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Abstract: A graph with n vertices is said to admit a prime labeling if it’s vertices are
labeled with distinct integers 1,2,--- ,n such that for edge zy , the labels assigned to z
and y are relatively prime. The graph that admits a prime labeling is said to be prime.
G. Sethuraman has introduced concept of supersubdivision of a graph. In the light of this

concept, we have proved that supersubdivision by Kp 2 of star, cycle and ladder are prime.
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§1. Introduction

We consider finite undirected graphs without loops, also without multiple edges. G Sethuraman
and P. Selvaraju [2] have introduced supersubdivision of graphs and proved that there exists
a graceful arbitrary supersubdivision of C},,n > 3 with certain conditions. Alka Kanetkar has
proved that grids are prime [1]. Some results on prime labeling for some cycle related graphs
were established by S.K. Vaidya and K.K.Kanani [6]. It was appealing to study prime labeling

of supersubdivisions of some families of graphs.

82. Definitions
Definition 2.1(Star) A star S, is the complete bipartite graph Ki , a tree with one internal

node and n leaves, for n > 1.

Definition 2.2(Ladder) A ladder L,, is defined by L, = P, x Py here P, is a path of length n

, X denotes Cartesian product. L, has 2n vertices and 3n — 2 edges.

Definition 2.3(Cycle) A cycle is a graph with an equal number of vertices and edges where

vertices can be placed around circle so that two vertices are adjacent if and only if they appear
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consecutively along the circle. The cycle is denoted by C,.

Definition 2.4(Subdivision of a Graph) Let G be a graph with p vertices and q edges. A graph
H is said to be a subdivision of G if H is obtained by subdividing every edge of G exactly once.
H is denoted by S(G). Thus, |V| =p+q and |E| = 2q.

Definition 2.5(Supersubdivision of a Graph) Let G be a graph with p vertices and q edges. A
graph H is said to be a supersubdivision of G if it is obtained from G by replacing every edge
e of G by a complete bipartite graph Ka.,. H is denoted by SS(G). Thus, |V| = p+ mq and
|E| = 2mgq.

Definition 2.6(Prime Labelling) A prime labeling of a graph is an injective function f :
V(G) —{1,2,--- ,|[V(G)|} such that for every pair of adjacent vertices u and v, ged (f (u), f (v))
=1 i.e.labels of any two adjacent vertices are relatively prime. A graph is said to be prime if it
has a prime labeling.

Generally, a labeling is called Smarandachely prime on a graph H by Smarandachely denied
aziom ([5], [8]) if there is such a labeling f : V(G) — {1,2,--- ,|[V(G)|} on G that for every
edge wv not in subgraphs of G isomorphic to H, ged (f (u), f (v)) = 1.

For a complete bipartite graph Ks ,,, we call the part consisting of two vertices, the 2

vertices part of K3 ,,) and the part consisting of m vertices, the m-vertices part of K3, in this

paper.

83. Main Results

Theorem 3.1 A supersubdivision of S, i.e. SS(Sy) is prime for m = 2.

Proof Let u be the internal node i.e.centre vertex. Let vy,vs,- - ,v, be endpoints. Let

vh v i=1,2,--- ,n be vertices of graph K> » replacing edge uv;. Here, |V| = 3n + 1.

R

Let f:V —{1,2,...,3n+ 1} be defined as follows:

flu)=1,

I (v;) = 34, 1=1,2,---,n,
fvl-l):?)i—l, 1=1,2,---,n,
f(v?) =3i+1, i=1,2,---,n.

As f(u) =1, ged(f (), f(v})) =1and ged(f(u),f (v})) =1.
As successive integers are coprime, gcd (f (vll) . f (’UZ‘)) =(3i—1,3i) =1 and ged (f (vf) ,

f(vi)) = (3i+1,3i) = 1. Thus SS(S,) is prime. O

Let C,, be a cycle of length n. Let ¢1, ¢, - -+ , ¢, be the vertices of cycle. Let ci—fiﬂ, k=1,2
be the vertices of the bipartite graph that replaces the edge cjc;41 for i = 1,2,--- 'n—1 Let
Cﬁ,p k = 1,2 be the vertices of the bipartite graph that replaces the edge c,c;. To illustrate

these notations a figure is shown below.
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Fig.1 Graph with n = 7 with general vertex labels

Theorem 3.2 A supersubdivision of C,, i.e. SS(Cy,) is prime for m = 2.

