
(
δSTD

~

)
, (6)

where ~ is Planck’s normalized constant and:

δSTD =

N∑
j=1

(
δ~p j · δ~r j − δE j δt j

)
, (7)

is the thermodynamic phase (or thermodynamic action) de-
fined on δΓ-space, then one can very easily demonstrate that
Liouville’s theorem as defined in (4), is actually a subtle state-
ment of the FLT. This thermodynamic phase has been de-
fined along the lines of the space of a particle in the Hamil-
ton–Jacobi theory (e.g. [3, pp. 490-491]) of particles where
the energy E and momentum ~p of a partial are related to the
particle’s phase S (or action) via the equation E = −∂S/∂t
and ~p = ~∇S . These Hamilton–Jacobi definitions of E and ~p
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are the defining equations in the de Broglie-Bohm Pilot Wave
Theory [4–7] of Quantum Mechanics (QM).

Now, with the idea in mind that δSTD is the thermody-
namic phase (action) similar to a particle’s phase (action) in
the Hamilton–Jacobi theory, it is clear from the explicit defi-
nition of δSTD given in (7), that:

−
∂ (δ%)
∂ (δt)

=

N∑
j=1

δE j = δE , (8)

∂ (δ%)

∂
(
δ~r j

) = δ~p j , (9)

∂ (δ%)

∂
(
δ~p j

) = δ~r j . (10)

From these equations – i.e. (8), (9) and (10), it follows that∗:

N∑
j=1

δ~v j ·
∂%

∂(δ~r j)
=

N∑
j=1

~v j ·
∂%

∂(δ~r j)
=

N∑
j=1

~v j · δ~p j . (11)

At this point before we can proceed, we must ask the ques-
tion: What does the term ~v j · δ~p j represent? For a clue, let us
consider the classical expression for the kinetic energy of par-
ticle K j = p2

j/2m . Clearly dK j = p dp/m = v j dp j = ~v j · d~p j.
Therefore, the expression ~v j · δ~p j represents that thermody-
namic induced fluctuations in the kinetic energy of the jth

particle constituting the thermodynamic system under con-
sideration. These thermodynamic induced fluctuations in the
kinetic energy ~v j · δ~p j constitute what we normally call or re-
fer to as the internal energy δU of a thermodynamic system,
hence:

δU =

N∑
j=1

δ~v j ·
∂%

∂~r j
=

N∑
j=1

δU j . (12)

Further, we have:

N∑
j=1

δ ~F j ·
∂%

∂(δ~p j)
=

N∑
j=1

δ ~F j · δ~r j =

N∑
j=1

~F j · δ~r j . (13)

Clearly, the expression† ~F j · δ~r j, needs no explanation as it
represents the work δW j done on the jth particle by the ran-
dom thermodynamic fluctuations of position and forces, i.e.:

δW =

N∑
j=1

δ ~F j ·
∂%

∂~p j
=

N∑
j=1

δW j . (14)

From all this, it follows that:

δE = δU + δW . (15)

∗The “δ” in δ~v j in (11) is removed via the definitions given in (5).
†The “δ” in δ ~F j is removed via the definitions given in (5).

What (15) is telling us that while the fluctuations are random,
they are correlated.

Now, for a system that moves from an initial state (i) to a
final state ( f ), where the changes in the thermodynamic fluc-
tuations (δE, δU, δW) are to be defined:

d̄Q = δE f − δEi

d̄U = δU f − δUi

d̄W = δW f − δWi ,
(16)

where d̄Q, d̄U and d̄W, are to have the same meaning as they
have in (1), it follows from this that we will have the FLT, the
meaning of which is that Liouville’s theorem (4) is, in this
way, a subtle expression of the FLT.

5 Discussion

As far as we can tell, the FLT is taken as an inviolable exper-
imental fact. There has not been – at least in our survey of
the literature, a similar attempt as that presented here where a
fundamental theoretical basis is made to furnish the founda-
tions of this law, hence, this work is without precedent insofar
as its nature and goal is concerned. We believe the attempt
presented herein is important for our deeper insight and un-
derstanding of the Science of Thermodynamics. The follow-
up work (briefly discussed in Section 7) that we will present
soon will attest to this.

For example, one may ask: What drives thermodynamics,
it is the direct changes in the canonical values of the internal
energy U and the work W, or there – perhaps – is something
else different from this? If what we have presented is to be
believed, then the answer is that thermodynamics is driven by
the changes in the associated SRTFs in the canonical values
of the internal energy U and the work W, that is to say, by

d̄(δU) = δU f − δUi and d̄(δW) = δW f − δWi. In a nutshell, it
is the SRTFs that drive thermodynamics, and not the changes
dU and dW.

6 Conclusion

Assuming the acceeptability of what has herein been pre-
sented, we hereby set the following as our conclusion:

1. From a fundamental theoretical standpoint, the First Law of
Thermodynamics may very well be an expression to the ef-
fect that the Thermodynamic Evolution Probability Density
Function δ% is – in accordance with Liouville’s theorem –
an explicit time-constant along the phase-space trajectory for
any thermodynamic system.

2. Liouville’s Theorem can be viewed as (or may very well be)
an expression of the First Law of Thermodynamics.

7 Follow-up work

In order for the effectiveness in its mission to deliver the core
message it seeks to deliver, it is always prudent to keep a pa-
per focused on the point on which it seeks to deliver – of
which, the present has been to demonstrate that Liouville’s
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theorem can be shown to be a casting of the FLT. As always
happens, there will always be follow-ups. At present, we have
three immediate follow-up papers that we hope will be pub-
lished in the present journal. These follow-up papers give fur-
ther credence to the ideas that we have herein crafted and used
to demonstrate that Liouville’s theorem can be envisaged as a
casting of the FLT.

1. In the first follow-up paper, we demonstrate that if δ%
is assumed to be a thermodynamic probability measure,
then one can derive – with relative ease – Heisenberg
(1927)’s quantum mechanical uncertainty principle [8].

2. In the second paper, which is a follow-up on our recent
work presented in [9] on “A Simple Proof of the Sec-
ond Law of Thermodynamics (SLT)”, we demonstrate
that – if δ% is assumed to be the thermodynamic prob-
ability that derives entropy changes in thermodynamic
systems, then for a Universe with a unidirectional for-
ward arrow of time, the SLT directs that energyandtime
fluctuations (δE, δt) are what derives thermodynamics.

3. Lastly, in the third paper, within the framework of the
de Broglie-Bohm Pilot WaveTheory[4–7] of QM,com-
monly referred to as Bohmian Mechanics (BM), we set
the square-root of the Schrödinger [10–12] quantum
mechanical probability amplitude Ψ∗Ψ = |Ψ|2 so that it
equals δ%, i.e. δ% = |Ψ|, in which event, we demonstrate
that all the criticism that has been levelled against BM
– since its inception in 1952 – can easily be overcome.
The importance of this is that it allows for a realistic
interpretation of QM. This is good for the philosophy
of QM.

We believe that all the above mentioned future works give
seminality to the ideas here set forth.

Received on October 19, 2019
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In this paper we study the four Quantum Smarandache Paradoxes and try to explain and
solve them.

1 Introduction

The Quantum Smarandache Paradoxes [1, 2, 3, 4, 5, 6] are
enounced as follows:

• 1) Sorites Paradox (associated with Eubulides of Mile-
tus (fourth century B.C.): Our visible world is com-
posed of a totality of invisible particles.

• a) An invisible particle does not form a visible object,
nor do two invisible particles, three invisible particles,
etc. However, at some point, the collection of invisible
particles becomes large enough to form a visible ob-
ject, but there is apparently no definite point where this
occurs.

• b) A similar paradox is developed in an opposite direc-
tion. It is always possible to remove a particle from an
object in such a way that what is left is still a visible
object. However, repeating and repeating this process,
at some point, the visible object is decomposed so that
the left part becomes invisible, but there is no definite
point where this occurs. Generally, between <A> and
<Non-A> there is no clear distinction, no exact fron-
tier. Where does <A> really end and <Non-A> begin?
One extends Zadeh’s “fuzzy set” term to the “neutro-
sophic set” concept.

