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Abstract. Let R be a commutative ring with identity 1 ̸= 0. Define the comaximal

graph of R, denoted by CG(R), to be the graph whose vertices are the elements of R,

where two distinct vertices a and b are adjacent if and only if Ra+Rb = R. A vertex a

in a simple graph G is said to be a Smarandache vertex (or S-vertex for short) provided

that there exist three distinct vertices x, y, and b (all different from a) in G such that

a—x, a—b, and b—y are edges in G but there is no edge between x and y. The main

object of this paper is to study the S-vertices of CG(R) and CG2(R) \J(R) (or CGJ(R)

for short), where CG2(R) is the subgraph of CG(R) which consists of nonunit elements

of R and J(R) is the Jacobson radical of R. There is also a discussion on a relationship

between the diameter and S-vertices of CGJ(R).

1. Introduction

The concept of a Smarandache vertex (or S-vertex for short) in a (simple) graph (Defini-

tion 2.5) was first introduced by the second author [8] in order to study the Smarandache

zero-divisors of a commutative ring which was introduced by Vasantha Kandasamy in

[10] for semigroups and rings (not necessarily commutative). A non-zero element a in a

commutative ring R is said to be a Smarandache zero-divisor if there exist three different

nonzero elements x, y, and b (all different from a) in R such that ax = ab = by = 0 but

xy ̸= 0. This definition of a Smarandache zero-divisor (which was given in [8]) is slightly

different from the definition of Vasantha Kandasamy in [10], where in her definition b

could also be equal to a.

Consequently, by this generalization, study of S-vertices of any simple graph can be

done directly in a pure graph-theoretic sense, and specially, discussing the S-vertices of

any graph associated to an algebra (algebraic structure) is possible and can lead to the

study of the interplay between some graph-theoretic properties and algebraic properties

of the related algebra. For instance, S. Visweswaran and Hiren D. Patel in [11] studied
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the S-vertices of the complement of the annihilating-ideal graph in connection to some

ring-theoretic properties in Sections 2 (Lemma 2.5), 4 (Lemma 4.2(v)), and 5 (Proposi-

tion 5.1(iv)) of their paper.

The main purpose of this paper is to extend the definition of a Smarandache zero-divisor

of a ring to a Smarandache comaximal element (or SC-element for short) of a commutative

ring and characterize them via the associated comaximal graphs of their rings.

Throughout this paper R will be a commutative ring with identity, U(R), Max(R), and

J(R), respectively, are the group of units, the set of maximal ideals, and the Jacobson

radical of R. A ring R is said to be local if it has a unique maximal ideal; if M is the

unique maximal ideal of R, we will often write (R,M). Some authors, equivalently, (as in

[7]) use “quasi-local” to mean a ring with a unique maximal ideal.

• Two (distinct) elements a and b of R are said to be comaximal with each other (or

a is comaximal with b) in R whenever Ra + Rb = R. Clearly, every unit in R is trivially

comaximal with every element of R. Obviously, every element x in a ring R with identity

is comaximal with 1− x since x+ (1− x) = 1. But the case for finding the Smarandache

vertices of a comaximal graph (specially, the subgraph generated by nonunit elements of

R) is not that trivial and we will mainly focus on this subgraph as in the work of Maimani

et al. of [7].

• We say that an element a in R is a Smarandache comaximal element (or SC-element

for short) of R if there exist three distinct elements x, y, and b (all different from a) in

R such that Ra + Rx = R, Ra + Rb = R, and Rb + Ry = R but Rx + Ry ̸= R. In

other words, a ring R with an SC-element guaranties the existence of two elements not

generating R. Clearly, a Smarandache comaximal element in a ring is comaximal with at

least two elements of R.

