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SOME REMARKS ON THE 
SMARANDACHE FUNCTION 

by 

M .. A.ndrei., C. Du...""1li.trescu., v. Seieacu, L Tutescu, st. Zanfir 

1. On the method of ca1culus proposed by FJorentin Smarandacbe. In [6] is defined a 
numerical function S: N' ~ N, as follows: 
S(n) is the smallest nOImegative integer such that S(n)! is divisible by n. 

For example S(l) = 0 , S(212) = 16. 
This function characterizes the prime numbers in the sense that p > 4 is prime if and 

only if S(p) = p. As it is showed in [6J this function may be extended to an integers by 

defining S(-n) = S(n). If a and b are relatively prime then S(a·b) = nux{S(a),S(b)} 

More genera~ if [a, b] is the last common multiple of a and b then 

S\[a,b}l = maxlS(a),S(b)} (1) 

So, if n = pt' . p;: ' ... ' p!~' is the factorization of n into primes, then 

S(n) = max{S(Pi") i i = I, ... ,t} (2) 

For the calculus of 51 p;') in [6J it is used the fact that if a = (p" - 1) / (p - 1) 
then S(pC) = pfl . 

This equality results from the fact, if a p (n) is the exponent of the prime p in the 

decomposition of n! into primes then 

From (3) is results that S(p=) 50 p. a . 

r n i 
a In) = "": - I 

!" ~i rJ 
. l?:li_P J 

.... T if ( ) I" " I' th ~ ... ow, we note a" p = \ P - I) / \ P - j en 

for k"",k,..", ... ,k,., .. ! El,p-l and k"" E !1,2, ... ,p}. 

(3) 

(4) 



TItat is, if we consider the generalized scale 

[pJ : al(p),~(p),···,a,,(p), ... 

and the standard scale 
(p) : 1 , P , p2 , ... , p" , ... 

and we express the exponent a in the scale [p] , a[p) = k"" k",,: ... k~ ,then the left hand of 

the equality (4) is .si p ~ .. ! ) and the right hand becomes ~ a[pj ) (p) . In odta words, the right 

hand of ( 4) is the nwnber obuined multiplying by p the exponent a wrired in the scale [p J 
, rcaded it in the scale (p) . 
So, (4) may be written as 

sip ~Pi) = ~a>j )(p) (5) 

For example, to ca1culate S(,j9) we write the exponent a=89 in the scale 

[3] ; 1, 4 , 13 , 40 , 121 , ... 
and so 

a),.,(p)~ac>tp"'· -l)!(p-l)~ac>p"" ~(p-l).a"'l<:::>~ ~logp((p-l).a+l). 

II results tfw l11. is the integer part of log A( p - 1) . a ~ 1) . 

For our example l11. = [log) (2a + 1)] = log) 179 = 4 . Then first digit of q3] is 

k. = [a!a4 (3)] = 2 . So, 89 = 2a4 (3) ... 9 . 

ForA -9 it results !71z =[IogJ(2~ "'1)]=2, k2 =[~/~(3)J=2 and so ~ =2az(3)Tl. 

Then 89 = 2a4 (3) - 2~ (3) - ~ (3) = 202~)1 ' and s( 389
) = 3( 2021)(3) = 183 . 

,,~ 183 i 

Indeed. £...). -I • = 61 + 20 + 6 ~ 2 = 89 . 
:ti '- 3 ...: 

Let us observe that the calculus in the generalized scale [p] is essentially different from 

the calculus in the standard scale (p) . That because if we note b" (p) = p" then it results 

(6) 

r or this, to add some nmnbers in the scale [p] we do as follows. We start to add from the 

digits of .. decimals", that is from the column of ~ (p) . If adding some digits it is obtained 

pa 2 (p) then it is utilized 3 unit from the class of units (coefficients of al ( p) ) to obtain 

paz ( p) - 1 = ~ ( p) . Continuing to add if agains it is obtained p~ (p) • then a new unit 
must be used, from the cLlss of units, etc. 
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For example if nl;11 = 442 , '111 = 412 and ~'l = 44 then 

m+ n+r = 442+ 

412 

44 

dcba 

We start to add from the column corresponding to a z (5) : 
4az (5) -to ~(5) ... 4~ (5) = 5az (5) + 4az (5) . 

~ow utilizing a unit from the first column we obtain 
5az(5)+4az(5)=~(5)+4az(5), sob=4. 

Continuing, 4~(5) ... 4~(5) + ~ (5) = 5~(5) + 4~(5) and using a new unit it results 
4uJ (5) ... 4uJ (5) ... ~ (5) = a. (5) -to 4a) (5) , so c = 4 and d = 1 . FinaDy, adding the 
n:mained units 4al ( 5) + 2al (5) = 5al (5) + a l (5) = 5al (5) + 1 = a.z (5) it rcsult3 that b must be 

modified and a = 0 . So m+ n+ r = 1450~ . 
We have applied the formuL1 (5) to the calculus of the values of S for any integer between 
HI = 31,000,000 and Hz = 31, 00 1, 000 . A program has been designed to generate the 

factorization of every integer n E [ HI' Nz] ( TIME (minutes) : START: 40:8:93, STOP: 

56:38:85, more than 16 minutes) . 

Afterwards, the SrtW'3lldache function has been calculated for every n = pt . p;1 ..... P:~' 
as follows : 

1) max Pi . a, is det.e:anined 

2) So = S( p,a.. ) , for i determined above 

3) Because .sip?) ~ P; . a) ' we ignore the factors for which P j • a) ~ So . 

4) Are calculated s(P.~} ) for P; ·a
J 

> So and is determined the greatest of these 

values. 
('ITIvfE (minutes): START: 25:52:75, STOP: 25:55:27, leas than 3 seconds) 

2. Some diofantine equations concerning the function S. 
In this section we shall apply the formula (5) for the study of the solutions of some 
diofantine equations proposed in (6). 

a) Using (5) it can be proved that the diofantine equation 

s( x . y) = S( x) + S( Y ) (7) 

has infinitely many solutions. Indeed, let us observe that from (2) every relatively prime 
integers Xo and Yo can't be a solution from (7). Let now x = p' . A ,y = pI> . B be such 

that Sex) = S(p=) and S(y) = S(pb). 
Then S(x· y) = s( pa~b) and (7) becomes 

p((a .... b)[Pl)(p) = p(a[Pl)(p) .... p(qpJ(P) 
or 
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«a+b)IPJ)(p) = (aIPJ)(p) + (qp!)(P) (8) 

There exists infinitely many values for a and b satisfying yhis equality. For ex.unple 

a = a1 (p) = 10<1p1 ' b = ~ (p) = 10rpl and (8) becomes( 110[~J) = (lOO[p,) ~ (lO[P!) . 
Y (F) (P) (p) 

b) We man prove now that the equation 

S(x'y)= S(x)·S(y) 

has no solution x, y .> 1. 

Let m = S (x) and n = S (y). It is sufficient to prove that S( x . y) = m· n. But it is said that 
, , di'd ( )' m.· n. Vl e m ~ n ., so 

(m'n)~ : (m-n)! : m!·n! : x·y 

c) If we note by (x, y) the greatest cornmon divisor of x and y, then the ecuation 

(x,y) = (S(x),S(y» (9) 

has infmitelly many solutions. Indeed., because x 2 Sex) , the equality holding if and only if 
x is a prime it results that (9) has as solution every pair I,y of prime numbers and also 
every pair of product of prime numbers. 

Let now Sex) = p(aIF !) , S(y) = q(qql) be such that (x,y) = d> 1. Then 
(p) (q) . 

because ( p. q) = 1 . if 

a1 = (a: .) , bl = (b: ;).. and (p,b l ) = (a1 ,q) = L 
,pi ~pl ,Po Ip) 

it result that the:: equality (9) becomes 

and it is satisfied for various positive integers a and b. For example if x = 2· 3a and 
. (' 

y = 2· 5~ it results d = 2 and the equality ~ (a. ll ) ,( },.<I) j = 2 is satisfied for many values 
• \l (3) ~I· (~) / 

of .:l.b.: N. 
d) If [x. y] is the least conunon multiple of x and y then the equation 

[ x , y] = [ S (.l" ) , S (;' ) ] (10) 

has as solutions every pair of prime numbers. Now, if x and }' are composite numbers 

such that Sex) = S(p,a,) :md S(y) = S(p;!) with P: ;:: p; then the pm x,y can't be 

solution of the equation because in this case we have 

[x,y].> PI~ . p;: > S(x)· S(y) 2: Sex), S(y) 

and if x = pc.. A and y = p:'·B with sex) = S(p:) , S(y) = s(pt-) then 
, l 

[S(x), S(y)j = l p( alP!) (p)' p{ b!Pl) (p) ~ = p. (a[pJ (p) ,( qF!) (p) 
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and [x,y] = ptN.(c,b) ·[A,BJ so (10) is sa.ti.ficd also for many values of non reLttively prime 

integers. 
e) Finaly we consider the equation 

S(x)+ y = x.,.. S(y) 

which has as solution every pair of prime numbers, but also the composit numbers x = y. 
It can be fOWld other romposit number as solutions. For exampie if p and q are 

consecutive prime nwnbers such that 

q-p=h>O (11) 
and x = p . A ,y = q . B then our equatic is equivalent to 

y- x = S(y)- S(x) (12) 

If we consider the diofantine equation qB - pA = h it results from (11) that Ao = Bo = 1 is a 
particular solution, so the general solution is A = 1 + rq , B = 1 + rp ,for arbitrary integer r. 

Then for r = 1 it results x = p(l + q) , y = q(1 T p) and y - x = h. In addition, because p 

and q are consecutive primes it results that p + 1 and q. 1 are composite and so 

S(x) = p , S(y) = q , S(y)- S(x) = If 
and (12) holds. 
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SMARANDACHE NUMERI CAL FtJNCTI ONS 

by 

Ion Balacenoiu 

Dapar~arnan~ of Ma~hema~ics 

Univ.rsi~y of Craiova,Romania 

F.Smarandache defines [1) a numsricaL functton 

• 5 :~ --- ~ .SCn~ is the smaLLest inte~er m such that 

m! is diuisibLe by n. UsinS certain res1..J.L ts on 

standardised str1..J.ctures, three ~inds of Smarandache 

functions are defined and are etabLished some 

compatibiLity reLations between these /1..J.nctions. 