• 2) Uncertainty Paradox: Large matter, which is under
the ’determinist principle’, is formed by a totality of el-
ementary particles, which are under Heisenberg’s ’in-
determinacy principle’.

• 3) Unstable Paradox: Stable matter is formed by unsta-
ble elementary particles.

• 4) Short Time Living Paradox: Long time living matter
is formed by very short time living elementary parti-
cles.

2 Resolution of Smarandache Quantum Paradoxes

[R. N. Boyd]: I think some of the paradoxes may be resolved
by a view that matter is infinitely subdivisible. See below:

[Paradox 1a]:
Sorites Paradox (associated with Eubulides of Miletus (fourth
century B.C.): Our visible world is composed of a totality of
invisible particles.
a) An invisible particle does not form a visible object, nor do

two invisible particles, three invisible particles, etc. However,
at some point, the collection of invisible particles becomes
large enough to form a visible object, but there is apparently
no definite point where this occurs.

[R. N. Boyd]: The statement was true in the 4th century BC,
but it is not true now. We can now measure the masses of a
vast array of elemental particles. And we now know that there
are such ratios as ”moles” in chemistry telling us how many
atoms are involved in the situation. So today we can make
such determinations. There are fabrication processes in the
manufacture of integrated circuits that are capable of actually
arranging very precisely, each atom in the fabrication. One
example of these techniques is the use of epitaxal deposition,
which is a one atom thick deposition of material. Screen-
ing and masking techniques allow atom-by-atom structuring
to occur. These circuits can be small enough so that Cooper
pairing is impossible and quantum phase-slips occur in the
energized circuit. However, the problem has now shifted into
the domains which are smaller than our present ability to per-
ceive with our instrumentations. Typically colliders are used
to attempt to make measurements of the elemental particles,
and recent data seems to be pointing strongly to a realm of
particles even smaller than quarks, which may indeed com-
prise quarks, if such creatures exist in the first place. (What
we are calling quarks may be something else entirely, perhaps
organizations of yet smaller particles.) I hold that there is a
vast array of entities smaller than the Planck length, and have
developed methods for imaging such entities.

I designed 6 methods for imaging SubQuantum particles
(smaller than the Planck length). Valentini of Italy wrote a
paper describing yet another way to accomplish SQ imaging.
The easiest and cheapest to make SQ microscope of my de-
sign was publicized, and then tested for proof of principle by
Dr. Bernd Binder of Germany. After a 2 years long effort,
he verified proof of the principle of operation. The year after
that, the design verified by Binder, was constructed at a uni-
versity in Serbia. One of the Serbian professors sent me an
email to inform me that the SQ microscope of my design has
imaged entities as small as 10×10−95 cm. The infinitely small
is an unattainable goal in terms of technological approaches,
but we know the infinitely small is there, by inferences.

It turns out, based on Kolmogorov’s 5/3 law developed
from studies of turbulence, that the smallest vortex resulting
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from turbulence is an entity which lives at 10×10−58 m, which
we call a Kolmogorov Vortex. This is the smallest particle
that is still influenced by gravitation. Entities smaller than
this are the primary cause of gravitation.

Further on, there is a quantum coherence factor involved
in palpable matter which has the quantum field communicat-
ing with all the parts of the automobile, for example, with fur-
ther quantum communication occurring internal to the parts
which make up the automobile. What we really need to be
studying here is the coherence of objects, in the quantum field
sense. What is the lower limit of quantum coherence? Is there
a lower limit?

[Paradox 1b]:
b) A similar paradox is developed in an opposite direction. It
is always possible to remove a particle from an object in such
a way that what is left is still a visible object. However, re-
peating and repeating this process, at some point, the visible
object is decomposed so that the left part becomes invisible,
but there is no definite point where this occurs.

[R. N. Boyd]: There is, these days. But there may be a lower
limit, which can be studied by quantum coherence of objects.

[Paradox 1b (continued)]:
Generally, between and there is no clear distinction, no ex-
act frontier. Where does really end and begin? One extends
Zadeh’s “fuzzy set” term to the “neutrosophic set” concept.

[R. N. Boyd]: The boundary conditions are always very in-
teresting. Those conditions which are both A and NOT A,
yet neither A nor NOT A. Korzibski referred to these condi-
tions as “NULL A”. I call them boundary layers. They are
a study in themselves, because boundary layers comprise a
third state, and arise often.

[Paradox 2]:
2) Uncertainty Paradox: Large matter, which is under the ’de-
terminist principle’, is formed by a totality of elementary par-
ticles, which are under Heisenberg’s ’indeterminacy princi-
ple’.

[R. N. Boyd]: Uncertainty does not apply to monochromatic
coherent photons, nor indeed to any photonic system, by log-
ical extension. See:
http://worlds-within-worlds.org/refutationofheisenberg.php

Indeterminacy only applies where there are elements of
chance involved, most particularly involving systems of par-
ticles, which are quite susceptible to Zitterbewegung, while
photons remain largely unaffected by it.

Hans Dehmelt of Germany was awarded the Nobel Prize
in physics for keeping an electron pinned to one spot, so that
its momentum and location could be known at the same time,

for up to 3 months. Heisenburg uncertainty failed in those
circumstances. This experiment is considered by many as ev-
idence that the uncertainty principle fails, except under very
limited circumstances.

It is easier to deal with this paradox when we consider
that the uncertainty principle has failed, under many circum-
stance. A deterministic version of QM was developed based
on experiential information factors, which imply an Intelli-
gent Universe.

[Paradox 3]:
3) Unstable Paradox: Stable matter is formed by unstable el-
ementary particles.

[R. N. Boyd]: The life time of the proton is calculated (not
observed with instrumentation) to be on the order of 10×1032

years. But this ignores plasma/aether factors, and more im-
portantly, gamma ray dissociations of atoms, which cause
protons to vanish back into the aether from whence they orig-
inated. Gamma ray dissociation of atoms also causes SQ par-
ticles (vortex lines, Bhutatmas) propagating with an infinite
velocity, which are the cause of gravitation and are the cause
of the development of new electrons, positrons, protons, neu-
trons, and atoms due to aether/plasma events on the surfaces
of stars. Instrumented measurements have discovered that
every atomic element is found streaming out from the sun
in the “solar wind”. SAFIRE has instrumented physical evi-
dence that hydrogen and many other elements are created in
plasma double layers (charge separation layers) verified by
SEM (scanning electron microscopy) and optical correlation
spectroscopy. The creation and dis-creation of elementary
particles and atoms is a continuous cycle which occurs at all
times in the infinite volume universe. The life span of a pro-
ton is much smaller than the calculated standard. The actual
life span of the proton is determined by the number of gamma
ray dissociation events passing through the given volume, per
unit time. [Gustave Le Bon “Evolution of Matter” 1906]

[Paradox 4]:
4) Short Time Living Paradox: Long time living matter is
formed by very short time living elementary particles. Con-
sciousness and Experiencing informations are involved in all
these processes. This information is the organization force
which is responsible for many phenomena. The universe is
constructed from Space, Time, matter, energy, and Experienc-
ing. Consciousness is not limited to human beings. In fact, it
has been demonstrated that all observables have some man-
ner of consciousness, however rudimentary. Consciousness is
a holographic energetic having soliton-like [coherent] proper-
ties. The best descriptions of the energetics of Consciousness
arise from the works of V. Poponin (DNA Phantom Effect)
and from a recent paper which shows that the radiation pat-
tern of a symplectic E/M antenna is directly altered by the
attention, intention, and emotional condition of the operators
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of the transmission facility. This direct influence of the sym-
plectic E/M also causes a divergence in the quantum field, and
thus we have evidence that there is a direct relation between
the quantum field and Consciousness. Let us never forget that
there is a vast array of types of Consciousness, all of which
will have some effect on the quantum field.