For the sake of completeness, we state some definitions and notions used through-

out to keep this paper as self contained as possible. Recall that for a graph G, the

degree of a vertex v in G is the number of edges of G incident with v. A graph

G is connected if there is a path between any two vertices of G. The diameter of

a connected graph G is the supremum of the distances between vertices. That is,

diam(G) = sup{d(x, y)|x and y are distinct vertices of G}, where d(x, y) is the length

of a shortest path from x to y in G (d(x, y) = ∞ if there is no such path). The diameter

is 0 if the graph consists of a single vertex and a connected graph with more than one

vertex has diameter 1 if and only if it is complete; i.e., each pair of distinct vertices forms

an edge. The girth of a graph G, containing a cycle, is the smallest size of the length

of the cycles of G and is denoted by gr(G). If G has no cycles, we define the girth of

G to be infinite. An r-partite graph is one whose vertex set can be partitioned into r



THE SMARANDACHE VERTICES OF THE COMAXIMAL GRAPH OF A COMMUTATIVE RING 3

subsets so that no edge has both ends in any one subset. A complete r-partite graph is

one in which each vertex is joined to every vertex that is not in the same subset. The

complete bipartite graph (2-partite graph) with parts of size m and n is denoted by Km,n.

A complete bipartite graph of the form K1,n is called a star graph. A graph in which each

pair of distinct vertices is joined by an edge is called a complete graph. The complete

graph on n vertices is denoted Kn. For a graph G, a complete subgraph of G is called

a clique. The clique number, ω(G), is the greatest integer n ≥ 1 such that Kn ⊆ G and

ω(G) is infinite if Kn ⊆ G for all n ≥ 1. The chromatic number χ(G) of a graph G is

defined to be the minimum number of colors required to color the vertices of G in such a

way that no two adjacent vertices have the same color. A graph G is said to be finitely

colorable if χ(G) is finite. A graph is called weakly perfect if its chromatic number equals

its clique number.

• Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with disjoint vertex sets Vi and

edge sets Ei (1 ≤ i ≤ 2). The join of G1 and G2 is denoted by G = G1 ∨ G2 with the

vertex set V1 ∪ V2 and the set of edges is E1 ∪ E2 ∪ {xy|x ∈ V1andy ∈ V2}.

Definition 1.1. Let S be a nonempty set of vertices of a graph G. The subgraph induced

(= generated) by S is the maximal subgraph of G with vertex set S and denoted by ⟨S⟩.
That is, ⟨S⟩ contains precisely those edges of G joining two vertices in S.

In [9], Sharma and Bhatwadekar define a graph G on a ring R with vertices as elements

of R, where two distinct vertices a and b are adjacent if and only if Ra + Rb = R. They

showed that χ(G) is finite if and only if R is a finite ring. In this case χ(G) = ω(G) = t+ l,

where t and l, respectively, denote the number of maximal ideals and the number of units

of R (see Theorem 2.3 in [9]). Further, in [7], Maimani et al. studied the graph structure

defined by Sharma and Bhatwadekar and called it “comaximal graph of a ring”. In their

work, they mostly focused on the graph-theoretic and related ring-theoretic properties of

the subgraph generated by nonunit elements of R.

• In this paper, CG(R) denotes the comaximal graph of a ring R. Let CG1(R) = ⟨U(R)⟩
be the subgraph of CG(R), generated by the units of R; CG2(R) = ⟨R\U(R)⟩ the sub-

graph of CG(R) generated by nonunit elements of R; and CGJ(R) = ⟨(R \U(R))\J(R)⟩.
Then it is easy to see that CG(R) = CG1(R) ∨ CG2(R).

• The organization of this paper is as follows: In the second section, we define the no-

tion of a Smarandache vertex in a simple graph (Definition 2.5) and give several examples

(Lemmas 2.8, 2.9, 2.10, and Proposition 2.11 which provides a relation between a weakly

perfect graph and its S-vertices). In Lemma 2.8, we show the existence or nonexistence

of S-vertices of some known graphs and in Lemmas 2.9 and 2.10 show how to construct

the S-vertices from the cliques of a graph. We show that any ring R with k ≥ 3 nontrivial
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orthogonal idempotents whose sum is 1R, contains k SC-elements provided that no proper

subsets of these idempotents can generate R (Proposition 2.2 and Example 2.4). In the

third section, besides many examples, we study the conditions for the direct product of

rings and Artinian rings whether (or not having) a Smarandache comaximal elements

(Proposition 3.7, Corollary 3.10, Theorem 3.12, and Corollary 3.13). Finally, we close this

section by a discussion on a relationship between the diameter and S-vertices of CGJ(R)

(Propositions 3.14 and 3.16, and Example 3.17). In Proposition 3.16, it is shown that

CGJ(R) is a complete bipartite graph if and only if it contains no S-vertices provided

J(R) is not prime.