1. Standardising functions.Le~ X be a nonvoid set, r c XxX an 

equ1valence rela~i~n, X ~he corresponding quo~i.n~ se~ and (I,SJ a 

~o~ally ordered se~. 

1.1 Definition.If 9 : X --- I is an arbi~rarely injec~ive func~ion, 

t.hen f X --- I defined by f(xJ = gCxJ is a s~andardising funct.ion. 

In t.his case t.he se~ X is said t.o be ( r , C I , SJ , f J s~andardised. 

If rand r are ~wo equivalence rela~ions on X,~hen r = r ~ r is 
1 4t 1 4t 

defined as x r y if and only if x r y and x r y. 
1 Z 

Of course r 1 s 

an equivalence rela~ion. 

In t.he following theorem we consider func~ions having ~he same 

mcnc~on1cit.y.The func~ions f x ___ I i = 1, S are of ~he 

same monc~onici~y if for every x,y from X i~ resul~s 

f Ie C xJ S f Ie C yJ if and only if f.CxJSfCy) 
J J 

for k,j = 1,s 

6 



1. 2 Theorem. I f the standardi si n9 funct.1. ons f x -----+ I 

corresponding t.o t.he equ~valence relations r , i = 1, S , ar e of 
'-

t.he some monot.onicit.y t.hen f = m41.X { f } is a st.andardi sl.ng 
'- '-

funct.l.on corresponding to r = r ha.vl.ng same 

monot.onicl.t.y as f. 
'-

Proof. We give t.he proof of t.heorem in case s = 2 .Let. x x 
r r 

1 Z 

x be t.he equl.valence clases of x corresponding t.o r 
1 

rand t.o 
2 

r = r 
t 

r respect.l.vely and X 
2 r 

X x t.he quotient. set.s on X. 
1 

We have f (x) = g (x ) 
1 t r 

and 
1 

r 
2 

f (xJ :z 9 ex) , ....,her e 
2 2 r 

2 

gi X ---+. I , i=t,2 are inject.ive functions. The funct.ion 
r 

'-

9 X -->I defined by g(x )= ~~x{g ex ),g (x )} is inject.ive. 
r 1 r 2 r r 

t 2 

Indeed if 
- 1 - 2 
X ~ X 

r r 
and 

- t - t· max{g (x ),g (x )} 
1 r 2 r = 

t 2 

- 2 - 2 = max{g (x ),g (x)} 
1 r 2 r 

,then be cause of the injectivit.y of 

and 

- 1 
= 9 (x ) 

t r 
1 

t 2 

""'e ha ve for exampl e 
"1 "1 

max{g (x ), 9 (x )} 
t r 2 r 

- 2 
= 9 (x J 

2 r 
;z 

1 2 

- 2 - 2 = max {g (x J, 9 e x J ) and 
t r 2 r 

....,e obt.a.in 
t 2 

- t 

= 

a 

cont.radict.ion because f (x
2

) 
- 2 

< J f (Xl) = g(x J 9 t 
(x = 

f 
1 

and f are not. of 
2 

t 

f (xl) 
2 

t.he 

t r r t 
t 1 

"t -2 
=f (xz) = 9 (x J < g ex J ,t.hat. 

2 r Z r 2 
t z 

sa.me monot.onicity From the injec-

is 

t.ivit.y of 9 it. result.s t.hat. f:X ---+.I defined by f( xJ = g( x J 

is a st.andardising funct.ion.In a.ddit.ion we have 

- I g(x ) 
r 

-2 
S g(x ) 

r 

- 1 - 1 <-+ max{ g (x J, 9 (x J ) S 
t r Z r 

1 2 
1 t • 2 2 

max{ f (x J , f eX )\.-S max{ f ex J. f (x J) 
1 2 . .l 1 2 

- Z - 2 
max{ go (x J, 9 (x ) } ~ 

t r Z r 
1 2 

... f (x
1)Sf ex

2
J and 

1 1 

f are of t.he same monot.onicit.y. 
Z 
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Le~ us supose now that T and ..L are two algebraic lows 

on X and I respecti vel y. 

1. 3. Definition. The standardising function f: X __ I :.s said 

t.o :::e with T and ..L if for every X.y :.n 

X lhe t.r:.ple+_ C[CX), fCy), fCxTY)) satisfies ~he condilion ~. In 

lh:.s case it is said lhat. lhe function f ~ -st.andardise t.he st.ruc-

t.rure CX'T) in t.he st.ructure CI,S,..L). 

* For example,if f is the Smarandache function S: IN --+ IN ,C SC n) 

:.s t.he smallest int.eger such t.hat. C SC n))! is di vi s:. bl e by n) lhen 

we get. t.he following ~-stadardisations: 

* * a) S ~ -standardise 
1 

(IN ,.) in (IN ,S,+) because we have 

b) but. 

so S 

~ :SCa.b)SSCa)+SCb) 
1 

S verifie also lhe relat.ion 

!: • maxCSCa) ,SCb))SSCa. b) SSC a) . SCb) 
2' 

~ -standardi se 
2 

the structure • C IN ,.) in * . CIN ,:S,.) 

2. Smarandache functions of first kind •. The Smarandache 

function S is defined by means ot t.he tollowing 

functions S ~ for every prime number p let S: IN* -> IN* having 
p p 

t.he property that is di visibl e by 
n 

p and is the CS Cn))! 
p 

smallest. posit.ive integer with this property. Using the not.ion ot 

st.andardising functions in t.his section we give some generalisa-

sion ot s. 
p 

2.1.Definition.For every n E IN* the relation reIN-x IN* is deti­
n 

ned as follo......-s: i) if n= u1.c u=l or u 2 p number * pr i me • i EfN ) and 

- IN-a.b EO IN t.hen a r b it and only it it exi st.s leE such 
n 

t.hat. Ie: ! M 
i.a 

Ie: ! M 
l.b 

and le is the smallest posit.ive :II u = U 

:.nt.eger with t.his propert.y. 
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I. ~ I. 

1.1.) if 
1 z Ii 

t..hen :"1== PI . Pz P a 

:- = r " r " " r 
n t. I. I. 

P 1 Pz z P Ii 
1 ~ 

2.2. Daf i ni t. ion. For each n E t..he Smarandache funct..ion of 

. -first. kind is t..he numerical funct.ion S : IN -> IN def'i ned a.s follo ..... s 
n 

i) if n :2 ul.C u==l or u=p number pri me) t..hen S C a) = k, k bel:"lg 
n 

t..he smallest. posit..ive int..eger ..... i t..h t..he propert..y t.hat.. lc:! M 
la = u 

1.. I. 
1 2 s 

1.1. ) 
... 
1. n = Pi . P2 P5 t..hen S Ca) = l~t~; S I. C a.)} 

n P J 
j 

Let.. us observe t..hat.. 

a) t..he funct..ions S are 
n 

st..andardising funct.ions corresponding 

t..o t..he equivalence relat.ions 

for every -xe IN and S Cn) = 
1 

r and for 
n 

1 for every 

• n=l ..... e get. x = IN 
r 

1 

n. 

b) if n=p t.hen S is t..he funct.ion S def'ined by Smarandache. 
n p 

c) t..he funct.ions S are increasing and sO,are of' t.he same mono-
n 

Lonicit..y in t..he sense given in t..he above sect.i on. 

- . 2.3.Theore~The f'unct.ions S ,for n @ IN , L -st.andardise CIN ,+) in 

* CIN ,::S,+) by 

every b 1\.,* a, E Ln 

L: 
1 

and 

n 1 

max{S C a) ,S C b) }::SS C a+b)::SS C a) +S C b) 
n n n n n 

L -st..andardise 
z 

* C IN ,+) in * CIN ,::s,.) 

for 

by 

• L max-CS Ca) ,S Cb)} ::s S Ca+b) ::s S Ca). S Cb) ,f'or every a,b E IN 
z n n n n n 

Proof. Let., for inst..ance, p be a prime number i.. * ,n=p ,1 E IN and 

. -a == S C a), b = S . C b) ,le" S C a+b) .Then by t.he def'init.ion of' 
I. I. I. 

P P P 

* -

S 
n 

CDef'init.ion 2.2,) t.he numbers a ,b ,le are t.he smallest. posi-

t..ive int.egers such t.hat. 

Because 

• ia b- upi.b a!=Mp, c== ... and le!=MpiCa+b) 

- * a ::Sle and b ::s le ,so - . max{a ,b )::s Ie: 

That.. is t..he first. inequalit..ies in Land L holds. 
1 z - - _. No ...... Ca +b)! = a !Ca +1). C • b*) u_·, b-!-- upiCa+b) . a + = ...... . ... and 

9 



so • • k ~ a + b which implies 
1-

• 
that r: 

1 
is valide. 

If p , fro. the first case • we have 

r: . 
t . 1Ia.x{S ( a) , S 

\. \. 
(b)} ~ 5 ( a+b) 

I. 
~ 5 . (a) + S . (b),j=i7s 

I. I.. 
P J P j p j pJ PJ 

in consequence 

.ax{maxS 
J I. 

(a) , aaxS 
J i. 

(b)}~ aax{S . (a+b)} ~ 
J I. . 