Proof Let p1,ps2,---,pr be primes such that 3 < p; < p2 < p3--+ < px < 3n such that if
p is any prime from 3 to 3n then p = p; for some i between 1 to k.

Define Sy = {S,/S2, = 2%,i € N such that S, < 3n}. Choose greatest i such that p; <n
and denote it by I. Let Sy, = {Sp, /Sp,, =p1 x4, 1€ {2,3, - ,n}\{pi, i1, s Pi—(n—r-2)}-
Define f: V — {1,2,...,3n} using following algorithm.

Case 1. n=3to8.
In this case, k = n.

Step 1. f(c,) =p, for r=1,2,-- kand f(cf,) =1

Step 2. Choose greatest ¢, such that 2p; < 3n and denote it by r. Define S, for
J=2,3,---,rsuch that Sp, <S5, tobeS, = {Spn/spn =p; Xi,i € {2,3, S B—ﬂ }}

Step 3. Fori=2,3,--- ,n, k=1,2. Label cﬁH_l using elements of S;,; in increasing order
starting from j = 1,2,--- ,r and then by elements of Sy in increasing order.

Step 4. Choose greatest i such that 2° < 3n. Label ¢} |, k=1,2as 21,2072,

Step 5. Label 0%72 as 2°.
Case 2. n=9to 11
In this case, k + 1 =n.

Step 1‘ f(cr):pr fo’]" ’]":1,27.,.7k a.nd f(cn)zl.
Step 2. Choose greatest i, such that 2p; < 3n and denote it by r. Define S, for
j = 2737" T such that Spji71 < Spji to be Spj = {Spji/spji =Dbj x 272 = {2737. o ’Vg_n—‘}}

bj
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Step 3. Fori=2,3,---,nand k = 1,2, label cf)i_H using elements of S}, in increasing
order starting from j = 1,2,...,r and then by elements of S5 in increasing order.

Step 4. Choose greatest i such that 2 < 3n. Label cﬁyl, k=1,2as 2172 2173,

Step 5. Label ¢f 5,k = 1,2 as 2 and 2/~ 1.

Case 3. n > 12.

Step 1. f(c;) =pr for r=1,2,--- k.

Step 2. f(cpy1)=1.

For j=1,2,---,n—k—2, f(cn—;) = 3p1—j.

Step 3. Choose greatest i, such that 2p; < 3n and denote it by r. Define S, for
Jj=2,3,---,rsuch that Sp, <S5, tobe

3], )
Sp; = {Spu/spy‘i =pj X i,i€ {2737"' ’ {p—n-‘}\U{kxpT/kEN}}
J r=1

Step 4. Fori=2,3,--- ,n and k = 1,2. Label cﬁiﬂ using elements of Sj. in increasing
order starting from j = 1,2,...,r and then by elements of Sy in increasing order.

Step 5. Choose greatest i such that 2¢ < 3n. Label cfhl, k=1,2as272 273,

Step 6. Label c’f72, k=1,2 as 2" and 2¢1.

In this case, labels of vertices c¢1,ca, -+ ,c; are prime . Vertices cx11, to ¢, get labels
which are multiples by 3 of pi,pi—1, -+, Di—(n—k—2)- Apart from these labels and 3 itself, we
have k — 1 more multiples of 3. Thus k& — 1 vertices of the type Cg,z‘+1= 2<i< [%W ,j=1,2
will get labels as multiples of 3. And hence are relatively prime to labels of corresponding ¢/s.

Similarly, for multiples of 5,7 and so on. Thus, SS (C,,) is prime. O

Theorem 3.3 A supersubdivision of Ly, i.e. SS(L,) is prime for m = 2.

Proof Let ui,ug,--- .u, and vi,ve, - ,v, be the vertices of the two paths in L,. Let
UiUjy1, V041 for ¢ = 1,2,--- . n — 1 and wv; for ¢ = 1,2,--- ., n — 1,n be the edges of
L,. Let :vf,k = 1,2 be the vertices of bipartite graph K52 replacing the edge u;uit1,7 =
1,2,--- ,n—1. Let yf, k=1,2,---,m be the vertices of the bipartite graph K3 5 replacing the
edge vy iUp_i_1,i=1,2,--- ,n—1. Let wF k = 1,2 be the vertices of the bipartite graph K o
replacing the edge u;v; fort =1,2,--- ;'n—1,n.