As usual, the rings of integers and integers modulo n will be denoted by Z and Zn,

respectively. References for graph theory are [3], [2], and [5]; for commutative ring theory,

see [6] and [1].

2. Some Examples and Preliminaries

We begin this section with some basic facts about comaximal graphs which are taken

from [9] and [7] and will be used in the sequel (Remark 2.1). We define the notion of a

Smarandache vertex (or S-vertex for short) in a simple graph (Definition 2.5) and provide

several (in particular, graph-theoretic) examples (Lemmas 2.8, 2.9, 2.10, and Proposition

2.11 which provides a relation between a weakly perfect graph and its S-vertices). In

Lemma 2.8, we show the existence or nonexistence of S-vertices of some known graphs

and in Lemmas 2.9 and 2.10 show how to construct the S-vertices from the cliques of

a graph. Also, similar to [8, Proposition 2.6] which applies k-zero-divisors to provide

S-zero-divisors, we provide two simple examples of Smarandache comaximal elements of

R by using orthogonal idempotents (Proposition 2.2 and Example 2.4). For a study of

k-zero-divisors in a commutative ring and their connection to the k-uniform hypergraphs,

see [4]. Finally, we conclude this section with some more ring-theoretic examples.

We now recall some basic facts about CG(R) and CGJ(R) from [9] and [7] which will

be used in the sequel.

Remark 2.1. The following are true for a commutative ring R.

(a) A ring R is finite if and only if χ(CG(R)) is finite. In this case, χ(CG(R)) =

ω(CG(R)) = t + l, where t denotes the number of maximal ideals of R and l

denotes the number of units of R (see [9, Theorem 2.3]).

(b) The graph CGJ(R) is connected and diam(CGJ(R)) ≤ 3 (see [7, Theorem 3.1]).

(c) diam(CGJ(R)) = 1 if and only if R ∼= Z2 × Z2 (see [7, Lemma 3.2]).

(d) Assume that R is not local. Then diam(CGJ(R)) = 2 if and only if one of the

following subitems (d1 or d2) holds:

[(d1)] J(R) is a prime ideal;
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[(d2)] |Max(R)| = 2 and R � Z2 × Z2 (see [7, Proposition 3.3]).

(e) a ∈ J(R) if and only if degCG2(R)a = 0 (see [7, Lemma 2.1(b)]).

(f) CGJ(R) is a complete bipartite graph if and only if |Max(R)| = 2 (see Theorem

2.2 of [7]).

We now use the orthogonal idempotents of a ring R to construct some SC-elements for

R.

Proposition 2.2. Let k ≥ 3 be a fixed integer and {e1, e2, . . . , ek} be a set of nontrivial

orthogonal idempotents in a ring R such that e1 + e2 + · · · + en = 1. Suppose that no

proper subset of {e1, e2, . . . , ek} can generate R. Then R has k Smarandache comaximal

elements.

Proof. Let {e1, e2, . . . , ek} be a set of nontrivial orthogonal idempotents in a ring R with

e1 + e2 + · · ·+ ek = 1. Notice that the sum of no proper subset of {e1, e2, . . . , ek} is equal

to 1 since ei’s are different from zero. Therefore, from the definition, it is easy to see that

e2+e3+ · · ·+ek, e1+e3+e4+ · · ·+ek, . . ., e1+e2+ · · ·+ek−2+ek, and e1+e2+ · · ·+ek−1

are Smarandache comaximal elements in R. Note that the sum of the elements of the

k − 1-subsets of {e1, e2, . . . , ek} are all different from each other. For example, without

loss of generality, assume e2 + e3 + · · · + ek = e1 + e3 + · · · + ek. Thus, e1 = e2 implies

e1 = 0, which is a contradiction. Note that R(e2+e3+ · · ·+ek)+R(e1+e3+ · · ·+ek) = R

since e2 + e3 + · · ·+ ek + e1(e1 + e3 + · · ·+ ek) = 1. �

Remark 2.3. In the hypothesis of the above proposition, the statement “no proper subset

of {e1, e2, . . . , ek} can generate R” is equivalent to the statement “no k − 1-subset of

{e1, e2, . . . , ek} can generate R”.