1l~{S 1-

p.J 
J 

(a)} + 

aax{ S 
J 

pJ 
J 

I-

P J 
J 

(b) } 

P J 
J 

, j = 1,s 

P J 
J 

That is 

Dlax{S (a),S (b)} S 5 (a+b) ~ 5 Ca) + 5 (b) 
n n n n n 

For the proof of the second part in r: 
z let us notice that 

(a+b) I ~ (ab) I ~ a+b ~ ab .... a >.1 and b > 1 and that 

ours inequality is satisfied 

= 5 (b) = 1. 

for n=1 because 8 (a+b)=S (a)= 
1 t 

t 

Let now n>l.It results that for • • a = S (a) we have a > 1. Indeed, 
n 

• if then a = 1 if and only if S (a) = 
n 

= lIlax {s I. (a)} = 1 
J P J 

=p = 1 . ' 

so 

J 

n=l.It results that for every • n>l we have S (a)= a >1 
n 

• ••• • 

and 

Sn(b)= b > 1.Then (a +b )1 ~ (a .b )! we obtain 

5 (a+b) S S (a) + S (b)~ S (a).S (b) froll n > 1. 
n n n n n 

• 3. SlIIarandache functions of ttl. second kind. For every n e IN , let 

S by the Smarandache function of the first kind defined above. 
n 

3.1. Definition. The Smarandache functions of the second kind are 

the functions • • N ----+ IN defined by 
k • 

5 (n) =8 (k), for k EfN • 
n 

We observe that for k=l the function SK is the snarandache 

function S defined in [lJ,with the modify S{l)= 1.Indeed for. 

11>1 sl(n) = Sn(l) = Jn~X{Sp\(l)} = 1I~{Sp ( i. j )} = sen). 
J 
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3. 2. Theore& The 8marandache functions of the second kind L -stan-
3 

• • dardise (~,.) in (~,~,+) by 

l:. max{l(a),l(b)} s sle(a.b) s slc(a) + Slc(b),for every a,b E~· 3 . 

and 

l: . 
4· 

l: -standardise 
4 

• • (IN ,.) in (~ ,~,.) by 

Ie: Ie Ie le le • 
max{S (a),S (b)} ~ s (a.b) ~ S (a).S (b),for every a,bEN 

Proof.The equivalence relation corresponding to sle is 
le 

r, defined 

by 
Ie • • • Ie 

arb if and only if there exists a E IN such that a I =Ma , 

• ~le • 
a 1= nu and a is the smallest integer with this prop~rty. 

That is, the functions sle are standardising functions attached to 

the equivalence relations 
le 
r. 

This functions are not of the so.e monotonicity because, for exaa­

pIe, sZ(a) s SZ(b) ~ s(a
z

) s S(b
z

) and fro. these inequalities 

S1 ( a) s S1 (b) does not result. 

Now for every a,b E IN· let 
Jc • le • Ie 

S (a) = a ,S (b) = b ,8 (a.b)= s. 

• • Then a ,b,s are respectively these smallest positive integers 

• Ic •• Ie Jc Ie 
such that a = Ma , b I = Kb ,sl = M(a b ) and so sl =Ma = 

le •• • • =Mb ,that is, aSs and b S s,which implies that .ax{a,b }Ss 

or 
lc Ic Ie 

max { S (a), 8 (b)} S 8 (a. b ) (3.1) 

Because of the fact that 
•• •• Ic Ie 

(a + b ) 1 = M (a 1 b I) = M (a b ), it re-

• • suIts that s ~ a + b ,so 

l ( a . b ) S sle ( a ) + Sic ( b ) ( 3 .2) 

From (3.1) and (3.2) it results that 

Ie le()} < le() Sle(b) max{S (a),8 b - S a + (3.3) 

Which is the relation ~ 
3. 

Fro", 
• • •• Ie Ie Ie 

(a b ) 1 = M(a !.b !) it results that S (a.b) S S (a).S (b) 

and thus the relation ~ 
4 
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4. The Snar~nd~che ftmctions of the third kind. 

We considere two arbitrary sequances (a) 

(b) 

1=a1 ,az '· .. ,a
n

, ••• 

l=b,b, ... ,b .. 
1 Z n 

wi th the properties that ~r"\ = ~. an' ~n = b..:. b n • Obviously, there are 

infinitely many such sequences;because chosinq an arbitrary value 

for a, the next terms in the net can be easily determined by the 
Z 

imposed condition. 

b - -
b 

Let now the function f :{N ->IN 
a-

defined by f (n) = 5 (b ), 
a- a- n 

n 

5 is the 5marandache function of the first kind. Then it is ea-
a­

n 

sily to see that : 

( i) for a = 1 and b = n n @ !N-
n n' 

it results that fb = 5 
a- 1 

(ii) for a = n and b = 1 n e {N-
n n' 

it results that fb = 51 
c:L 

4. 1. Definition. The" 5marandache functions of the third kind are the 

functions b fb S = a- a-
in the case that the sequances (a) and (b) 

are different from those concerned in the situation (i) and (ii) 

from above. 

4.2.Theore~ The functions I:~-standardise -(IN ,.) in 

-(IN ,S, +,.) by 

I: : max {fb ( k) , fb ( n)} S fb ( k. n) S b . fb ( k) + h f~ (n) 
~ a- c:L c:L n a- ~ _ 

Proof.Let - b • = k, f (n) = 5 (b) = n 
c:L a- n 

and 
n 

=5 (h) = t . Then a- ~,.., - -k,n and t are the smallest positive in-
len 

teqers such that 
. ~ 

k I = H ~ , 

of course, 

• • aax{k ,n } S t 

12 

• b n 
n 1= H a 

n 
and 

~r"\ 
tJ= H a.:n 

(4.1) 



• • b • • b 
I} Ie n 

Now, because (bJ,: . n ) I = H(n (b . k )! = H(k ! ) and n 

• - - - - ble - b 
(bJ,: n + b k ) I = H[ (blc n )!.Cb k )I] = H[ (n ! ) . (k ! ) n] = n n 

b 
n 

= H[ (a 
n 

blc b 
(~ ) n ] it results that 

- -t ~ bnk + ~n (4.2) 

Fro. (4.1) and (4.2) we obtain 

( 4 .3) 

From (4.3) we qet L ,so the Smarandache functions of the 
~ 

third kind satisfy 

b b b b b -L: max{S (k),S (n)} ~ S (1m) ~ b S (k) + h S (nl,for evry k,ne!N 
" a. a. a. no. Ko. 

4. 3. Example. Let the sequances Ca) and (n) defined by a = b = n. n n 

• neiN • 

The correspondinq Smarandache function of the third kind is 

a. - • S :rN---+rN 
a: 

a. 
S (n) = S Cn) 

a. n 
and 

-,for every k,n&!N 

This relation is equivalent with the following relation written 

by meens '~i th the SJftarandache function: 
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THE SOLCTIO::'; OF THE DIOPHA~TI:-;E EQ"C"ATIO:'; O"ry(n) 

by Pal Gr0nas 

'0) n (._ 

This problem is closely connected to Problem 29916 in the first issue of the "Smarandache 
Function Journal" (see page 41 in [1]). The question is: "Are there an infinity of nonprimes 
n such that (71)( n) = n ':" . .'try calculations will show that the answer is negati ve. 

Let us move on to the first step in deriving the solution of (11). As the wording of 
Problem 29916 indicates. (11) is satisfied if n is a prime. This is not the case for n = L 

because crT) ( 1) = O. 
Suppose n1=1 p~' is the prime factorization of a composite number n ::::: 4, where PI, ... ,Pk 

are distinct primes, ri E N and PI rl ::::: Pi ri for all i E {1, ... , k} and Pi < pi+1 for all 
i E {2 ..... k - I} whenever k::::: 3. 

First of all we consider the case where k = 1 and rl ::::: 2. Using the fact that TJ(p~l) ~ PI 51 

we see that p~1 = n = (71)(n) = (71)(p~l) = L:~=o TJ(p~l) ~ L:~=o Pl 31 = PI rd;!+l). Therefore 

2p~!-1 ~ rl(ri + 1) (11t} for some rl 2: 2. For PI :::::.) this inequality(11d is not satisfied for 
any r1 ::::: 2. So Pl < 5, which means that Pl E {2,3}. By the help of (11d we Ean find a 
supremum for rl depending on the value of Pl' For Pl = 2 the actual candidates for rl are 2, 
:3, 4 and for PI = 3 the only possible choice is rl = 2. Hence there are maximum 4 possible 
solution of (11) in this case, namely n = 4, 8. 9 and 16. Calculating (71)(n) for each of these 
4 values, we get (71)(4) = 6. (71)(8) = 10. (71)(9) = 9 and (71)( 16) = 16. Consequently the only 
solutions of (11) are n = 9 and n = 16 . 

.:\"ext we look at the case when k ::::: 2: 

Substituting n with it's prime factorization we get 

k 

II r, 
Pi 

k 

(71) (II p;i) 
i=1 

rl rJc 

din 
d>O 

rl rJc k 

L"'LTJ(IIpfi) 
$! =0 '/t=0 i=l 

L ... L max{ TJ(p~1 ), ... ,77(P~/t) } 

rl rJc 

< L' .. L max{ Pl 31, ... ,Pit Sit} SlilCe TJ(p;i) ~ Pi Si 

1"1 rk 

< L' ., L max{ PI rl,' .. ,Pit rk} because Si ~ ri 

rl rk 

L ... L PI rl (Pl rl ::::: Pi ri for i ::::: 2 ) 

It 

< Pl rl II(ri + 1). 
i=1 

14 



which is equivalent to 

ITI< ~ < Plrdrl -+- 1) = rdrl + 1) 
, 1 r, r, -1 

.=2 Ti -;- Pl' Pl' 

This inequality moti\-ates a closer study of the functions f( x) = rC1.~l and g( x) = r~~:}) 
for x E 11, x L where a and b are real constants> 2_ The derivatives of these two functions 

f '( ') '~Z"( 1 I 11 d f() (-J:,.')r2~(2-ln")r+1 H f'() 0 f are x =(r~1)2lx+ )na- Jan g\x =' ;.rl • ence x> orx;:::l 

since (x + l)lna - 12: (1 + 1)ln2 -1 = 21n2 -1> O. So f is increasing on [Lx). 
.. 2-ln6+v'(ln6)2~4 , 

~foreover g(x) reaches Its absolute maXImum value for x = max{L 2lnb = x}. 

~ow J( In b)2 + 4 < In b + 2 for b 2: 2. which implies that x < (2-lnb2);!;-6-i-2) = ~b ~ ~2 < :3_ 
Futhermore it is worth mentioning that f( x) -+ x and g( x) -+ 0 as x -+ x. 

Applying this to our situation means that r~~1 (i 2: 2) is strictly increasing from ~ to 

x. Besides r1
(;/ ~/) ~ max{ 2. p~ , ~~ } = max{ 2. [)~ } ~ 3 because P~ 2: ~~ whenever PI 2: 2. 