Also see the works of Andrej Detela. For example:
http://www.zynet.co.uk/imprint/Tucson/4.htm#Physical.

Eventually holographic Artificial Intelligence such as
HNeT (a variety of quantum computer), combined with Sub-
Quantum Physics and Consciousness Physics will be able to
map non-physical and dis-incarnate entities, as well as all the
energetics of the commonly known life-forms. Eventually,
communications will be established through this approach,
with non-biological forms of Consciousness, such as rocks
and stars.

Submitted on October 5, 2019
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Baryons are generated from perturbations of magnetodynamic origin built upon a back-
ground sea of excitations at about 3.7 GeV adopting the proton state as a “substrate”, as
proposed by Barut. To simulate perturbations from such a state a sum over the energy
spectrum of excitations is necessary. A Zeta-function regularization procedure previ-
ously adopted for the Casimir Effect is applied to eliminate divergences when the sum
upon the energy spectrum states is carried out. States of negative energy compared to the
background state are obtained and represent the baryons. The periodic behavior of the
baryon masses with confined magnetic flux is reproduced with no further forms of en-
ergies required besides the magnetodynamic terms. This treatment implicitly supports
the concept that quarks and leptons might be treated on similar theoretical grounds.

1 Introduction

In recent work [1] we have shown that through the imposi-
tion of gauge invariance conditions to the wavefunctions of a
particle (represented in energy terms by a closed loop of cur-
rent and performing zitterbewegung motion), it is possible to
relate rest energy to magnetic energy for the baryons. Gauge
covariance was imposed by making the magnetic flux linked
through the region covered by the particle “orbit” quantized
in units n of φ0 = hc/e, the flux quantum. We therefore
adopted integer values of n (allowing also for half-integer
values; which case depends upon the actual boundary con-
ditions) in the analysis for the baryons, guided also by the
criterion that n should be proportional to the magnetic mo-
ment (in n.m. units) in the classical limit of flux generated by
self-fields.

Such model is essentially based upon heuristic arguments,
and in particular the assumption that zitterbewegung currents
flow inside complex particles like the baryons is the exten-
sion of a similar proposal made for the electron. The model
predicts an inverse dependence of mass with the fine structure
constant α, in agreement with experimental data analysis re-
ported in the literature [1]. The model produces a reasonable
agreement between the calculated magnetic (plus kinetic) en-
ergies and the rest energies, revealing also a clear dependence
of rest mass upon the square root of the spin angular mo-
mentum, of the form predicted and observed in the literature.
However, a noticeable scattering of data around the theoret-
ical line still remained. The meaning of such scattering was
not addressed in the previous work.

To better understand if such deviations might have a phys-
ical meaning rather than indicating possible limitations of the
model, we decided that the data should be analyzed again in
a slightly different way, by avoiding any previous assumption
about the values of n. The number of flux quanta is now ob-
jectively determined through the model, from the product of
the known values of mass and magnetic moment (through the
same Eq. (3) of [1]; see below). The relation of mass with

such “model-adapted” values of n, calculated from the avail-
able data, become the object of this new analysis.

To make the model expressions applicable to a sizeable
number of particles, it is necessary to eliminate the effects on
the rest energies of kinetic energy contributions specifically
attributable to the “excess” spin angular momenta of decu-
plet particles (spin-3/2 particles) as compared to the spin-1/2
octet particles, which were evident in our previous paper [1].
Therefore, for the range of mass values covered by the decu-
plet particles, the elimination of such excess kinetic energy
shall be made by subtracting from the masses of the decuplet
particles the average difference between the actual masses
of decuplet and octet particles, 244 Mev/c2. The resulting
“transformed masses” mt of the decuplet thus have the same
average as the masses of the octet particles, as shown in the
Tables below.

This should eventually make all baryons fit the mass-ener-
gy expression derived for spin-1/2 in [1]. As expected, the
new values of n are not substantially different from the ones
adopted previously (see [1] for details in the Tables there).
In this way, the margin of arbitrariness in the choice of n in-
herent to the previous criterion is eliminated and the determi-
nation of this parameter for each baryon becomes an objec-
tive for the model. From the new analysis, it should there-
fore be possible to better evaluate the internal consistency of
the model itself, including the evaluation on whether the pro-
posed interpretation of n as a true number (integer or not)
of magnetic flux quanta is physically meaningful, as well as
analysing how appropriate is the utilization of closed currents
as a means of representing complex particles.

As shown in the following sections, the approach proved
valuable. As far as results are concerned new important fea-
tures have arisen from the analysis. By plotting against n both
the octet baryon masses and the transformed rest masses mt of
the decuplet baryons, we obtain the novel result that a simple
periodic function, with n in the argument, is capable of fitting
the points. That is, the rest energy (given by magnetodynamic

Osvaldo F. Schilling. Generation of Baryons from Electromagnetic Instabilities of the Vacuum 185



Volume 15 (2019) PROGRESS IN PHYSICS Issue 3 (October)

Table 1: Data for the baryon octet (moments µ from [11]). According to Eq. (4) in gaussian units: n = 1.16 × 1047 µm. The plot of m/mp

(mp the proton mass) against n are shown in Fig. 2.

abs µ (n.m.) µ (erg/G)×1023 m (Mev/c2) m(g)×1024 n from Eq. (4)
p 2.79 1.41 939 1.67 2.73
n 1.91 0.965 939 1.67 1.9∑+ 2.46 1.24 1189 2.12 3∑0 0.82 (theor.) 0.414 1192 2.12 1∑− 1.16 0.586 1197 2.12 1.5
Ξ0 1.25 0.631 1314 2.34 1.7
Ξ− 0.65 0.328 1321 2.34 0.9
Λ 0.61 0.308 1116 1.98 0.7

terms) is periodic on magnetic flux.

Such result seems quite revealing since it has actually
been repeatedly associated in the literature with the effect
of confined flux upon the magnetic energies due to currents,
flowing around multiply-connected paths, which is exactly
what this research proposes to demonstrate happens inside
particles. The Aharonov-Bohm effect of interfering electron
beams surrounding a solenoid, as well as superconducting
currents in rings [2, 3], charge density waves in dielectric
structures [4], and even currents around normal metallic rings
[5] (all surrounding confined magnetic flux) have been re-
ported to display such periodic dependence of energy and cur-
rent on magnetic flux.

Starting from a Lagrangian suitable to fermion fields [6],
we obtain an energy spectrum for the possible current carry-
ing states around the closed path confining magnetic flux. In
order to simulate self-field perturbations involving pair cre-
ation/annihilation from vacuum, a sum over the states in the
energy spectrum is necessary. An Epstein-Riemann zeta func-
tion regularization procedure previously adopted for the Casi-
mir Effect is applied to eliminate divergences when the sum
upon the energy spectrum states is carried out [7], and the
periodic behavior of the baryon masses with magnetic flux is
reproduced with no further forms of energies required besides
the magnetodynamic terms.

It is a basic assumption of the model adopted in this treat-
ment [1] that currents generate magnetic moments, which
give rise to self-magnetic fields and flux within particles. An
“anomalous” magnetodynamic energy is generated, which we
identify with the additional rest energy of the “dressed” par-
ticles. It appears that the resulting trapped magnetic flux
modulates the currents obtained from wavefunctions running
around the closed path, through the imposition of a phase fac-
tor, and such phases vary from one baryon to another. The
magnetic energy depends on such modulation, and thus also
the mass along the baryon family. All these results are con-
sidered in detail in Section 2. A review of previous results
of the model is also added for the sake of completeness of
exposition.