Example 2.4. For any integer n ≥ 3, let R = R1 ×R2 × · · · ×Rn be the direct product of

n commutative rings. Let e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . ., en = (0, 0,. . . , 0, 1).

Now by applying the above proposition, we have an example of n SC-elements in R.

Next, before applying the comaximal graph of a ring to characterize its Smarandache

comaximal elements, we extend the definition of a Smarandache comaximal element to

a Smarandache vertex of an arbitrary simple graph as a general form of these graphs as

follows.

Definition 2.5. A vertex a in a simple graph G is said to be a Smarandache vertex (or

S-vertex for short) provided that there exist three distinct vertices x, y, and b (all different

from a) in G such that a —x, a—b, and b—y are edges in G but there is no edge between

x and y.

Example 2.6. Let R be a field. Then obviously, CG(R) is a complete graph and hence

by Lemma 2.8(a), it contains no S-vertices. In other words, every element of a field is

comaximal with all elements but not an SC-element.
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Example 2.7. Let for any graph G, G denote the complement of G. The graph Kn ∨Km

contains exactly n S-vertices provided that n ≥ 2 and m ≥ 2 (see also Lemma 2.10 below).

Moreover, for any n ≥ 2, Kn ∨K2 has exactly n S-vertices.

Note that a graph containing a Smarandache vertex should have at least four vertices

and three edges and also the degree of each S-vertex must be at least 2.

The proofs of the next three lemmas are not difficult and can be followed directly from

the definition and we leave them to the reader. In these lemmas, we show the existence

or nonexistence of S-vertices of some known graphs (Lemma 2.8) and in Lemmas 2.9 and

2.10 show how to construct the S-vertices from the cliques of a graph.

Lemma 2.8. For any simple graph, the following hold:

(a) A complete graph does not have any S-vertices.

(b) A star graph does not have any S-vertices.

(c) A complete bipartite graph has no S-vertices.

(d) Let G be a complete r-partite graph (r ≥ 3) with parts V1, V2, . . . , Vr. If at least

one part, say V1, has at least two elements, then every element not in V1 is an

S-vertex. Further, if there exist at least two parts of G such that each of which has

at least two elements, then every element of g is an S-vertex.

(e) A bistar graph has two S-vertices; namely, the center of each star is an S-vertex. A

bistar graph is a graph generated by two star graphs when their centers are joined.

(f) Every vertex in a cycle of size greater than or equal to five in a graph is an S-vertex

provided that there is no edge between the nonneighbouring vertices. In particular,

every vertex in a cyclic graph Cn of size larger than or equal to 5 is an S-vertex.

Note that for odd integers n ≥ 5, χ(Cn) = 3 and ω(Cn) = 2. Moreover, for even

integers n ≥ 5, χ(Cn) = ω(Cn) = 2.

(g) Let G be a graph containing two distinct vertices x and y such that d(x, y) = 3.

Then G has an S-vertex. But the converse is not true in general. Suppose G

is the graph x—a, a—b, b—y, and a—y; where obviously, a is an S-vertex and

d(x, y) = 2. Note that if diameter of G is 3, then it has an S-vertex since there

exist two distinct vertices x and y in G such that d(x, y) = 3.

Lemma 2.9. Let C be a clique in a graph G such that |C| ≥ 3. Suppose that x is a vertex

in G\C and x makes a link with at least one vertex or at most |C|−2 vertices of C. Then

every vertex of C is an S-vertex. In other case, if x makes links with |C| − 1 vertices of

C, then all those |C| − 1 vertices are S-vertices.

Lemma 2.10. Let C be a clique in a graph G such that |C| = n ≥ 3. Then by removing

any edge e from C, the remaining subgraph C \ {e} is isomorphic to Kn−2 ∨K2. In this

case, C \ {e} has exactly n− 2 S-vertices provided that n ≥ 4.
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The following proposition provides a relation between a weakly perfect graph and its

S-vertices.