P
1 

1 . • • 

". ( Combining this knowledge with (0.2) we get that IT7=2 ~ ~ IT7=2 /~l < r<11 "'"ill ~ rli:ll +?) ~ 
- • P, 

'3 (0 ) f 11 E -:'-T I th . d IT I< 2!. < 3 ,- IT4 E..!. > ~ . ~ . l - ~ > 3 h' h . ··3 or a r1 l'j. no er '.'.or s, .=22 ' .. ,ow i=22 _ 2 2 2 - 4 ., W IC 
implies that Ie ~ 3. 

L Ie _.) Th (0) d '0 ) h.E.i... rl(rl+1 ) d E1. 3' et us assume - _. en ··z an \·-3 state tat '1 < "1' an 2 <" I.e. 
r2~ PI 

P2 < 6. ~ext we suppose r2 ;::: 3. It is obvious that PI pz ;::: 2 . 3 = 6, which is equivalent to 
3 "2 

pz ;::: p
6
1' Csing this fact we get E; ~ r:~1 < rl;~/+/) ~ max{ 2.:r } ~ max{ 2,pz} = pz, so 

p~ < 4. Accordingly pz < 2. a contradiction which implies that r2 ~ 2. Hence pz E {2. 3,.S} 

and r2 E {L2}. 
"2 ( 

Futhermore 1 ~ "0
2
2 ~ r::'1 < rl :11 -+;1) ~ r:}:11'::(1), \vhich implies that r1 ~ 6. Consequently. 

PI 

by fixing the values of pz and r2, the inequalities r1
;/--/) > r:~l and PI rl ;::: P2 r2 give us 

enough information to determine a supremum (less than 7) for rl for each value of Pl' 
This is just what we have done, and the result is as follows: 

! pz I r2 I PI I rl n = p~l p;2 I (71)( n) I IF (71)(n) = n THE)l" I ! 

2 i 1 I :3 i 1 ~ rl ~ 3 2·:yl I 2 + 3rl (rl + 1) ! 312 i 

2 I 1 
I 

! 1 ~ rl ~ 2 I 2·yl i 
2 + .srI (Tl + 1) ! 512 ! .) i 

I ! 

! 2 I 1 I PI ;::: 7 I 1 2Pl I 2 + 2Pl I 0=2 I 
I I 

I 2 I 2 I 3 i 2 36 I 34 I 34 = 36 
I I I 

2 i 2 I PI 2: .s I 1 4Pl ! :3P1 ~ 6 i P1 = 6 
:3 [ 1 I 2 i 2 ~ rl ~ ·S I :3 . 2r, i .).,..2 _.) ~ p I rl = 3 I I i -' 1 _rl I -I 

3 I 1 I Pl;:::.s I 1 I 3Pl I 2Pl ---i- 3 I PI = 3 i , 

.s l 1 I 2 I :3 i 40 i 30 I 30 = 40 I i 

By looking at the rightmost column in the table above. we see that there are only contra­
dictions except in the case where n = :3· 2r1 and rl = :3. So n = 3.23 = 24 and (71)(24) = 24. 

In other words. n = 24 is the only solution of (0.) when Ie = 2. 
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Finally, suppose k = 3. Then we know that e; . Pf < 3, i.e. P2 P3 < 12. Hence P2 = 2 

and P3 "2: .'3. Therefore r1;;11+/) ~ rlJ;11~1) ~ 2 (S1-4) and by applying (fb) we find that 
. I 

[13 2!. = 2..l < ') a'ivina' P = 3 .=2 2 2 -, ~ ~ 3 . 

Combining the two inequalities (0. 2 ) and (n4 ) we get that 2'2
1

, 3',3
1 

< 2. Knowing that 
'-" I. '-' r2T rJ ~ 

the left side of this inequality is a product of two strictly increasing functions on [1, x), we 
see that the only possible choices for r2 and r3 are r2 = r3 = l. Inserting these values in 
If") ) 21 3' 3 r,(r,~1) < r'(r,~1) 'Th" l' h 1 ~ d' I (f")) , P ~2 , we get 1-. .. 1 ' 1+1 = 2 < 'p~l' 'r _ '5'1' 'r· IS Imp Ies t at rl = .. "1.ccor mg y H IS 

satisfied only if n = 2 . 3 . Pl = 6 Pl: 

1 1 

7](1) + 7](2) + 7](3) -+- 7](6) + .L.L 7](2i J1 Pl) 
;=01=0 

1 1 

- 0 + 2 + 3 + 3 + .L.L max{ 7](Pl), 7](2i 3]) } 

1 1 

8 + .L.L max{ Pl, 7](2i 31)} 
;=0 ]=0 

8 + 4Pl because 7](2i 31
):::; 3 < Pl for all i,j E {O, I} 

JJ 
Pl = 4 

which contradicts the fact that P1 "2: 5. Therefore (0) has no solution for k = 3. 

Conclusion: (71)(n) = n if and only if n is a prime, n = 9, n = 16 or n = 24. 

RE:\-fARK: A consequence of this work is the solution of the inequality (71)(n) > n (*). 
This solution is based on the fact that (*) implies (0 2 ), 

So (71)(n) > n if and only if n = 8,12,18,20 or n = 2p where p is a prime. Hence 
<7,.,(n) :::; n + 4 for all n E N . 

.\foreover, since we have solved the inequality (71)( n) "2: n, we also have the solution of 

<7,/(n) < n. 
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ON THE SUMATORY FUNCTION ASSOCIATED TO 

THE SMARANDACHE FUNCTION 

E:. Rad~-;;cc. , N. Ra.d .. scu , C. O ... m~tr~scu 

It is sald that for every numerical function f it can be atta-

shed the sumatory function : 

F (n) = I: fed) 
d In 

The function f is expressed as : 

fen) = I: ,u(u) .Fr(V) 
u.v=n 

( 1 ) 

( 2 ) 

Where ,u is the Mobius function (,u(l)=l I ,u(n)=O if n is 

divisible by 
lc 

the square of a prime number I ,u(n)=(-l) if n is the 

product of k different prime numbers) 

If f is the Smarandache function and n 

a 
F s ( p a) = r: s ( pJ ) 

J=1 

In [2} it is proved that 

p-1).j"a (j) 
Cpl 

a = p then 

( 3 ) 

Where d (j) is the sum of the digits of the integer j,written in 
[pl 

the generalised scale 

[pJ = a
1

(p) , az(p) , 

a. (p) = (p n _ 1) / (p - 1) 

• '. I a., (p) I ••• 
j( 

with 

So 
Ct 

F (p Ct ) = r: 5 (pl ) 
$ 

j= 1. 

= (p _ 1) a(a + 1) 
2 

a 

+ r: a (j) 
. Cpl 
J=1 

Using the expresion of 0 given by (3) it results 

a 
(a + 1) (5(p ) - a'Pl(a» 

17 

( 4 ) 



In the following we give an algorithm to calculate the 

the right hand of ( 4) . For this, let a = k .k 
Cpl il ~-1 

expreSi:il1 of a in the scale (p 1 and jCPl = k .k .k • ~ -1 1 
j ; 

shall say that ~ are the digits of order i, for j = 1,2, 
L 

j 

To calculate the sum of all the digits of order i,let ~~= 

Now we consider two cases 

( . ~ 
~I if k~x a, let: 

sum in 

.k 
l 

the 

. We 

,cr. 

ct-a. (p) +l. 
l 

z. (a) = ( k k .... k. ) 
;. ; s-l \.·t u=a.<P) 

, the equality u = a.(p) de-
L 

noth~g that for the number writen between parantheses,the classe of 

uni ts is a: (p) . 

Then z.(a) is the number of all zeros of order i for the inte-
L 

gers j S :;;;r and a = !.'. (a) z.(a) is the number of the non-null di-
L L 

gits. 

(ii) if k= 0, let n the greatest number,less then a,having a 
L 

non-null digit of order i.Then n is of the form : 

(3 = k k .... k. (k. -1)pOO .... 0 and of course s. (a) = 
Cpl • .-1, ,,-z " .. s. . " 

s. ((3).It results that there exist a.(n) non-null digits of order 1. 
\. \. 

Let A.,B.,r.,p. given by equalities 
I.. I. I.. I.. 

ex. = A ( (p - 1) a (p) + 1) + r. = A. ( a. ( p ) - a. (p» + r. 
.. L L 1.. \.+(. L l.. 

r. = B. a. (p) + P 
~ I.. i.. L 

Then 

s~ (a) = 

and 
a 

A. a (p) 
\. \. 

a 

p<p - 1) 

Z 
-A.p+a(p) 

\. \. 

B. !8 •• 1) 
'- \. 

z + P. (a + 1) 
\. \. 

I: s (a) = 
\. 

p<p - 1> 
I:A.a.(p} + p I: A. + 

·\'~1 \. " i.~1 \. 
r: o:pJ ( j) = z 

j = 1 \. = 1, 

_1_ I: a (p) B (B 
Z \,. L 1.. 

L~J. 

+ 1) + I:.o (B. + 1) 
i~J. l .. 

For example if a = 149 and p = 3 it results 

[3] 1, 4 , 13 , 40 , 121 , ... 
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.;! = 10202 ~ (a) = (1020) = 48 
:3J ' L ",=a. (3) 

a =!.J (a)-z (~) = 101 
1 1 1 

1 

For ($[31 = 10130 = 146 it results !.J (~) = 143 z 

(101)",:a. (;1 = u
3 

+ U = 3uz + 1 + u = 3(3u + 1) + 1 + u = 44 , 
z 

,:;( = 99 
z 

~ (CI) 
3 

( 10) = 40 . CI = 97 
.... =a. (3) 3 

3 

For .'5 
~31 

= 3000 =120 it results !.J (~) = 81 , z~ (f3) :: o , CI • = 108 . 
4 

v (Cl) = 2 9 , z (CI) = 0 ,;z = 29 and 
'5 ::s '::s' 

33 , r = 2 B _ [_z ] 
1 ' 1 - - a

1 

201 

Analogously Sz = 165 I 53 = 145 54 = 123 and s~ = 129 , so 

14.P 
l~O 

[0(3;(i) = 633 I F.( 3 ) = 22983 . 
L = 1 

Now let us cons i der n = with 

PI < P z < ... < P~ prime numbers.Of course, sen) = Px and from 

F .. (l) = 5(1) = 0 

= F( p) + 2p 
1 Z 

F (p .p .p ) = p + 2p + 2ZP3 = F(P .. pz) + 2ZP3 
»1 z 3 1. Z • 

it results 

That is 

1e-1 Ie = F (p . p . ... P,. ) + 2 p 
1. Z ~-1 

Ie . 
c-1 

.P
Ie

) =[2 p .. 
c= J. 