2 Theory

2.1 Phenomenological determination of the parameter n

Isolated current-loops containing a single quantum of flux of
value φ0/2 = hc/2e are well known from type-II supercon-
ductivity. The formation of superconductor current loops is
a many-body effect, though. In a series of papers we have
investigated if there might exist single-particle systems con-
fining flux in a similar manner [1]. It is essential that such
proposal be quantitatively supported by experimental data.
Let’s consider the actual case of particles of the baryon octet.
All the eight particles have well-established rest masses and
magnetic moments. E. J. Post [8] considered how to write
an energy-mass relation in a tentative model for the electron.
Post showed that the magnetic moment for the electron could
be obtained up to the first-order correction (from QED) with
the equation:

mc2 =
φ

c
i + eV . (1)

Here the left side is the rest energy of the electron, which from
the right side is considered as fully describable by electro-
magnetic quantities. The first term on the right side is the en-
ergy of an equivalent current ring of value i linking an amount
of flux φ, that should occur in a number n of flux quanta φ0.
In spite of the adopted parameters from electromagnetic the-
ory, such term contains similar amounts of magnetic and ki-
netic energy contributions of moving charges, as discussed by
London [9], and thus the kinetic effects are already included.
The second (electrostatic energy) term is much smaller than
the first (it will be neglected hereafter) and accounts for the
radiation-reaction correction for the magnetic moment which
is proportional to the fine structure constant α [8]. Post asso-
ciates the current with the magnetic moment µ and the size R
of the ring with the equation:

µ =
πR2i

c
. (2)

One then inserts (2) into (1) (without the electrostatic sm-
all term) and thus eliminates the current. The parameter R
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Table 2: Data for the baryon decuplet (moments µ from ref. [11]). The average difference between the decuplet and octet particle masses
is discounted as discussed in the text and the resulting mass is put in columns 4 and 5. According to Eq. (4) in gaussian units: n =

1.16 × 1047 µm. The plot of mt/mp against n are shown in Fig. 2.

abs µ (n.m.) µ (erg/G)×1023 mt = m − 244 (Mev/c2) mt(g) n from (4)
∆++ 4.52 2.28 986 1.75 4.64
∆+, ∆− 2.81, 2.81 1.42 990 1.75 2.9, 2.9∑+ 3.09 1.56 1135 2.02 3.65∑0 0.27 0.136 1136 2.02 0.32∑− 2.54 1.28 1138 2.02 3
Ξ0 0.55 0.28 1281 2.28 0.73
Ξ− 2.25 1.14 1283 2.28 3
Ω− 2.02 1.02 1428 2.54 3

has been calculated/measured for the nucleons only, but it re-
mains part of the final expression for all baryons obtained
after the combination of (1) and (2). We may conveniently
eliminate R from this treatment by adopting for all baryons
an expression which is valid for the leptons (assuming in that
case R = λ, the Compton wavelength), and for the proton [1]
(from experimental evidence), namely:

µ =
1
2

e R . (3)

In the present case we are interested in assessing a suf-
ficiently large group of particles in order that the proposed
association between mass and confined flux can be properly
investigated, and the baryons form such a group.

The model by Post was devised to fit a single fundamen-
tal particle, the electron, and there was actually no discussion
about the application to other particles. We are now able to
justify (see Section 2.2) the proposal that the collective mo-
tion of constituents inside baryons can also be described in
terms of currents, so that a similar model should apply.

The combination of equations (1) to (3) with φ = n (hc/e)
can therefore be cast in the form (inserting α = e2/~c):

n =
2c2α

e3 µm . (4)

Tables 1 and 2 bring the mass and magnetic moments
data for all baryons of the octet and decuplet, alongside the
values for n from (4). It should be noticed that according
to the present treatment the proton corresponds to n ≈ 3
(see Table 1). In a semiclassical treatment Barut [10] consid-
ered baryons and mesons as resulting from stabilized config-
urations of constituents linked together by dipolar magnetic
forces. A quantum number is introduced and the rearrange-
ment of parameters makes Barut’s final formulas for mass
quite similar to the ones obtained in [1]. In particular Barut
obtains n = 3 for the proton, by associating one unit of angu-
lar momentum for each of three unit-charged constituents.

2.2 Heuristic model based upon field-theoretic concept

Eq. (4) stresses the fact that in this work, n is the parameter to
be determined from the data available for mass and moment
(note that it is the same as Eq. (3) of [1] written in another
form). In addition, (4) can be rewritten in a useful form by
isolating in it the expression for the nuclear magneton (n.m.),
e~/2mpc, yielding n = (m/mp) µ (n.m.). Here mp is the proton
mass and the magnetic moment is given in n.m. units.

All the parameters on the right side of (4) are known for
the eight baryons of the octet, and are listed in Table 1 (data
from [11]). Fig. 1 shows the plot of the calculated n against
the magnetic moment for each particle, which mirrors the
dependence of mass on magnetic properties for each octet
baryon. Note the presence of a diagonal line. There is a ten-
dency to form Shapiro-like steps at integer numbers of flux
quanta, but the approach to the steps has an undulating shape
rather than being sharply defined (note: such “Shapiro” steps
for superconducting rings characterize the penetration of flux
inside the ring in units of flux quanta).

The existence of a diagonal baseline, n = µ (n.m.) experi-
mentally characterizes the presence of a minimum amount of
mass in all baryons. From (4), it becomes clear that the proton
mass would be this minimum mass. Barut in the 1970s pro-
posed that the other baryons might be considered perturba-
tions built upon a proton “fundamental state”, thus providing
a minimum amount of mass.

The undulations in the figure lie above the diagonal line
since it characterizes a stable, fundamental-like state.

In fact the undulations can be thought as a consequence of
the confinement of magnetic flux inside a multiply connected
path described by each particle charge motion. Gauge covari-
ance of a Lagrangian which describes such particle ends up
imposing such periodic dependence on the magnetic proper-
ties of the particles. Similar problems have extensively been
dealt with by condensed matter physics groups [2–6].

Let’s consider a fermion field confined to a circular path
of length L, enclosing an amount of self-induced magnetic
flux φ in a potential A. We need to show that such a system

Osvaldo F. Schilling. Generation of Baryons from Electromagnetic Instabilities of the Vacuum 187



Volume 15 (2019) PROGRESS IN PHYSICS Issue 3 (October)

Fig. 1: Plot of n against the magnetic moment for the octet following
Eq. (4) and Table 1. The diagonal line is the classical prediction of
one flux quantum per nuclear magneton (n.m.). Nucleons are on the
line. Horizontal (Shapiro-like) steps at integer values of n are shown.
The data display undulations, and a tendency to reach for the steps
(traced line as guide).

corresponds to a state detached from a higher state associ-
ated with a sea of excitations in equilibrium, and therefore
might be used to represent a “quasiparticle”. The relativistic
Lagrangian for such a fermion can be modelled through the
dressing of a proton of mass mp in view of the presence of
magnetodynamic terms [6]:

L = ψ̄
{
iαµ

(
~∂µ − i

e
c

Aµ

)
− α4mpc

}
ψ , (5)

where the αµ are Dirac matrices. This Lagrangian can readily
be transformed into a Hamiltonian form. For A a constant
around the ring path, the spectrum of possible energies for a
confined fermion are obtained as:

εk = c
{(

pk −
eA
c

)2

+ m2
pc2

}1/2

(6)

which comes straight from the orthonormalized definition of
the Dirac matrices and diagonalization of the Hamiltonian. If
one takes the Bohr-Sommerfeld quantization conditions, the
momentum pk (for integer k) is quantized in discrete values
2π~k/L. We start from this assumption but the true bound-
ary conditions to close the wave loop might impose correc-
tions to this rule in the form of a phase factor (see below).
The potential A can be replaced by φ/L. Such charge motion
is affected by vacuum polarization and the effects on the ki-
netic energy are accounted for in a way similar to that used
in the analysis of the Casimir Effect, by summing over all
possible integer values of k in (6) [6,7]. This summation di-
verges. According to the theory of functions of a complex
variable the removal of such divergences requires that the an-
alytic continuation of the terms be taken, which reveals the

diverging parts which are thus considered as contributions
from the infinite vacuum reservoir. A successful technique
for this purpose begins with the rewriting of (6) in terms of
Epstein-Riemann Zeta functions Z(s) [7], including the sum-
mation over k from minus to plus infinity integers, and mak-
ing a regularization (Reg) transformation. Here M(φ) is the
flux-dependent dressed mass of a baryon, and s→ −1:

Mc2 = U0 + Reg
∑

k

c
{(

pk −
eφ
Lc

)2}−s/2

(7)

where we have allowed for the existence of a finite energy
U0 to represent an hypothetical state from which the individ-
ual baryons would condense, since they would correspond to
lower energy states. Such particles should be characterized
as states of energy Mc2 lower than U0. It is convenient to de-
fine from L a parameter with units of mass m0 = 2π~/cL,
which will be used to define a scale in the fit to the data.
We notice that m0 is related to the parameter L in the same
way field-theories regard mass as created from broken sym-
metries of fields, establishing a range for an otherwise bound-
less field distribution (e.g. as happens at the establishment
of a superconductor state with the London wavelength re-
lated to an electromagnetic field “mass” by a similar expres-
sion). For convenience, we define the ratios m′ = mp/m0 and
u0 = U0/mpc2. For comparison with the data analysis in our
previous work [1], we must introduce also the number of flux
quanta n (integer or not) associated to φ, such that n = φ/φ0.
In terms of these parameters one may write (7) in the form:

M(n)
mp

= u0 +
1

m′
Reg

∑
k

{
(k − n)2 + m′2

}−s/2
. (8)

In the analysis of data, the experimental values of M/mp
for baryons will be plotted against n. The sum on the right
side of (8) is a particular case of an Epstein Zeta function
Z(s), and becomes a Riemann Zeta function, since the sum-
mation is over one parameter k only. The summation diverges
but it can be analytically continued over the entire complex
plane, since the Epstein Zeta function displays the so-called
reflection property. It has been shown that after the applica-
tion of reflection the resulting sum is already regularized, with
the divergences eliminated. The reflection formula is [7]:

π
−s
2 Γ

( s
2

)
Z(s) = π

s−1
2 Γ

(
1 − s

2

)
Z(1 − s) . (9)

This replaces the diverging Z(s) straight away by the regular-
ized Z(1 − s), which converges (since Γ(−1/2) = −2

√
π, we

see that the regularized sums are negative, like in the Casimir
Effect solution).

For the sake of clarity we describe now the regulariza-
tion of (8) below as (10), step by step (note that s → −1,
and the “reflected” exponent −(1− s)/2 replaces −s/2 of (8)).
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In the first passage from the left, the entire summation ar-
gument is replaced by the Mellin integral which results into
it. This creates a convenient exponential function to be inte-
grated later. In the second passage, the Poisson summation
formula is used, in which the summed exponential function
is replaced by its Fourier Transform (note that the same no-
tation k is used for the index to be summed in the Fourier
transformed quantity). The objective is to replace the k2t in
the initial exponential by k2/t. In this way, when the integra-
tion over t is carried out a modified Bessel function K is ob-
tained. In the final line the k = 0 term in the sum is separately
worked out and appears as the first term between brackets.
The remaining summation in k therefore does not include 0
(“/0” as shown). The influence of the parameter n is, as we
wanted to prove, to introduce a periodicity depending on the
amount of flux confined by the current ring, and the regular-
ized energy is therefore periodic in n. Therefore, Z(1 − s) is
given as: ∑

k

{
(k − n)2 + m′2

}−(1−s)/2
=

=
2

Γ
(

1−s
2

) ∫ ∞

0
t

1−s
2 −1

∑
k

e−(k−n)2t−m′2t

 dt =

=
2
√
π

Γ
(

1−s
2

) ∫ ∞

0
t
−s
2 −1

∑
k

e−2πikn e−
π2k2

t −m′2t

 dt =

=
2
√
π

Γ
(

1−s
2

) Γ
(
− s

2

)
m′−s + 2π

−s
2

∑
k/0

(
k

m′

) −s
2

K s
2
(2πm′k) e−2πikn

 (10)

for s→ −1. From (9), the “Reg” summation in (8) becomes

π
2s−1

2 Z(1 − s)

Γ
(

s
2

)
Γ
(

1−s
2

) ,
and the exponential produces a cosine term.

Since Γ(−1/2) = −2
√
π we see that the regularized sum

is negative, corresponding to energies lower than U0. In the
fitting to the data, we will admit that both m′ and u0 are ad-
justable parameters.

Fig. 2 shows the data for all baryons in Tables 1 and 2,
and the plot of (8) regularized by (10), for u0 = 3.96 and m′=
0.347 (corresponding to m0 = 2.88 mp and U0 = 3710 MeV).
The energy 3710 MeV would represent the sea of excitations
from which the baryons would evolve.

Greulich [12] made a phenomenological analysis corre-
lating the masses of all mesons and baryons with lifetimes
greater than 10−24 s, to the electron mass and the constant α,
obtaining that m/me = N/2α. Such expression is consistent
with our previous analysis in [1], as well as with the new re-
sults in the present work. Fig. 3 is a reproduction of Fig. 1 in
his paper. We have added a traced line at 3710 MeV/c2, which
shows that such energy is in the correct range for a “parent”
state from which all those particles below might evolve by

symmetry breaking. There is no correction for spin in the
masses of this plot and the points above the line belong to
particles containing combinations of charmed, strange, and
bottom quarks, which might not fit in the specific calculation
considered in this paper.

Fig. 2: Comparison of baryon masses calculated from Eq. (8) as
a function of confined flux n, with data from Tables 1 and 2 for
octet (open circles) and decuplet particles (mt used, stars). The phe-
nomenological Eq. (4) provides values for n as a function of mass
and moment, and the relation between these quantities (data points)
agrees quite well with the field-theoretical calculations (curve) of
mass as function of n from Eq. (8). Nucleons are on the basis of the
figure.

Fig. 3: This plot shows all baryons and mesons with lifetimes greater
than 10−24 s [12] (see text for details). The traced line indicates the
calculated 3710 Mev/c2, which is in the expected range of energy
for a parent-state for the particles below it.

3 Analysis and conclusions

The present paper provides a theoretical background for the
phenomenological analysis of [1]. Such previous analysis has
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been improved through the redefinition of the parameter n in
terms of the experimental data on mass and magnetic mo-
ments for baryons. The basic idea has been the modeling of
such particles by means of confined currents. The present
work has shown that this is theoretically sensible. Closed
currents are associated with confined magnetic flux. Since
the represented particle is immersed in a sea of excitations,
the energy spectrum of closed currents is summed up over
all possible values of a Bohr-Sommerfeld kinetic quantum
number, leaving the previously defined magnetic n as the pa-
rameter to dictate the mass differences among the baryons,
in view of the fulfillment of gauge-covariance conditions. A
regularization procedure is necessary since the original sums
diverge. The model regards particles as the result of a type
of condensation from a sea of excitations of top energy U0,
which is the accepted picture in field theories of the origin
of mass (however no phase-transitions or broken symmetries
are explicitly introduced in the present treatment). The lowest
energy particles are the nucleons in this picture. The mag-
netic flux introduces a modulation of rest energy which is
quite well reproduced and the parameter m′ is defined with
such a magnitude to cover all baryons up to the Ω− particle.
No other kinds of forces are necessary for such theoretical
treatment to reproduce data, neither is necessary a detailed
knowledge about inner constituents of baryons. As discussed
in a previous paper [13], the good results obtained here sup-
port early treatments in which quarks and leptons are treated
on the same theoretical framework. Such framework should
essentially be based on quantum electrodynamics.