Proposition 2.11. Let G be a connected graph whose clique number is strictly larger than

2. If ω(G) ̸= χ(G), then G has an S-vertex. In other words, f or any connected graph G

with ω(G) ≥ 3 and no S-vertices, then ω(G) = χ(G) (i.e., G is weakly perfect).

Proof. Let C be a (largest) clique in G with |C| ≥ 3. Since ω(G) ̸= χ(G), then G is not

a complete graph. Thus, there exists a vertex x in G \ C which makes edge(s) with at

least one or at most ω(G)− 1 element(s) of C. Now the proof is immediate from Lemma

2.9. �

Remark 2.12. It is not difficult to show that The converse of the above proposition need

not be true in general. Actually, by Theorem 2.3 of [9], comaximal graphs are weakly

perfect (i.e., graphs having an equal chromatic and clique number) and in this paper we

will show the existence of many S-vertices in them. Also, the comaximal graph of the ring

R = Z2 × Z2 contains an S-vertex, namely, (1, 1) in the path

(0, 0)—(1, 1) —(0, 1) —(1, 0)

where by a direct computation or using [9, Theorem 2.3], the chromatic and clique

number of this graph is 3. Clearly, none of the graphs in Parts (a), (b), and (c) of Lemma

2.8, has an S-vertex, where ω(G) = χ(G). Note that the graphs in Parts (b) and (c) of

Lemma 2.8 have ω(G) = χ(G) = 2. The graph in Part (e) of Lemma 2.8 has two S-vertices

and ω(G) = χ(G) = 2. Also, in a cyclic graph Cn with n ≥ 5 an odd integer, χ(Cn) = 3

and ω(Cn) = 2 ̸= 3 (see also Lemma 2.8(f)).

Finally, we close this section by the following three examples.

Example 2.13. The comaximal graph of the ring of integers contains an infinite clique (e.g.,

the clique consisting of all prime integers). Hence, CG(Z) has infinitely many S-vertices

by Lemma 2.9 since 6 does not make any link with 2 and 3. Notice that Z has only two

units (a finite number of units).

Example 2.14. Let R be the polynomial ring Zp[x]. Let C be the clique consisting of

all monic irreducible polynomials of Zp[x]. Hence fg makes link with all elements of C

except to f and g in C. In this case, C is an infinite clique and thus by Lemma 2.9,

CG(R) has infinitely many S-vertices. Recall that a nonzero nonunit element c in a ring

R is irreducible provided c = ab implies either a or b is a unit in R. Also, c in a principal

ideal domain (PID) R is irreducible if and only if (c) is a maximal ideal in R.

Example 2.15. By applying Theorem 2.3 of [9], we can construct a ring R whose comaximal

graph contains n + 1 (n ≥ 3) S-vertices with χ(CG(R)) = ω(CG(R)) = n + 1. Let

R = Z2 × · · · × Z2 (n factors). Then R has precisely n maximal ideals and the identity

element is the only unit element of R. Note that elements of the formXj = (x1, x2, . . . , xn),
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1 ≤ j ≤ n, is a clique of size n in CG(R) provided that for each i = j, the i-th component

of Xj is zero and the other components are 1. Thus, (0, 0, 1, 1, . . . , 1) makes a link with

each Xj for all j’s, where 3 ≤ j ≤ n. Clearly, the set {Xj}nj=1 ∪ {(1, 1, . . . , 1)} is a clique

of size n+ 1. Now, the result follows from Lemma 2.9.

3. The Smarandache Vertices of CG(R) and CGJ(R)

In this section, we will investigate the conditions for which the (direct product and

Artinian) rings whether or not containing a Smarandache comaximal element (see Propo-

sition 3.7, Corollary 3.10, Theorem 3.12, and Corollary 3.13, respectively). Finally, we

close this section by a discussion on a relationship between the diameter and S-vertices of

CGJ(R) (Propositions 3.14 and 3.16, and Example 3.17).

First, we give some examples of rings whose comaximal graphs whether (or not con-

taining) an S-vertex.