Thus, |V]| =2n+2n+2(n—1)+2(n—1) = 8n — 4. Let p1,pa, - -+, pr be primes such that
3 <p; <p2 <psg--- < pr < 3n such that if p is any prime between 3 to 3n then p = p; for
some % between 1 to k. Choose greatest ¢, such that 2p; < 8n — 4 and denote it by 7.

Define S, for j =2,3,---,r such that S,, =<5y, to be

—4 i—1
Spy = {Spji/spn =p; xiji€ {2,3,--~ : [S”p‘ H\U {r xpr/kEN}}-

J r=1

Define Sy = {S5,/S2, = 2',i € N such that Sy, < 3n} and a labeling from V — {1,2,---,8n —

4} as follows.



Primeness of Supersubdivision of Some Graphs 155

Case 1. n=2.

In this case, k = 2n. Let X = {w}, w3, yi,y?, wi, wi,z?} be an ordered set. Define S,
such that S, = {Spli/spli —pixi=3xii€ {2,3,-.. , [M]}}

Pj
Step 1. f(u.)=p, forr =1,2.
Step 2. f(Un—r) = Prtril forr =0,1.
Step 3. f (:E%) =1.
Step 4. Label elements of X in order by using elements of S),; in increasing order starting

with j =1,2,--- ,r and then using elements of Sy in increasing order.

Case 2. n =3 and 6.

In this case, k = 2n+1. Let X = {x%,x%,xé,--- ,x}l_l,xi_l,y%,y%,y%,--- ,y}l_l,y%_l,w},
wi,wl, - wl w?} be an ordered set. Define S, such that
8n — 4
Spl_{Splv/Splv—pIXi—3XiaZ‘€{2v3a"'a’7n —‘}}
K2 K2 p]
Step 1. f(u.)=p, forr=1,2,---,n.

Step 2. f(Un—r) = Prtril forr=0,1,---,n—1.
Step 3. f (:E%) =1and f (:C%) = pk.
Step 4. Label elements of X in order by using elements of S),; in increasing order starting

with j =1,2,--- ,r and then using elements of Sy in increasing order.

Case 3. n=4,5and 7 to 11.

In this case, k = 2n. Let X = {x%,x%,xé,--- ,x}l_l,xi_l,y%,y%,y%,--- ,y}l_l,yi_l,w%,w%,
wh, -+ wh w2, 23} be an ordered set. Define S, such that
8 —4
Spl_{Splv/Splv—pIXi—3XiaZ‘€{2v3a"'a’7n —‘}}
K2 K2 p]
Step 1. f(u.)=p, forr=1,2,---,n.

Step 2. f(Un—r) = Prtril forr=0,1,...,n— 1.
Step 3. f (:C%) =1.
Step 4. Label elements of X in order by using elements of S),; in increasing order starting

with j =1,2,--- ,r and then using elements of Sy in increasing order.

Case 4. n > 12.

_ 1 .2 1 1 2 1,2 ,1 1 2 1 2 1 1 2
Let X = {$27x2,$3,--- 11T 1,91, Y15 Y2, s Yn—15Yn—15 Wy Wy, Wy g, 7w17w1}

be an ordered set. Choose greatest i, such that p; < (8"3’ 4} and denote it by [.

Step 1. f(u.)=p, forr=1,2,---,n.

Step 2. f(v;) =3p—(r—1) forr=1,2,---,2n—k.

Step 3. f(Un—r) = Prtri1 forr=0,1,--- ,n—(2n—k+1).

Step 4. Sy, = {Sp,,/Sp, =p1 x i, i€ {23, [T\ {pr.pi-1, - P @n—k-1) }-
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Step 5. Label elements of X in order by using elements of S),; in increasing order starting
with 7 =1,2,--- ,r and then using elements of S3 in increasing order.
Step 6. Choose greatest i such that 2¢ < 3n. Label z1, 2% as 2* and 2¢71.

In the above labeling, vertices ujs and v)s receive prime labels. Vertices z}s, y;s,wjs
adjacent to u}s,v}s are labeled with numbers which are multiples of 3 followed by multiples of
5 and so on. Since m = 2(small), labels are not multiples of respective primes. Thus SS (L)

prime. O
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