T~e ~~uality (2) becomes 

= F(n) - r: 
t. 

p. , .. it results 

19 

uv=n 

+ 1: F(p. ) .. 
i. = 1 



~- 1 Ie 

F( n 
} F(p .p . . Pie ) =I: j-l +I: i- t = 'PL-J. .Pt .. 1· 2 p 2' 

p, 1 Z J 1 = 1 j=i"l 

, - 1 
.p. ) + 2 F(p .p . 

1..-1 "'-1 l."Z 
.p, ). 

0( 

Analogously, 

F( n \ 
p. P. j 

J 

= F(p .p . 
l Z 

\..-1 
. p, J } + 2 F ( p. . p . 

'.-1 L .. t ~·Z 
.p ) + 

;-1 

;-1. 
+ 2' F (p . p ) j+l ... I( 

P
J 

= 

Finaly, we point out as an open problem that, by the Shapiro's 

theorem,ii it exist a numerical functi~n q: ~ ----> ~ such that 

g(n} = 2: P(n) S(.E...) 
d 

were P is a totaly multiplicative function and P(l) = I, then 

n S(n} = 2: .w(d) P(d) q( d) 
d!" 
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A. proof of the non-existence of ;, Samma:' . 

by Pal Gr~nas 

Introduction: If rt=1 pii is the prime factorization of the natural number n 2: 2, then 
it is easy to verify that 

A: 

S(n) = S(IIp;i) = max{ S(p~i) }7=1. 
i=1 

From this formula we see that it is essensial to determine S(pr), where p is a prime and 
r is a natural number. 

Legendres formula states that 

k ,\,00 

(1) I - II L...m=l [nipi] n. - Pi . 
;=1 

The definition of the Smarandache function tells us that S(pr) is the least natural num­
ber such that pr I (S(pr))!. Combining this definition with (1), it is obvious that S(pr) must 
satisfy the following two inequalities: 

(2) 
00 00 

" [S(pr)-lJ < r <" [s(pr)J. 
~ p'" J - ~ p'" J 
k=1 k=l 

This formula (2) gives us a lower and an upper bound for S(pr), namely 

(3) (p-l)r+1 < S(pr) < pro 

It also implies that p divides S(pr), which means that 

S(pr) = p(r - i) for a particular 0 < z < [!.::l]. 
p 

"Samma": Let T(n) = 1 - log(S(n)) + 2:7:2 S(i) for n 2: 2. I intend to prove that 
limn _= T(n) = 00. i.e. "Samma" does not exists. -

First of all we define the sequence PI = 2, P2 = 3, P3 = 5 and pn = the nth prime. 
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~ext we consider the natural number p~. )/'ow (3) gives us that 

(4) 

s(l) < Pi k Yi E {l, ... ,m} and Yk E {l, ... ,n} 

tl-
l 1 

> 
S(p7) Pi k 

tI-

p;:' 1 
L:- > 
k=2S(k) 

since S(k) > a for all k 2 2, p~ ~ p~ whenever a ~ m and b ~ n and p~ = p~ if and 
only if a = c and b = d. 

Futhermore S(p~) ~ pm n, which implies that -log S(p~) 2 -log(Pm n) because log x 
is a strictly increasing function in the intervall [2,00). By adding this last inequality and 
(4), we get 

T(p':,.) 

T(P:r,m) 

lim T (P:r,m ) 
m-00 

since both Li=l t and Li=l plJc diverges as t -+ 00. In other words, liffin_oo T( n) = 00. 0 
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CALCULATING THE SMARANDACHE FUNCTION FOR POWERS OF A PRIME 

J. R. SUTTON 
(16a Overland Road. Mumbles. SWANSEA SA3 4LP. UK) 

Introduction 

The Smarandache function is an integer function. S. of an 
integer variable. n. S is the smallest integer such that 
S! is divisible by n. If the prime factorisation of n is 
known 

II . Pi 
n = m~ 

where the p; are primes then it has been shown that 

so a method of calculating S for prime powers will be 
useful in calculating Sen). 

The inverse function 

It is easier to start with the inverse problem. For a given 

prime. p, and a given value of 5. a multiple of p. what is 
the maximum power. m. of p which is a divisor of 5! ? If we 
consider the case p=2 then all even numbers in the 
factorial contribute a factor of 2, all multiples of 4 
contribute another, all multiples of 8 yet another and so 
on. 

m = 5 DIV2 + (S DIV2)DIV2 + ((5 DIV2)DIV2)DIV2 + ••• 

In the general case 

m = 5 DIVp + (S DIVp)DIVp + ((5 DIVp)DIVp)DIVp + ••• 

The series terminates by reaching a term equal to zero. The 
Pascal program at the end of this paper contains a function 
inv5pp to calculate this function. 
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Using the inverse function 

If we now look at the values of 5 for succesive powers of 
prime, say p=3, 

m 1 2 3 4 5 6 7 8 9 10 
* * * * * * * * 

S(3"m) 3 6 9 9 12 15 18 18 21 24 

where the asterisked values of m are those found by the 
inverse function, we can see that these latter determine 
the points after which S increases by p. In the Pascal 
program the procedure tabsmarpp fills an array with the 
values of 5 for successive powers of a prime. 

The Pascal program 

a 

The program tests the procedure by accepting a prime input 
from the keyboard, calculating S for the first 1000 powers, 
reporting the time for this calculation and entering an 
endless loop of accepting a power value and reporting the 
corresponding 5 value as stored in the array. 

The program was developed and tested with Acornsoft ISO­
Pascal'on a BBC Master. The function 'time' is an 
extension to standard Pascal which delivers the timelapse 
since last reset in centi-seconds. On a computer with a 
65C12 processor running at 2 MHz the 1000 S values are 
calculated in about 11 seconds, the exact time is slightly 
larger for small values of the prime. 

program TestabSpp(input,output); 
'liar t,p,x: integer; 
Smarpp:array(1 .. 1000] of integer; 

function invSpp(prime,smar:integer):integer; 
'liar m,x:integer; 
begin 
m:=O; 
x:=smar; 
repeat 
x:=x div prime; 
m:=m+x; 
until x<prime; 
invSpp:=m; 
end; {invSpp} 
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procedure tabsmarpp(prime,tabsize:integer)i 
var i,s,is:integer; 
exit:booleani 
begin 
exit:=false; 
1:=li 
is:=l; 
s:=pr1mei 
repeat 
repeat 
Smarpp(1]:=s; 
1:=i+1; 
if 1>tabs1ze then ex1t:=true; 
until (1)1s) or exit; 
s:=s+prime; 
is:=invSpp(pr1me,s); 
unt11 exit; 
end; {tabsmarpp} 

begin 
read(p); 
t: =_t ime; 
tabsmarpp(p,1000); 
writeln((time-t)/lOO); 
repeat 
read(x)i 

writeln('Smarandache for' ,p,' to power ',x,' Is ',Smarpp[~])i 
until falsei 
end. {testabspp} 
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CALCULATING THE SMARANOACHE FUNCTION WITHOUT FACTORISING 

J. R. SUTTON 
(16A Overland Road, Mumbles, SWANSEA SA3 4LP, UK) 

Introduction 

The usual way of calculating the Smarandache function Sen) is to 
factorise n, calculate S for each of the prime powers in the 
factorisation and use the equation 

(S
f;, Pi) ) 

S(n) = Max 1m 

This paper presents an alternative algorithm for use when S is to be 
calculated for all integers up to n. The integers are synthesised by 
combining all the prime powers in the range up to n. 

The Algorithm 

The Pascal program at the end of this paper contains a procedure 
tabsmarand which fills a globally declared array, Smaran, with the 
values of S for the integers from 2 to the limit specified by a 
parameter. The calculation is carried out in four stages. 

Powers of 2 

The first stage calculates S for those powers of 2 that fall within 
the limit and stores them in the array Smaran at the subscript which 
corresponds to the value of that power of 2. At the end of this stage 
the array contains S for:-

2,4,8,16,32 .... 

interspersed with zeros for all the other entries. 

General case 

The next stage uses succesive primes from 3 upwards. For each prime 
the S values of the relevant powers of the prime. and also the values 
of the prime powers are calculated, and stored in the arrays Smarpp 
and Prpwr, by the procedure tabsmarpp. This procedure is essentially 
the same as that in a previous paper except that: 

a) the calculation stops when the last prime power exceeds 
the limit 

and b) the prime powers are also calculated and stored. 
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Then for each non-zero entry in Smarand that entry is multiplied by 
successive powers of the prime and the S values calculated and stored 
in Smarand. Both of these loops terminate on reaching the limit value. 
Finally the S values for the prime powers are copied into Smarand. 
After the prime 3 the array contains:-

2,3,4,0,3,0,4,6,0,0,4 .... 

This process is followed for each prime up to the square root of the 
limit. This general case could be continued up to the limit but it is 
more efficient to stop at the square root and treat the larger primes 
as seperate cases. 

Largest primes 

The largest primes, those greater than half the limit, contribute only 
themselves, S(prime)=prime, to the array of Smarandache values. 

Multiples of prime only 

The intermediate case between the last two is for primes larger than 
the square root but smaller than half the limit. In this case no 
powers of the prime are needed, only multiples of those entries 
already in Smarand by the prime itself. The prime is then copied into 
the array. 

The Pascal program 

The main program calls tabsmarand to calculate S values then enters a 
loop in which two integers are input from the keyboard which specify a 
range of values for which the contents of the array are displayed for 
checking. 