Proposition 3.1. Let R be a ring with J(R) ̸= (0). Then CG(R) has an S-vertex.

Proof. Let 0 ̸= x ∈ J(R). Thus, the path 0 — 1 — (1 − x) —x shows that 1 and 1 − x

are S-vertices of CG(R). �

Example 3.2. Let (R,M) be a local ring with maximal ideal M and |M | ≥ 2. Then

CG(R) = K|U(R)| ∨K|M | and hence contains |U(R)| S-vertices. Note that |M | ≥ 2 implies

|U(R)| ≥ 2 since 1− a is a unit different from 1 for any 0 ̸= a ∈ M = J(R) (see Example

2.7 and Lemma 2.10). It is also Clear that for any local ring R, CGJ(R) is the empty

graph.

Example 3.3. By Theorem 2.2 of [7], CGJ(R) is a complete bipartite graph if and only if

|Max(R)| = 2. Then in this case, CGJ(R) has no S-vertices by Lemma 2.8(c).

Example 3.4. Theorem 2.4(b) of [7] states that if CGJ(R) contains a vertex adjacent to

every other vertex, then R ∼= Z2 × F where F is a field. In this case, R has two maximal

ideals Z2 ×{0} and {0}×F with a nonprime Jacobson radical. Clearly, CGJ(R) is a star

graph and hence has no S-vertices.

Example 3.5. The following are three examples of non-isomorphic rings whose associated

comaximal graphs are isomorphic. They are obtained from Section 4 of [7] which are

Examples 4.1, 4.2, and 4.3, respectively. Note that by Example 2.7, each of the graphs in

(a), (b), and (c) contains 2, 4, and 4 S-vertices, respectively.

(a) Let R = Z4 and S = Z2[x]/(x
2). Then by a simple computation we can see that

CG(R) ∼= CG(S) (∼= K2 ∨K2). But Z4 and Z2[x]/(x
2) are not isomorphic.

(b) Let R = Z8 and S = Z2[x]/(x
3). Then CG(R) ∼= CG(S) (∼= K4 ∨K4). But R and

S are not isomorphic.
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(c) Let R = Z2[x]/(x
3) and S = Z2[x, y]/(x

2, y2, xy). Then CG(R) ∼= CG(S) (∼=
K4 ∨K4). But R and S are not isomorphic.

Remark 3.6. The above example shows that rings with an equal number of SC-elements

need not be isomorphic. Note that an element a in a ring R is an SC-element if and only

if it is an S-vertex (Definition 2.5) in CG(R) (the comaximal graph of R).

In the following proposition, we show the conditions for the existence of a Smarandache

comaximal element (SC-element) in the direct product of any number of commutative

rings. Notice that in Example 2.4, we showed there always exist n SC-elements in the

direct product of n commutative rings for any integer n ≥ 3.

Proposition 3.7. Let R ∼= R1×R2×· · ·×Rn be the direct product of n ≥ 1 commutative

rings. Then

(a) if n ≥ 3, then R has at least n SC-elements;

(b) let n = 2, then R contains an SC-element;

(c) suppose n = 2 and each of R1 and R2 is a local ring with maximal ideals M1 and

M2, respectively. Then CGJ(R) has no S-vertices;

(d) for n = 1, CGJ(R1) has no S-vertices if R1 is a local ring;

(e) if n = 1 and (R1,M) is a local ring, then CG(R1) has exactly |U(R1)| S-vertices
provided that M contains more than one element. Moreover, for M = (0), R1 is

a field and CG(R1) contains no S-vertices.

Proof. For (a), see Example 2.4. (b) is true since (1, 1) is an S-vertex in the path (0, 0)—

(1, 1)—(1, 0)—(0, 1). (c) follows from [7, Theorem 2.2] (see Remark 2.1(f)). Parts (d) and

(e) are immediate from definition. �

Remark 3.8. For any given integer n ≥ 3, the above proposition always provides an

example of a ring whose comaximal graph contains at least n S-vertices. For a less general

case, let R ∼= R1 ×R2 × · · · ×Rn, where Ri = Z2 for each 1 ≤ i ≤ n.