Received on November 8, 2019
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Nuclear Fusion with Coulomb Barrier Lowered by Scalar Field
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The multi-hundred keV electrostatic Coulomb barrier among light elemental positively
charged nuclei is the critical issue for realizing the thermonuclear fusion in laborato-
ries. Instead of conventionally energizing nuclei to the needed energy, we, in this paper,
develop a new plasma fusion mechanism, in which the Coulomb barrier among light
elemental positively charged nuclei is lowered by a scalar field. Through polarizing
the free space, the scalar field that couples gravitation and electromagnetism in a five-
dimensional (5D) gravity or that associates with Bose-Einstein condensates in the 4D
particle physics increases the electric permittivity of the vacuum, so that reduces the
Coulomb barrier and enhances the quantum tunneling probability and thus increases
the plasma fusion reaction rate. With a significant reduction of the Coulomb barrier and
enhancement of tunneling probability by a strong scalar field, nuclear fusion can occur
in a plasma at a low and even room temperatures. This implies that the conventional
fusion devices such as the National Ignition Facility and many other well-developed or
under developing fusion tokamaks, when a strong scalar field is appropriately estab-
lished, can achieve their goals and reach the energy breakevens only using low-techs.

1 Introdction

The development of human modern society is inseparable
from energy. Since the fossil fuels are nearing exhaustion
and renewable energy sources cannot be sufficient, the best
choice to thoroughly solve the future energy problems must
be the nuclear fusion power. The most critical issue in nu-
clear fusion is the extremely high Coulomb barrier between
positively charged nuclei, usually over hundreds of keV or
billions of Kelvins [1]. From the quantum tunneling effect,
which is derived from Heisenberg’s uncertainty principle and
the particle-wave duality, nuclei with kinetic energy of around
ten keV or hundred million Kelvins, which is about some
tens times lower than the actual barrier, are energetic enough
to penetrate the barrier and fuse one another with sufficient
probabilities. There are in general three possible ways for
nuclei to overcome the Coulomb barrier between them and
hence achieve the thermonuclear fusion: (i) heating both
species of nuclei (or the entire plasma including electrons) to
the needed temperature, (ii) heating only the minor species of
nuclei to the needed temperature, and (iii) lowing the
Coulomb barrier to the needed level. Figure 1 sketches a
schematic of the three approaches for nuclei to overcome their
Coulomb barrier that blocks them from fusion. A combina-
tion of two or all of the three approaches will certainly work
more efficiently.

Since the middle of the last century, fusion scientists have
been focusing on the approach (i), i.e. study of how to ef-
ficiently heat the entire plasma for nuclei to have such high
energies and how to effectively control and confine such ex-
tremely heated entire plasma. The major types of heating pro-
cesses that have been applied so far include the Joule heating
by driving electric currents, the injection heating by injecting

energized neutral beams, and the radio frequency (rf) heat-
ing by resonating nuclei or electrons with antenna-generated
radio-frequency waves. The magnetic and inertial confine-
ments are two major types of confinements. Although having
made great progresses in the development of various kinds of
fusion devices or tokamaks, human beings are still not so sure
how many difficulties to be overcome and how far need to go
on the way of seeking this ultimate source of energy from the
nuclear fusion [2].

Fig. 1: A schematic of three ways for nuclei to overcome the
Coulomb barrier. The first is the conventional approach that ener-
gizes both species of nuclei or the entire plasma including electrons
to the needed energy for fusion. The second is the authors’ recently
developed approach that energizes the minor species of nuclei such
as 3He and T ions to the needed energy for fusion. And the third
is the approach of this paper that lowers the Coulomb barrier to the
needed level for fusion.
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Recently, the authors innovatively proposed and further
quantitatively developed the approach (ii), i.e. a new mech-
anism for plasma fusion at ten million Kelvins (MK) with
extremely heated 3He or tritium (T) ions [3–6]. This newly
developed mechanism involves a two-stage heating process
when an electric current is driven through a multi-ion plasma.
The electric current first ohmically (or in the Joule heating
process) heat the entire multi-ion plasma up to the order of
10 MK (or some keV), at which the electric resistivity in the
plasma becomes too low for the electric current to be sig-
nificantly dissipated further and the temperature of the entire
plasma saturates at this level. When the electric current is
continuously driven up to a critical point, the current-driven
electrostatic H or D-cyclotron waves with frequency around
twice as big as the 3He or T-cyclotron frequency are excited,
which can further heat 3He or T ions via the second harmonic
resonance to 100 MK and higher, at which the nuclear fu-
sion between the extremely hot 3He or T ions and the relative
cold D ions (i.e. the D-3He or D-T fusion) can occur. This
new mechanism for plasma fusion at 10 MK with extremely
heated 3He or T ions can also greatly reduce the difficulty in
controlling and confining of the plasma fusion.

In this study, we attempt to develop the approach (iii),
i.e. to explore and find another new way towards this ulti-
mate goal of using nuclear fusion energy through building an
effective fusion reactor. Instead of only energizing the nu-
clei to the needed temperature, we lower the Coulomb barrier
to the needed level. Towards this direction, there have been
some analytical efforts done up-to-date by others for enhanc-
ing the quantum tunneling probability such as by catalyzing
muons or antiprotons [7], driving cusps [8], spreading wave
packets [9], forming coherent correlated states [10], screen-
ing with Bose-Einstein condensations [11], and so on. Rather
than to catalyze the fusion, we will in this paper consider a
scalar field to polarize the space or vacuum, in other words,
to enhance the dielectric constant of the space or vacuum and
hence reduce the electric potential energy or Coulomb barrier
among nuclei. We will first calculate the effect of scalar field
on the tunneling probability and the number of nuclei that can
overcome the Coulomb barrier for fusion. We will then cal-
culate the scalar field effect on the nuclear reaction rate of fu-
sion. We will further investigate the physics and mechanism
for a possible approach that generates a strong scalar field in
labs to significantly lower the barrier and greatly enhance the
quantum tunneling probability for nuclear fusion.

2 Lowering of the Coulomb Barrier by Scalar Field

Early studies have shown that the scalar field of a five-dimen-
sional (5D) gravity can not only shallow the gravitational po-
tential well by flattening the spacetime [12], or in other words,
varying or decreasing the gravitational constant [13], but also
lower the electric potential energy or Coulomb barrier among
nuclei by polarizing the free space or vacuum [14, 15], or

in other words, varying or increasing the dielectric constant
[16]. From the exact field solution of 5D gravity [12, 17, 18],
we can obtain the relative dielectric permittivity in the free
space or vacuum polarized by a scalar field Φ as

εr ≡
ε

ε0
=

Ec

E
= Φ3 exp

(
λ − ν

2

)
, (1)

where eλ and eν are the rr− and tt− components of the 4D
spacetime metric. This result implies that the electric poten-
tial energy or Coulomb barrier between nuclei is explicitly
reduced by a factor of Φ3. For a weak gravitational system
such as in labs, because eλ ∼ 1, eν ∼ 1, we have εr = Φ3. For
a strong gravitational system such as nearby neutron stars or
black boles, because eν ∝ Φ−2, we have εr ∝ Φ4. In quan-
tum electrodynamics (QED) of particle physics, the vacuum
polarization was calculated in accordance with the scalar Φ3

theory [19]. The effect of scalar field vacuum polarization on
homogeneous spaces with an invariant metric was obtained
in [20].

The scalar field in the 5D gravity is a force field that
associates with the mass and charge of a body and couples
the gravitational and electromagnetic fields of the body. The
scalar field associated with matter and charge in labs is neg-
ligible small, which may be able to be detected by the Laser
Interferometer Gravitational-Wave Observatory (LIGO) that
detected gravitational waves [21, 22]. For massive, compact,
and, especially, high electrically charged objects such as neu-
tron stars and black holes, we can have an extremely large
scalar field. Although being one of the biggest unsolved mys-
teries in physics, the scalar field has been widely utilized to
model and explain many physical phenomena such as Higgs
particles, Bose-Einstein condensates, dark matter, dark en-
ergy, cosmic inflation, and so on.