The program was developed and tested with Acornsoft ISO-Pascal on a 
BBC Master computer. The function 'time' delivers the time lapse (in 
centiseconds) since last reset. On a computer with a 65C12 processor 
running at 2MHz the following timings were obtained:-

limit seconds 
1000 6.56 
2000 12.87 
3000 19.19 
4000 25.64 
5000 31.80 

In this range the times appear almost linear. It would be useful to 
have this confirmed or disproved on a larger, faster computer. 
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program Testsmarand(input.outPut)i 
const limit=5000i 
var count.st.fin:integer; 
Smaran:array[l .. 5001] of integer; 

procedure tabsmarand(limit:integer)i 
var count.t.i.s.is.pp.prlme.pwcount.mcount,multiple: integer; 
exit: boolean; 
Prpwr:array[l .. 12] of integer; 
Smarpp:array[l .. 12] of integer; 

function max(x,y: integer):integeri 
begin 
if x>y then max:=x else max:=y; 
end; {max} 

function invSpp(prime,smar:integer):integer; 
var n,x:integer; 
begin 
n:=O; 
x:=smar; 
repeat 
x:=x div prime; 
n:=n+Xi 
until x<prime; 
invSpp:=n; 
end; {invSpp} 

procedure tabsmarpp(prime,limit:integer)i 
var i,s.is,pp:integer; 
exit:boolean; 
begin 
exit:=false; 
pp: =li 
i: = 1 ; 
is:=l; 
s:=primei 
r-epea t 
repeat 
Smarpp[i]:=s; 
pp:=pp*primei 
Prpwr[i]:=pp; 
1:=i+1; 
If pp>llmit then exit:=truei 
untIl (l>is) or exiti 
s:=s+primei 
is:=invSpp(prlme,s)i 
until exiti 
end; {tabsmarpp} 
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begin writeln('Calculate Smarandache function for all integers up to 
, ,limit); 
for count:=1 to limit do Smaran[count):=O; 
Smaran(limit+1]:=limit+1; 
t:=time; 

{powers of 2} 
5:=2; 
i:=1; 
is:=1; 
pp:=1; 
exit:=false; 
repeat 
repeat 
pp:=pp*2; 
Smaran[pp):=Si 
i:=i+1; 
if 2*pp>limit then exit:=true; 
until (1)15) or exit; 
s:=s+2; 
is:=invSpp(2,s); 
until exit; 

{general case} 
prime:=3; 
repeat 
tabsmarpp(prime,limit); 
mcount:=1; 
repeat 
pwcount:=l; 
multiple:=mcount*p~ime; 

repeat 
if multiple<=limit then 

if Smaran[multiple]=O then 
Smaran(multiple]:=max(Smaran[mcount),Smarpp(pwcount]); 

pwcount:=pwcount+1; 
multiple:=mcount*Prpwr[pwcount]: 
until multiple>limit; 
repeat 
mcount:=mcount+l; 
until Smaran[mcount)<>O; 
until mcount*prime>limlt; 
pwcount:=l; 
repeat 
Smaran(Prpwr(pwcount)):=Smarpp(pwcount]; 
pwcount:=pwcount+l; 
until Prpwr[pwcount]>limit; 
repeat 
prime:=prime+l: 
until Smaran[prime]=O; 
until prime*prime>limit; 
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{multiple case} 
repeat mcount:=l; 
multiple:=prime; 
repeat 
if multiple<=limlt then 

if Smaran[multiple]=O then 
Smaran[multiple]:=max(Smaran[mcount].prime); 

repeat 
mcount:=mcount+l; 
until Smaran[mcountJ<>O; 
multiple:=mcount*prime; 
until multlple>limit; 
Smaran[prlme]:=prime; 
repeat 
prime:=prime+l; 
until Smaran[prime]=O; 
until prime>limit/Z; 

{largest primes} 
count:=l; 
repeat 
if Smaran[count]=O then Smaran[count]:=count; 
count:=count+l; 
until count>limiti 
writelnCCtlme/t)/100.'seconds'); 
end; {tabsmarand} 

begin 
tabsmarandClimlt); 
repeat 
writelnC'Enter start and finish integers for display of results'); 
read(st.fln); 
if (st>l) and (st<=llmit) and (fin<=limit) then 

for count :=st to fin do writeln(count,Smaran[count]); 
until fin=l; 
end. {Testsmarand} 
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A BRIEF HISTORY OF THE "SMARANDACHE FUNCTION" ( II 

by Dr. Constantin Dumitrescu 

We apologize, but the following conjecture that: 
the equation S(x) = S(x+1), where S is the Smarandache 
Function, has no solutions, 

was not completely solved. 
Any idea about it is wellcome. 

See the previous issue of the journal for the first part of this 
article } 

***************************************************************** 

ADDENDA: 
New References concerninig this function (got by the editorial 
board after January 1, 1994) 

[69] P. Melendez, Belo Horizonte, Brazil , respectively T. 
Martin, Phoenix, Arizona, USA, "Problem 26.5 " [questions 
(a), respectively (b) and (c)], in <Mathematical 
Spectrum>, Sheffield, UK, Vol. 26, No.2, 56, 1993; 

[70] Veronica Balaj, Interview for the Radio Timi 90ara, 
November 1993, published in <Abracadabra>, Salinas, CA, 
Anul II, Nr. 15, 6-7, January 1994; 

[71] Gheorghe Stroe, Post face for <Fugi t / ju+="nal de 
lagar> (on the back cover), Ed. Tempus, Bucharest, 1994; 

[72] Peter Lucaci, "Un membru de valoare in Arizona", in 
<America>, C':'eveland, Ohio, Anul 88, Vol. 88, No.1, p. 
6, January 20, 1994; 

[74] Debra Austin, "New Smarandache journal issued" , in 
<Honeywell Pride>, Phoenix, Year 7, No.1, p. 4, January 
26, 1994; 

[75] Ion Pachia Tatomirescu, "Jurnalul unui emigrant in 
<paradisul diavolului>", in <Jurnalul de Timi 9>, 
Timi 90ara, Nr. 49, p.2, 31 ianuarie - 6 februarie 1994; 

[76] Dr. Nicolae Radescu, Department of Mathematics, 
University of Craiova, "Teoria Numerelor", 1994; 

[77] Mihail I. Vlad, "Diaspora romaneasca / Un roman se afirma 
ca matematician $i scriitor in S.U.A.", in <Jurnalul de 
Targovi$te>, Nr. 68, 21-27 februarie 1994, p.7; 

[78] Th. Marcarov, "Fugit ... / jurnal de lagar", in <Romania 
libera>, Bucharest, March 11, 1994; 

[79] Charles Ashbacher, "Review of the Smarandache Function 
Journal", to be published in <Journal of Recreational 
Mathematics>, Cedar Rapids, IA, end of 1994; 

[80] J. Rodriguez & T. Yau, "The Smarandache Function" 
[problem I, and problem II, III ("Alphanumerics and 
solutions") respectively], in <Mathematical Spectrum>, 
Sheffield, United Kingdom, 1993/4, Vol. 26, No.3, 84-5; 
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[81] J. Rodriguez, Problem 26.8, in <Mathematical Spectrum>, 
Sheffield, United Kingdom, 1993/4, Vol. 26, No.3, 91; 

[82] Ion Soare, "Valori spirituale valcene peste hotare", in 
<Riviera Valceana>, Rm. Valcea, Anul III, Nr. 2 (33), 
February 1994; 

[83] $tefan Smarandoiu, "Miscellanea", in <Pan Matematica>, 
Rm. Valcea, Vol. 1, Nr. 1, 31; 

[84] Thomas Martin, Problem L14, in <Pan Matematica>, Rm. 
Valcea, Vol. 1, Nr. 1, 22; 

[85] Thomas Martin, Problems PP 20 & 21, in <Octogon>, Vol. 2, 
No. I, 31; 

[86] Ion Prodanescu, Problem PP 22, in <Octogon>, Vol. 2, No. 
1, 31; 

[87] J. Thompson, Problem PP 23, in <Octogon>, Vol. 2, No.1, 
31; 

[88] Pedro Melendez, Problems PP 24 & 25, in <Octogon>, Vol. 
2, No.1, 31; 

[89] C. Dumi trescu, "La Fonction de Smarandache - une nouvelle 
fonction dans la theorie des nombres" , Congres 
International <Henry-Poincare>, Universite de Nancy 2, 
France, 14 - 18 Mai, 1994; 

[90] C. Dumitrescu, "A brief history of the <Smarandache 
Function>", republished in <New Wave>, 34, 7-8, Summer 
1994, Bluffton College, Ohio; Editor Teresinka Pereira; 

[91] C. Dumitrescu, "A brief history of the <Smarandache 
Function>", republished in <Octogon>, Bra~ov, Vol. 2, No. 
I, 15-6, April 1994; Editor Mihaly Bencze; 

[92] Magda Iancu, "Se intoarce acasa americanul / Florentin 
Smarandache", in <Curierul de Valcea>, Rm. Valcea, Juin 
4, 1994; 

[93] I. M. Radu, Bucharest, Unsolved Problem (unpublished); 
[94] W. A. Rose, University of Cambridge, (and Gregory 

Economides, Uni versi ty of Newcastle upon Tyne Medical 
School, England), Solutions to Problem 26.5, in 
<Mathematical Spectrum>, U. K., Vol. 26, No.4, 124-5. 
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An Illustration of the Distribution of the Smarandache Function 

by Henry Ibstedt 

The cover illustration is a representation of the values of the Smarandache function for 1]:5; 53. 
The group at the back of the diagram essentially corresponds to S(P) =p, the middle group to 
S(2p) = P (pf2) while the front group represents all the other values of S( n) for 1]:5; 53. 

Diagram 1. Distribution of S(n) up to n = 32000 (not to scale) 

y 
Number of values of S(n) on lines y= kx . 