Theorem 3.9. Let R ∼= R1×R2×· · ·×Rn be the product of n ≥ 3 local rings with unique

maximal ideals Mi for each 1 ≤ i ≤ n. Let Ni = R1 × · · · × Ri−1 ×Mi × Ri+1 × Rn for

any i = 1, 2, . . . , n. For any i, let Ti = Ni \
∪

l ̸=iNl. If at least one of Ti’s contains more

than one element for some 1 ≤ i ≤ n, then CGJ(R) contains n− 1 S-vertices.

Proof. Clearly, each Ni belongs to Max(R). Notice that by Prime Avoidance Theorem,

Ti is a nonempty set for each 1 ≤ i ≤ n. Choose xi ∈ Ti. then it is easy to see that

Rxi + Rxj = R for all i ̸= j. Clearly, S = {x1, x2, . . . , xn} is a clique in CGJ(R). Now,

Without loss of generality, suppose T1 has more than one element. Let x1 ̸= y ∈ T1. In

this case, by Lemma 2.9, each element of the set S \ {x1} is an S-vertex since y makes

links with all elements of S \ {x1} and makes no link with x1. Thus, CGJ(R) contains

n− 1 S-vertices and the proof is complete. �
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Corollary 3.10. Let R = R1 × R2 × · · · × Rn be the product of n ≥ 3 local rings with

unique maximal ideals Mi for each 1 ≤ i ≤ n. Suppose for at least one i (1 ≤ i ≤ n),

|Ri \Mi| ≥ 2. Then CGJ(R) contains n− 1 S-vertices. Furthermore, if R is local or the

product of two local rings, then CGJ(R) has no S-vertices.

Proof. Using the same notation as in the above Theorem, let xi ∈ Ti be (1, 1, . . . , 1, 0, 1, . . . , 1)

where the i-th component is zero for each i = 1, 2, . . . , n. Without loss of generality, sup-

pose |R2 \ M2| ≥ 2. Let y ∈ T1 be (0, u, 1, . . . , 1) where u ∈ R2 is a unit different from

1. Now the proof follows from the above theorem. For the proof of the last part, see

Proposition 3.7. �

We next apply the above corollary to show the existence of n− 1 S-vertices in CGJ(R)

for any arbitrary integer n ≥ 3.

Example 3.11. For any fixed integer n ≥ 3, let R = Z2 × Z3 × Z2 × · · · × Z2 (n factors).

Then by the above corollary, CGJ(R) contains n− 1 S-vertices.

It is a well-known fact that any Artinian ring (finite ring) is a product of local rings.

more precisely, By [1, Theorem 8.7], R is a finite direct product of Artinian local rings.

That is, R ∼= R1 × R2 × · · · × Rn, where Ri is local for every 1 ≤ i ≤ n. Consider the

following theorem.

Theorem 3.12. Let R be a commutative Artinian ring (in particular, R could be a finite

commutative ring). Suppose R ∼= R1 × R2 × · · · × Rn, where Ri is a local ring for each

i = 1, 2, . . . , n with n ≥ 1. Then

(a) If n ≥ 3, then CG(R) [resp. CGJ(R)] has at least n [resp. n− 1] S-vertices [resp.

provided that for at least one i (1 ≤ i ≤ n), |Ri \Mi| ≥ 2].

(b) For n = 2, CG(R) [resp. CGJ(R)] contains one [resp. no] S-vertices.

(c) If n = 1 and (R,M) is a local ring, then CG(R) has exactly |U(R)| S-vertices
provided that M contains more than one element. Moreover, for M = (0), R is a

field and CG(R) contains no S-vertices.

(d) If n = 1 and (R,M) is a local ring, then CGJ(R) is the empty graph and has no

S-vertices.

Proof. The proof follows directly from Proposition 3.7 and Corollary 3.10. �

In the next corollary, we apply the above results to show the existence or nonexistence

of the S-vertices in the graphs CG(Zn) and CGJ(Zn). Note that R = Zpr (p a prime,

r ≥ 1) is a local ring and for any odd prime p ≥ 3, it has more than one unit since p and

2 are relatively prime.