Creatively, Wesson recently proposed a possible connec-
tion between the scalar field of 5D gravity and the Higgs
scalar field of 4D particle physics [23]. The Higgs scalar
field is an energy field that all particles in the universe in-
teract with, and gain their masses through this interaction or
Yukawa coupling [24, 25]. In the middle of 2013, CERN dis-
covered the carrier of the Higgs scalar field, i.e. the Higgs
boson, and thus confirmed the existence of the Higgs scalar
field. On the other hand, according to the Ginzburg-Landau
model of the Bose-Einstein condensates, the Higgs mecha-
nism describes the superconductivity of vacuum. Therefore,
the scalar field of the 5D gravity can be considered as a type
of Higgs scalar field of 4D particle physics. The latter can be
considered as a type of Ginzburg-Landau scalar field of Bose-
Einstein condensates [26–28]. Then, that the scalar field of
the 5D gravity can shield the gravitational field (or flatten the
spacetime) and polarize the space or vacuum must imply that
the Ginzburg-Landau scalar field of superconductors and su-
perfluids in the state of Bose-Einstein condensates may also
shield the gravitational field (or flatten the spacetime) and po-
larize the space or vacuum.
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Fig. 2: The Coulomb barrier between two charges in the vacuum
polarized by the Ginzburg-Landau scalar field of the Bose-Einstein
condensate associated with the type II superconductor or superfluid,
normalized by the barrier without the polarization, is plotted as a
function of the temperature of the superconductor in the cases of
different ratios of the two phenomenological constants a0 and b.

In 1992, Podkletnov and Nieminen experimentally showed
that a rotating disk of the type-II ceramic superconductor
could shield Earth’s gravity on a sample by a factor of
∼ 2−3% [29]. If the disk is static, the shielding effect reduces
∼ 0.4% [30]. Recently, we have explained these measure-
ments as the gravitational field shielding by the Ginzburg-
Landau scalar field of Bose-Einstein condensates associated
with the type II ceramic superconductor disk [31], according
to the 5D fully covariant gravity [12, 16, 18]. In the quantum
field theory or quantum electrodynamics, many phenomena
occurred or observed must be explained or described by re-
lying on the physics of scalar field, for instances, the scalar
field for cosmic inflation [32], the scalar field for dark matter
or dark energy, and so on.

In the vacuum that is polarized by a Ginzburg-Landau
scalar field of Bose-Einstein condensate associated with su-
perconductor and superfluid, ΦGL, the Coulomb barrier can
be given by

U =
U0

(1 + ΦGL)3 (2)

where

ΦGL =

√
−

a0

b
(T − Tc) (3)

with a0 and b the two phenomenological constants, T and
Tc the temperature and transition temperature of the conden-
sate. For a quantitative study, we plot in Figure 2 the ratio

of the Coulomb barrier in the vacuum that is polarized by
the Ginzburg-Landau scalar field of Bose-Einstein conden-
sates associated with a type II superconductor to that without
polarization as a function of the temperature of the supercon-
ductor. In this plot, we have chosen the values Tc = 92 K
and a0/b = 10−8, 10−7, 10−6 K−1 as done in [31,33]. The vac-
uum polarization by a high magnetic field was measured by
the Polarization of the Vacuum with Laser (PVLAS) using a
superconducting dipole magnet of more than 8 Teslas mag-
netic field [34]. By a scalar field, a direct measurement of the
vacuum polarization has not yet been conducted.

3 Penetrating of the Coulomb Barrier with Scalar Field

According to Gamow’s tunneling probability [35] and
Maxwell-Boltzmann’s distribution function, one can find the
relative number density of nuclei with energy from E to E +

dE in the plasma with temperature of T per unit energy that
can penetrate the Coulomb barrier to be given by

dN
dE

=
2π

(πkT )3/2

√
E exp

− E
kT
−

√
Eg

E

 , (4)

where Eg is the Gamow energy determined by

Eg = 2mrc2(παZaZb)2. (5)

Here k is the Boltzmann constant, mr is the reduced mass of
nuclei, c is the light speed, Za and Zb are the ionization states
of nuclei, and α = e2/(2ε0hc) is the fine-structure constant.
Considering the vacuum to be polarized by a scalar field (i.e.
Φ > 1), we modify the fine-structure constant by replacing ε0
as ε = Φ3ε0. It is seen that the scalar field can significantly
reduce the Gamow energy and thus greatly increases the tun-
neling probability.

To see in more details for the increase of the tunneling
probability, we plot in Figure 3 the Gamow peak in a D-T
plasma first in the case of no scalar field (i.e. Φ = 1). The
plasma temperature has been chosen to be 107, 5 × 107, and
108 K, respectively. The result indicates, in a D-T plasma
with density 2 × 1019 m−3 at 108 K, there are about two thou-
sandth of total amount of nuclei to be able to tunnel through
the barrier and participate in the fusion. Since the ion colli-
sion frequency in a fully ionized plasma can be estimated as
νi = 4.8×10−8Zi

√
mp/mi ln ΛT−3/2

i ∼ 5 Hz, for 10% of nuclei
to react, the plasma must hold this temperature over 10 sec-
onds. If the temperature is 5× 107 or 107 K, then only around
a few percent of or one in million nuclei can react within 10
seconds. Here we have used ln Λ = 6.8 for ions.

With a scalar field, the tunneling probability will be sig-
nificantly enhanced. Figure 4 plots the Gamow peak in a D-
T plasma in the case of four different values of the scalar
field (corresponding to the four lines in each panel, Φ =

1, 2, 10, 100) and two different plasma temperatures of T =

108 K for the top panel and 107 K for the bottom panel. It is
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Fig. 3: The Gamow peak without a scalar field in a 2H-3H plasma
with different temperatures or, in other words, the energy spectra
of nuclei that are able to penetrate the Coulomb barrier for fusion.
The relative number density of nuclei per unit energy with energy in
the range from E to E + dE is plotted as a function of the energy
with temperature to be T = 108, 5 × 107, 107 K, respectively. The
maximum is usually called the Gamow peak [35].

seen that when Φ > 2 the number of nuclei that can tunnel
through the barrier is enhanced by a factor of 1000 or greater
at T = 108 K. At T = 107 K, the factor of enhancement can
be 107 or greater. In addition, there are large amount of nuclei
with extremely low energy can also tunnel through the barrier
for fusion.

To see more details on the fusion of low energy nuclei,
we plots the Gamow peak in Figure 5 for the D-T plasma
with temperature equal to 106 K and 300K, respectively. In a
106 K plasma, the fusion can occur and be readily completed
in seconds if Φ > 2. At the room temperature, the nuclear
fusion are also possible when Φ > 6.

4 Fusion Rate

The fusion rate between two (ith and jth) species of ions,
whose charge or ionization states are Zi and Z j, respectively,
can be usually represented as [36–38]

Ri j =
NiN j

1 + δi j
< σv > (6)

where Ni and N j are the number densities of the two species
of ions, δi j is the Kronecker symbol, which is equal to the
unity if the two species of ions are identical, otherwise, it
is zero, v is the relative velocity, and σ is the cross section,

Fig. 4: The Gamow peak with a scalar field in a D-T plasma with
different temperatures. This plots the energy spectra of nuclei that
are able to penetrate the Coulomb barrier for fusion, i.e. the relative
number density of nuclei per unit energy with energy in the range
from E to E + dE as a function of the energy with the scalar field
Φ = 1, 2, 10, 100 and temperatures to be T = 108 K for the top panel
and 107 K for the bottom panel.

determined by

< σv >=
6.4 × 10−18

ArZ1Z2
Φ3S ξ2 exp(−3ξ) cm3/s, (7)

with ξ to be defined as

ξ = 6.27Φ−2(ZiZ j)2/3A1/3
r T−1/3. (8)

Here we have considered the effect of space polarization on
both the Coulomb barrier and the Gamow factor, simply by
replacing ZiZ j into ZiZ j/εr with εr = Φ3 due to the space
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Fig. 5: The Gamow peak with a scalar field in a D-T plasma with
different temperatures. This plots the energy spectra of nuclei that
are able to penetrate the Coulomb barrier for fusion, i.e. the relative
number density of nuclei per unit energy with energy in the range
from E to E + dE as a function of the energy with the scalar field
Φ = 2, 4, 10 and temperatures to be T = 106 K for the top panel. For
the bottom panel, the scalar field is chosen to Φ = 6, 8, 10, 12 and
the temperature is chosen to be T = 300 K.

polarization by the scalar field Φ. In equations (7) and (8),
the parameter S is the cross section factor, Ar is the reduced
mass number, and T is the plasma temperature in keV. For the
D-T fusion, we have Zi = Z j = 1, Ar = 1.2, and S = 1.2×104

keV b.