Number of values of S(n) falling between lines: 

1862 

707 

22835 values of S(n) fall below the line y = xJ6 x 

It may be interesting to take this graphical presentation a bit further. All the values of 
S(n) for 1]:5;32000 (conveniently chosen in order to use short integers only) have been sorted 
as shown in table 1. Of the 19114 points (o,S(n» situated above the line y = x/50 only 61 
points fall between lines. All of these of course correspond to cases where n is not square free. 
Diagram 1 illustrates this for the lines y=x, y=x/2, y=x/3, y=x/4, y=x/5 and y=x/6. The top 
line contains 3433 points (o,S(n) although there are only 3432 primes less than 32000. This is 
because (4,S( 4 » belongs to this line. 
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TABLE 1. On the distribution of the Smarandache runction Sen) for ns32000. 

N = number of values of Sen) on the line y=x/k, i.e. S(n)=n/k. The points 
(n, S (n» are the only ones between lines y=x/k and y=x/(k+l) for k<50. 

k N Points (n,S(n) ) between lines: 

1 3433 9, 6) 
2 1862 16, 6) 25, 10) 
3 1302 49, 14) 
4 1006 
5 832 121, 22) 
6 707 169, 26) 
7 616 45, 6) 75, 10) 
8 550 125, 15) 289, 34) 
9 495 361, 38) 

10 450 147, 14) 
11 417 529, 46) 
12 387 
13 359 80, 6) 
14 336 841, 58) 
15 321 961, 62) 
16 301 250, 15) 343, 21) ( 363, 22) 
17 283 ( 175, 10) 245, 14) 
18 273 (1369, 74) 
19 256 ( 507, 26) 
20 250 ( 243, 12) (1681, 82) 
21 239 (1849, 86) 
22 227 ( 225, 10) 
23 213 (2209, 94) 
24 218 
25 204 ( 256, 10) ( 867, 34) 
26 196 (2809,106) 
27 190 ( 605, 22) 
28 187 (1083, 38) 
29 176 (3481,118) 
30 179 (3721,122) 
31 163 ( 441, 14) ( 625, 20) 
32 164 ( 686, 21) ( 845, 26) 
33 159 ( 500, 15) (4489,134) 
34 154 (1587, 46) 
35 154 (5041,142) 
36 153 (5329,146) 
37 139 
38 139 ( 539, 14) ( 847, 22) 
39 136 (6241,158) 
40 139 ( 486,12) (1331, 33) 
41 125 (6889,166) 
42 133 ( 512, 12) (1445, 34) 
43 119 (2523, 58) 
44 125 (7921,178) 
45 126 ( 637, 14) (1183, 26) 
46 117 (2883, 62) 
47 109 (1805, 38) 
48 120 ( 729, 15) (9409,194) 
49 114 (1089, 22) 
50 112 

Number of elements below y x/50: 12774 . 
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PROBLEM (1) 
by J. Rodriguez, Sonora, Mexico 

Find a strictly increasing infinite series of integer numbers 
such that for any consecutive three of them the Smarandache 
Function is neither increasing nor decreasing. 

*Find the largest strictly increasing series of integer numbers 
for which the Smarandache Function is strictly decreasing. 

a) To solve the first part of this problem, we construct the 
following series: 

where P3 , P4 , Ps .. , are the series of prime odd numbers 5, 7, 11 

for any i ~ 3. 

b) A way to look at this unsolved question is the following: 
Because S(p) = p, for any prime number, we should get a large 
interJal in between two prime numbers. A bigger chance is 
when p and q, the primes with that propriety, are very large 
(and q #- P + c, where c = 2, 4, or 6). In this case the 
series is finite. But this is not the optimum method! 

The Smarandache Function is, generally speaking, increasing {we 
mean that for any positive integer k there is another integer j > 
k such that S(j) > S(k)}. This property makes us to think that our 
series should be finite. 

Calculating at random, for example, the series' width is at least 
seven, because: 

for n = 43, 46, 57, 68, 70, 72, 120 then 
S(n) = 43, 23, 19, 17, 10, 6, 5 respectively. 

We are sure it's possible to find a larger series, but we worry if 
a maximum width does exist, and if this does: how much is it? 
[Sorry, the author is not able to solve it!] 

See: Mike Mudge, "The Smarandache Function" in the <Personal 
Computer World> journal, London, England, July 1992, page 420. 
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Solution of a problem by J. Rodriguez 

by Pal Gr~mas 

ProbleC71: ~ Find the largest strictly increasing series of integer numbers for which the 
Smarandac:le Function is strictly deceasing". 

'\Iy intention is to prove that there exists series of arbitrary finite length with the prop­
erties described above. 

To begin with, define PI := 2, P2 := 3, P3 := 5 and more generally, pn := the nth prime. 
:.iO\V we have the following lemma: 

Lemma: PI; < PI;~I < 2 PI; for all k E: N. (6). 
Proof: :\. theorem conjectured by Bertrand Russell and proven by Tchebychef states that 

for ail natural numbers n ~ 2, there exists a prime P such that n < P < 2n. Using this 
theorem for n := PJc, we get Pic < P < 2 Pic (*) for at least one prime p. The smallest prime 
> PI; is Phi' so P ~ PIc-r1' But then it is obvious that (-*") is satisfied by P := PIc+1' Hence 
Pic < PJc-r1 < 2plc. c 

This lem.rna plays an important role in the proof of the rollowing theorem: 

Theorem: Let n be a natural number ~ 2 and define the series {Xdk:J of length n 
by XJc = 2';' P2n.-l; for k E {a ..... n - I}. Then XJc < XJc+1 and 5(xlc) > 5(x.I;+tJ for all 
kE{0 .... ,n-2}. (12) .. 

Proof: For k E {a, ... , n - 2} we have the following equivalences: Xk < XJc+1 ~ 

:zk P2n.-1; < 2k+I P2n.-k-1 ~ p2n-k < 2P2n-k-I according to Lemma (6). 
Futhermore Ph-k ~ P2n-(n-1) := pnH ~ P3 = .S > 2, so (P2n-k, 2) = 1 for all k E 

{O .... ) n - I}. Hence 5(xi:) := 5(2'" P2n-Jc) = max{ 5(2.1:), 5(Ph-Jc)} = max{ 5(2.1:), Ph-d. 
Consequently P2n.-Jc :s 5( Xk) :s max{ 2k, Ph-i: } ('*') since 5(2.1:):s 2k. 

\foreover we know that PHI - Pic ~ 2 for all k ~ 2 because both Pic and Pk+! are 
odd integers. This inequality gives us the following result: 

n-1 n-1 
L~k+1 - plc)= pn - P2 = Pn - 3 ~ L 2 = 2(n - 2), 
Jc=2 1c=2 

so pn ~ 2n - 1 for all n ~ 3. In other words, Pn+1 ~ 2n + 1 > 2(n - 1) for n ~ 2, i.e. 
p2n-i: > 2k for k = n - 1. The fact that P2n-i: increases and 2k decreases as k decreases 
from n - 1 to a implies that P2n-k > 2k for all k E {a, ... , n - I}. From this last 
inequality and ( .. ) it follows that 5( Xi:) = P2n-k. This formula brings us to the conclusion: 
5(xlc) = P2n-l; > P2n-k-1 = 5(xJc+d for all k E {a, ... , n - 2}. 0 

Example: For n = 10 Theorem (12) generates the following series: 

k I 0 11213/415 6 118/ 9 . 

Xi: I 71 I 134 I 244 I 472 I 848 I 1504 / 2752 I 5248 9472 I 15872 
srX:') I 71 I 67 I 61 I 59 i 53 I 47 I 43 I 41 I 37 I 31 I 
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Problem (2) 
J. Rodriguez, Sonora, Mexico 

*Is it posible to extend the Smarandache Function from the 
integer numbers to the rational numbers (by finding then a rational 
approach to the factorials, i. e. (3/2)! = ? ) ? 

*More intriguering is to extend this function to the real numbers 
(by finding then a real approach to the factorials, i.e. (~5)! = ? 
) ? 

*Idem for the complex numbers (i.e. (4 + 6i)! = ? ) ? 

For example, we know that the Smarandache Function is defined as 
follows: 

S : Z \ {O} ~ NT Sen) is as th~ smallest integer such that 
(S (nl) ! = 1x2x3x ... xS (n) is divisible by n. 

But what about S(1/2), or S{il), or S(-i) are they equal to what? 
It's interesting to try enlarging this funtion adopting in the same 
time new definitions for division and factorial, respectively. 

Reference: 
Mike Mudge, "The Smarandache Function", in the <Personal­

Computer World> journal, London, July 1992, p.420. 
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PROPOSED PROBLEM (3) 

Let 1 (n) be Smarandache Function: 

that m! is divisible by n. Calculate 

prime number. 

Solution. 

The answer is pZ , because: 

the smallest integer m such 
p t- i. 

'1 (p ), where p is an odd 

p"'! = 1·2· ... ·p· ... ·(2p)· .,. '«p-l)p)' .. , '(pp), which is div'isible 

p+1 
by p 

z 
Any another number less than p will have the property that its 

I< 
factorial is divisible by p I with k < P + 1, but not 

p + 1 
divisible by p 

Pedro Melendez 
Av. Cristovao Colombo 336 
30.000 Belo HOf'izonte, MG 
BRAZIL 
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PROPOSED PROBLEM (4) 

Let ffi be a f~xed positive integer. Calculate: 

lim "I. (p. m) /p. 
~_oo I.. I.. 

wr.ere 1(n) is Smarandache Function defined as the smallest inteqer m such that m! is divisible by n, and p. the prime series. \.. 

Solutior:: 

We note by Pi a prime number greater than m. We sho'N' that 
m . . ~(p~ ) = mPi' for any ~ > J : 

if by .absurd 1. (p~"") = a < mp~ then 

a! = l' 2· .,. 'p.' .... (2pJ' .... «m-k)pJ· ... · a, with k > 0, will be t.. (,. &. 
m-K m divisible by p. but not by p. 

(. (,. 

Then this limit is equal to ffi. 