Corollary 3.13. For any fixed integer k ≥ 1, let n = pt11 · · · ptkk for distinct primes

p1, . . . , pk and positive integers t1, . . . , tk. Then

(a) CG(Zn) [resp. CGJ(Zn)] has at least k [resp. k − 1] S-vertices provided k ≥ 3;
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(b) for k = 2, CG(Zn) [resp. ]CGJ(Zn)] contains an [resp. no] S-vertex;

(c) let k = 1 and n = pr with p ≥ 2 (prime) and r ≥ 2, then CG(Zn) contains

|U(Zn)| S-vertices (i.e., all numbers that are not divisible by p). In addition,

CGJ(Zn)contains no S-vertices;

(d) let k = 1 and n = p with p ≥ 2 a prime, then none of the graphs CG(Zn) and

CGJ(Zn) contains any S-vertices.

Proof. The proof follows directly from Theorem 3.12 and the fact that Zn
∼= Zp1t1 × · · · ×

Zpk
tk by hypothesis. See also Example 3.17(a). �

Finally, we continue and close this section by a discussion on a relationship between the

diameter and S-vertices of CGJ(R).

Proposition 3.14. The following results are true for a commutative ring R.

(a) Let R be a ring whose jacobson radical is not prime. Then CGJ(R) has no S-

vertices if diam(CGJ(R)) ̸= 3.

(b) If CGJ(R) has no S-vertices, then diam(CGJ(R)) ̸= 3.

(c) Let R be a ring whose jacobson radical is not prime. Then CGJ(R) has no S-

vertices if and only if diam(CGJ(R)) ̸= 3.

Proof. (a) First, note that R is not local since J(R) is not prime. Now the proof follows

from Parts (b), (c), and (d) of Remark 2.1 and Example 3.3.

(b) If diam(CGJ(R)) = 3, then there exist x, y ∈ CGJ(R) such that d(x, y) = 3 for

at least two vertices x and y by the definition of the diameter. Now the proof follows by

Lemma 2.8(g). �

Remark 3.15. Notice that the diameter of CG(R) [or CGJ(R) (R not local)] can never

be zero since each of these graphs has at least two vertices. Actually, for any nonempty

connected graph G, diam(G) = 0 if and only if G consists of only one vertex.

Proposition 3.16. Suppose R is a ring whose Jacobson radical is not prime. Then

CGJ(R) is a complete bipartite graph if and only if it contains no S-vertices.

Proof. Note that R is not local since its Jacobson radical is not prime. The nec-

essary part is clear by Lemma 2.8(c). For the sufficient part, by Lemma 2.8(g),

diam(CGJ(R)) ̸= 3. Hence by Remark 2.1(b), diam(CGJ(R)) ≤ 2. Therefore, by

Remark 2.1(c), diam(CGJ(R)) = 1 if and only if R ∼= Z2×Z2. Finally, by Remark 2.1(d),

if diam(CGJ(R)) = 2, then R has only two maximal ideals which implies CGJ(R) is a

complete bipartite graph by [7, Theorem 2.2]. �

Next, we close this section by an example which is obtained from Section 3 of [7].

Example 3.17. (See [7, Example 3.4]). Let R = Zn where n = pl11 · · · plrr . Assume r ≥ 3.

Let x = pl11 · · · plr−1

r−1 and y = pl22 · · · plrr . Then x and y are not adjacent. Also if x and y are

adjacent to z, Then (z, x) = (z, y) = 1, which is impossible. We have Rx + Rplrr = R =
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Rplrr +Rpl11 = Rpl11 +Ry. Hence There is the path x—plrr —pl11 —y. So diam(CGJ(Zn)) = 3.

Moreover, pl11 and plrr are two S-vertices of CGJ(Zn). Assume that r = 2. In This case we

have two maximal ideals M1 = ⟨p1⟩ and M2 = ⟨p2⟩. Then CGJ(R) is a complete bipartite

graph and so diam(CGJ(Zn)) = 2. Thus, CGJ(Zn) has no S-vertices by Lemma 2.8(c).

Assume that r = 1. Then R is local and so CGJ(Zn) is the empty graph.
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