To see how the scalar field to affect or enhance plasma
fusion via the space polarization, we plot in Figure 6 the re-
action rate of fusion as a function of the plasma temperature

Fig. 6: The reaction rate of D-T fusion. The number of fusion re-
actions occurred in an unit volume (or m3) of D-T plasma in one
second is plotted as a function of the plasma temperature. Here the
number densities of D and T nuclei are both chosen to 1019 m−3, and
the scalar field is chosen to 1, 1.5, and 3, respectively.

in the cases of the scalar field to be equal to Φ = 1, 1.5, 3,
respectively. It should be noted that the effect of scalar field
comes from the difference of the scalar field from the unity
or, in other words, there is no scalar field effect if Φ = 1.
The number densities of D and T nuclei are chosen to be
nD = nT = 1013 cm−3. It is seen from the plot that the
scalar field can significantly enhance the reaction rate of fu-
sion. Without the effect of scalar field (i.e. Φ = 1), the reac-
tion rate of D-T fusion is about one thousandth m−3 s−1 (i.e.
per cubic meters and per seconds) at temperature of about 108

K. With the effect of scalar field (i.e., Φ > 1), the rate can be
increased by 100 times to 10 percent m−3 s−1 when Φ = 1.5
and by 1000 times to 100 percent m−3 s−1 when Φ = 3.

5 Conclusion

We have developed a new mechanism for plasma fusion with
the Coulomb barrier to be lowered by a scalar field. The re-
sult obtained from this study indicates, by polarizing the free
space, a scalar field in associated with Bose-Einstein conden-
sates can increase the electric permittivity of the vacuum and
hence reduce the Coulomb barrier and enhance the tunneling
probability. With a strong scalar field, nuclear fusion can oc-
cur in a plasma at a low and even room temperatures. There-
fore, by appropriately generated a strong scalar field to polar-
ize the space, we can make the conventional fusion devices
to readily achieve their goals and reach the breakevens only
using low-techs.
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We analyze available data for the flux of cosmic rays protons, and find evidence for
instability of these particles as their kinetic energy increases beyond about 3 GeV. This
is expected from our recent model [1] which proposes the existence of a parent state
at 3.7 GeV, from which protons of about 1 GeV mass (as well as the other baryons)
would condense in the form of flux-confining vortices. Therefore, this energy difference
imposes that beyond 2.7 GeV kinetic energies such vortex states would become unstable
compared to the parent, in agreement with the observation that highly energetic protons
are rare in cosmic rays. The observation of protons of higher energies is attributed to
cohesion provided, e.g. by strong forces, between proton constituents not considered in
the vortex model.

We have recently developed a field-theoretical model for bar-
yons in which such particles are modelled as vortices con-
fining magnetic flux, which would “condense” from a parent
state at 3.7 GeV, under the effect of electromagnetic instabili-
ties of such a state [1,2]. This model has been shown to repro-
duce the relation of the masses of baryons with their magnetic
moments (through an amount of confined magnetic flux) in a
consistent, quantitative way. We here concentrate on the case
of protons. Since the particles are assumed to be the result of
the creation of states stabilized from a higher energy level, it
should be expected that the number of protons will markedly
decrease in cosmic rays for excessive kinetic energies. This
is what we propose and actually verify in this Letter.

In Fig. 1, we show data for the number flux of protons
plotted as E (dN/dE) against kinetic energy E in GeV, for
cosmic rays below 10 GeV kinetic energy, taken from the up-
per left corner of figure 1.1 of [3]. Below about 2 GeV kinetic
energy there is an approximate plateau. From 2 GeV on, a
marked decrease in the flux of protons is observed. The inter-
pretation is that the number N of detected protons is reaching
saturation above 2 GeV. To quantify such saturation, we have
obtained the actual functional relations in the original double-
log plot, to calculate the number N of particles in units of (m2

sr s)−1 for several energy intervals. Assuming from Fig. 2
below that the plateau in E (dN/dE) would begin at about
0.1 GeV and goes up to 3 GeV, we obtain N=6800 by inte-
gration in this interval. Beyond 3 GeV the ordinate decays
as E−3/2. Therefore, one obtains by integration N=1100 be-
tween 3 and 10 GeV, and at last a very small N=204 between
10 and 100 GeV. That is, well over 80% of the protons in
cosmic rays have energies below about 3 GeV, and the num-
bers beyond 10 GeV are negligible in absolute terms in spite
of the great interest on them from the high-energy physics
standpoint.

According to our model in [1], protons accelerated be-

yond 2.7 GeV kinetic energy (which comes from the differ-
ence between the parent level at 3.7 GeV and the proton rest
mass of about 1 GeV, i.e. the “energy advantage”) should be-
come unstable since they lose the energy advantage acquired
by settling in the lower energy vortex state. A related effect
breaks Cooper pairs in superconductors if the energy associ-
ated with current becomes greater than the pairing interaction
provided by phonon-intermediated coupling. Fig. 2 shows a
plot of the estimated (from collected data) energy distribution
for the interstellar flux of protons [3], which peaks exactly at
2.7 GeV. In view of the gigantic values of E beyond the peak
one realizes the minute amount of very energetic particles to
the right of the peak. That is, once more one concludes that
protons are essentially unstable above 2.7 GeV kinetic energy.

In conclusion, this Letter analyzes data collected for the
flow of protons in cosmic rays in the light of a recently pro-
posed model in which protons are modelled as vortices in an
energy state 2.7 GeV below a parent state from which they
would have condensed [1]. We have indeed found evidence
for a critical kinetic energy of 2.7 GeV in both the number
distribution of protons and in their energy distribution. Al-
though it is clear that 2.7 GeV represents a critical value for
the energies of protons in cosmic rays, a very small (“tail”)
population of particles is detected at high energies. The ex-
pected question is: why do these particles still exist? In spite
of providing a picture on how baryons condense from insta-
bilities of the vacuum, the vortex model does not go as far as
considering the internal structure of the baryons. The survival
of some particles to high energies is certainly related to inter-
nal short-range strong forces between constituents, not con-
sidered in the model. The good results of the vortex model
of [1] however suggest that the existence of the proton con-
stituents cannot be neglected when dynamic effects take place
at scales shorter than L/π with L the size of the current loop
in [1], which is on the order of 10−16 m. It must be pointed out
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Fig. 1: Reproduction of the upper left part of the double-log plots
in figure 1.1 of [3] (linearized scales are adopted here). The number
flux of protons in 103 m−2 (sr. s)−1 units is plotted against the pro-
tons kinetic energy in GeV. The vertical line is placed at the value
of K that corresponds to total loss of the vortex energy advantage
compared to the vacuum parent state (see [1]). Fast saturation in the
detected N of protons is manifest in the drop of dN/dE as the energy
increases. Integration shows that beyond 80% of N concentrates be-
low 3 GeV energies. The solid line is a guide.

Fig. 2: Estimated energy flux distribution of interstellar protons in
cosmic rays, which peaks at exactly K=2.7 GeV [3].

that [3] also displays data for the flux of electrons in cosmic
rays in its Fig. 2.1. In this case there are few points in the plot
but they peak at the expected range of about 3 GeV, and de-
cay faster than the protons at higher energies. The electron is
represented as the very first cross symbol to the left in figure
3 of our paper [1]. If the model applies also to leptons [2], the
most energetic electrons might theoretically reach 3.7 GeV
kinetic energies (although this requires acceleration to speeds
quite close to the light speed). The fact that the electrons
data peaks at lower energies and drops faster would be con-

sistent with a greater instability of its structure as compared to
the proton. Further investigations on this subject are clearly
needed, mainly on the lower range of cosmic rays energies.
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