Pedro Melendez 
Av. Cristovao Colombo 336 
30.000 Belo Horizoote, MG 
BRAZIL 
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PROBLEM OF NUMBER THEORY (S) 

Prove that the e~~ation 

by A. Stuparu, VAlcea, Romania, and 
D. W. Sharpe, Sheffield, England 

Sex) = p, where p is a given prime number, 

has just D«p-I)!) solutions, all of them in between p and p! 
[ S(n) is the Smarandache Function: the smallest integer such that 

S(n)! is divisible by n, 
and D(n) is the number of positive divisors of n J. 

PROOF (inspired by a remark of D. W. Sharpe) 

Of course the smallest solution is x = p, and the largest one is 
x = p! 
Any other solution should be an integer number divided by p, but 
not by p2 (because S (kp2) >= S (p2) = 2p, where k is a positive 
integer) . 

Therefore x = pq, where q is a a divisor of (p~l) 

Reference: "The Smarandache Function", by J. Rodriguez (Mexico) & 
T. Yau (USA), in <Mathematical Spectrum>, Sheffield, 

UK, 1993/4, Vol. 26, No.3, pp. 84-5; Editor: D. W. 
Sharpe. 

Examples (of D. W. Sharpe) 
Sex) = 5, then x e { 5, 10, 15, 20, 30, 40, 60, 120} (eight 

solutions) . 
Sex) = 7 has just 30 solutions, because 6! = 24X3 2xSl and 6! has 

just 5x3x2 = 30 positive divisors. 
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A PROBLEM CONCERNING THE FIBONACCI RECURRENCE (6) 

by T. Yau, student, Pima Community College 

-Let Sen) be defined as the smallest integer such that (S(n»! is 
divisi.ble by n (Smarandache Function). For what triplets this 
function veri.fies the Fibonacci relationship, i.e. find n such that 

Sen) + S(n+l) = S(n+2) ? 

Solution: 
Checking the first 1200 numbers, I found just two triplets for 
which this function verifies the Fibonacci relationship: 

S (9) + S (10) = S (11) ~ 6 + 5 = 11, 
and 

S (119) + S (120) = S (121) ~ 17 + 5 a 22. 
-How many other triplets with the same property do exist ? 

(I can't find a theoretical proof ... ) 

Reference: 
M. Mudge, "Mike Mudge pays a return visit to the Florentin 

Smarandache Function", in <Personal Computer World>, London, 
February 1993, p. 403. 
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GENERALISATION DU PROBLEME 1075* (7) 

Soit n un nombre positif entier > 1. 
Trouver Card{x, Tl(x) = n}. L'on a note par Tl(x) la Fonction 
Smarandache: qui est definie pour tout entier x comme Ie plus petit 
nombre m tel que m! est divisible par x. 

M. Costewitz, Bordeaux, France 

SOLUTION DU PROBLEME'*: 
(Ce probleme est dans un sens une generalisation du probleme 1075, 
publie dans l' Elemente der l1athematik*.o) 
Soit n = rid, ... r3ds , la decomposition factorielle unique de ce 
nombre. 

Calculons pour tout 1 ~ ~ ~ s, 

de a. 

00 

r 
j=l 

ei ~ d i ~ 1, ou [aJ signifie la partie entiere 

C'est-~-dire: n! se divise par ri~ , pour tout 1 ~ i ~ s. 
Nous nottons par M l'ensemble demande. 

Biensur, 

s 
u{ 

i=l 
r. ei. -<1i.,.l } eM. 

, 1. 

Nous nottons par R Ie membre gauche de l' inclusion anterieure, et 
par 

= 

R' i {ri
ei - d;, •.. , r i , 1 }, pour tous les i . 

Soient ql' . , qt tous les nombres premiers differents entre eux, 

plus petits que n, et non-diviseurs de n. II est clair que ceux-ci 
sont tous differents de r 1 , ... , r 3. 

Construisons les suivantes suites finies: 

2 qt , ... , 
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qt+l > n; 
et 

00 

fk L [ nl ch ], pour tous les k. 
j=l 

t 
Nous formons q = IT ( 1 + fk 

k=l 
de eombinaisons entre les nombres 

(elements) de eettes suites, que nous reunissons dans un ensemble 
notte par Q. 

Il est evident que ehaque solution de l'equation ~(x) = n doit 
etre de la forme: a~be, pour tous les i, 

Done, le nombre 

( ~ R
i
) U 

j=l 
j*i 

US R' ~ ) , 
j=l J 

j*i 

e E Q. 

des solutions pour l'equation 
s 

q L d i 

i=l 
nS 

( e. + 1 ) . 
j=l 
j*i 

demandee est egale a 

['Voir: Aufgabe 1075 par Thomas Martin, "Elemente der Mathematik", 
Vol. 48, No.3, 1993] 

['·Solution eompletee par les editeurs (C. Dumitreseu)] 
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A PROBLEM OF MAXIMUM (8) 
by T. Yau, student, Pima Community College 

Let S(n) be defined as the smallest 
divisible by n (Smarandache Function) 

max { S (n) In} , 
over all composite integers n ~ 4. 

integer such that (S(n» 
Find: 

Solution: 
r: 

Let n = p::. . 

Because S(n) = 

.,... -. 
p. , its canonical factorial decomposition. 

max { S (Pi. ) 
l:::;i:::;s 

rj 

} = S (Pj ) :::; p,r. 
J J' 

it's easy to see that n should have only a prime divisor for S(n)/n to become maximum. Therefore s = 1. 
Then 

n = p=, where: p, r are integers, and p is prime. 

S(n)/n :::; pr/p:. Hence p and r should be as small as possible, i.e. 

p = 2 or 3 or 5, and r = 2 or 3. 

By checking these combinations, we find 
n = 3 2 = 9, whence max{ S (n) In } = 2/3 

over all composite integers n ~ 4. 

Reference: 
M. Mudge, "Mike Mudge pays a return visit to the Florentin Smarandache Function", in <Personal Computer World>, London, February 1993, p. 403. 
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ALPHANUMERICS AND SOLUTIONS (9) 

by T. Yau. student, Pima Community College 

Prove that if N ;: 0 there are neither an operation" • " nor integers replacing the letters, for wnicn 
the following statement: 

is available. 

Solution: 

SMARANOACHE­

FUNCTION -

IN 

= NUMBERTHEORY 

Of course" • " may not be an addition. because in that case ·5" (as a digit) should be equal to "U", which 
involves N = O. Contradiction. 
[Same for a substraction.1 
Nor a multiplication, because the product should have more that 12 digits. 
Not a division, because the quotient should have less than 12 digits. 
For other kind of operation. I think it's not necessary to check anymore. 

Reference: 
Mike Mudge, "The Smarandache Function" in the <Personal Computer World> journal. London, July 

1992. p. 420. 
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THE MOST UNSOLVED PROBLEMS OF THE WORLD 
ON THE SAME SUBJECT 

are related to the Smarandache Function in the Analytic Number 
Theory: 

« 
S Z ~ N, S(n) is defined as the smallest integer such 

that S(n)! is divisible by n. 

The number of these unsolved problems concerning the function is 
equal to ... an infinity!! Therefore, they will never be all 
solved! 

(See: Florentin Smarandache, "An Infinity of Unsolved Problems 
concerning a Function in the Number Theory", in the <Proceedings 
of the International Congress of Mathematicians>, Berkeley, 
California, USA, 1986] 
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TEACHING THE SMARANDACHE FUNCTION TO THE AMERICAN COMPETJON STUDENTS 

by T. Yau 

The Smarandache Function is defined: for all non-null integers, n, to be the smallest integer such that 
(S(n))' is divisible by n (see 1, 2, 3]. 

In order to make students from the American competions to learn and understand better this notion, 
used in many east - european national mathematical competions, the author: calcutates it for some 
small numbers, establishes a few proprieties of it, and involves it in relations with other famous 
functions in the number theory. 
It's important for the teachers to familiarize American students with the work done in other countries. 
(I would call it: multi - scientifical exchange.) 

References: 
1. Mike Mudge, ~The Smarandache Function~ in < Personal Computer World>, London, July 1992, 

p.420; 
2. Debra Austin, "The Smarandache Function featured" in < Honeywell Pride>, Phoenix, Juin 22. 

1993, p.8; 
3. R. Muller, ~Unsolved Problems related to Smarandache Function", Number Theory Publishing 

Co., Chicago, 1993. 
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fiUlCfie fn Teoria NumereJor', 
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8)Nunw intIeg care nu 8parJi­

ne domcniului de defini!ie al 
funcJiei; 
9)Judelul in care se tipru-e~tc 
revista " AM/de Universilt1!U" 
dinTimi~"; 
10)Conf. dr. V. Seleaeu,lecl. 

dr. C. Dumitrescu, etc. care au 
fonnal un grup de cercetarc in 
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iova privind proprietalile ~i 
aplicabilitalea acestei funelii 
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lilt Unsolved Problems rela­
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pe verticala E - S numele unei bran~ matematice Ilion" de R. Muller, No. TIl. 
wuie sc incadrca.z;\ FWJClia Smarandache (2 cuv.), ~ I Publ. Co., Chicago, 1993; 
OrizoOla1e: I 12)Ramura $tHnlifie~ inclu. 
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2)Prenumele autorului funcliei; I 14)De pildi {S(n)}!; 
3)"0 infinilate de probleme ... refcritoarc la 0 funefie in I 15)Aprollimativ 3 asemenea 

Tcoria Numcrelor", articol s~ind intcresul matcmati- I unit!lJi de limp iau trebuit infor­
cicnil~ (veri • Proceedings oilhe Imemariona/ Congress : maticianului suedez Henry 
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'l\lfbo Bas.ic Borland, pentnl a caJcula valo­
rile FWJCliei Smarandache de 1a I (XinA la _. 
10

6
11 In llnna aces lei "isprAvi" el a cA~tigal 

concursuJ organizat de omul de ~tiinJA Mike 
Mudge din Londra asupra unor probleme 
deschise implieind Func/ia Smarandache 
pentru revista "Personal (ampuler World" 
(Iulic. 2992. p. 420; Februarie, 1993. p. 403; 
August. 993, p. 495). 

Awor: G. Dincu-
DrdgtI.,ran/ • ROMANIA. 

I Din rovlsla "Abracadabra", Salinas, California, 
Nolernbrie 1993, pp. 14-5, Ediror : Ion Bludea I 
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