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SOME REMARKS ON THE
SMARANDACHE FUNCTION

by

M. Andrei, C. Dumitrescy, V. Seieacu, L. Tutescu, St. Zanfir

1. On the method of calculus proposed by Florentin Smarandache. In [6] is defined a
numerical function S:N° - N as follows:
S(n) is the smallest nonnegative integer such that S(n)! is divisible by n.

For example S(1)=0, S(2%*)=16.

This function characterizes the prime numbers in the sense that P >4 is prime if and
only if S(p)= p. As it is showed in [6] this function may be extended to all integers by
definmg S(-n7)=S(n). If a and b are relatively prime then S(g-b) = max{S(a),S(b)}
More general, if [@,5] is the last common multiple of a and b then

St{a,b]) = max{S(a), S(5)} (1)

So,if n=p - pr-..-p¥ is the factorization of n into primes, then

S(n)=max{S(p* ) ii=1..1 (2)
For the calculus of Sfpf‘) mn [6] it is used the fact that if a:{p”—l}‘/(p—l)
then S(p°)= p".

Thas equality results from the fact, if a,(n) is the exponent of the prime p in the
decomposition of n! into primes then

Mo
a,in)=2 —| (3)
’ zzle 4
From (3) is results that S(p°)< p-a .
Now, if we note a,{ p) ={p" - 1)/{ p— 1} then
5‘(}7"‘% (‘p)“‘n&") "P')*"”'i':"-' (F}) = k'n.‘ pq: -~ kn',: p’"’ -.'—,..+km, pMJ (4)

for k. .k, ...k, clLp-landk, €12, p}.



That is, if we consider the generalized scale
(p]:a(p),a,(p),....a (p),..

and the standard scale

(p):l.p.p*, .., p", ..

and we express the exponent a in the scale [p], a .= k,k, ..k, ,then the left hand of

the equality (4) is S{ ™) and the right hand becomes p(am)( . In other words, the right
P

hand of (4) is the number obtained multiptying by p the exponent a writed in the scale (7]
, readed it in the scale { p) . '
So, (4) may be written as

o)< da,) ®

For exampile, to calculate 5(3®) we write the exponent a=89 in the scale

[3]:1 4,13, 40, 121, ...
and so ‘
a,(plcas{pm-1)/{p-l<a= p™ <(p-1)-as1om <log,{{ p-1)-a+1).

Ixrcsultsthatmlismcintcgcrpanoflogp({p—l)-a+1). :

For our example m :[log3(2a+1)]=log3179=4 . Then first digit of a, is
k,={a/a,(3)]=2 . So, 89=24,(3)+-9.

For o - 9 it results m, =[log,(2a,+ 1)]=2, k, =[a,/a,(3)]= 2 and 30 q, = 2a,(3)+1 .
Then 89 = 2a,(3) - 2a,(3) - q(3) = 2021, . and S{3%) = 32021),,, = 183 .

i 183

Indeed, 2 —~ =61+20+6+2=89.

12l = ' -
Lct us observe that the calculus in the generalized scale [ p] is essentially different from
the calculus in the standard scale ( p) . That because if we note 5, (p) = 2" then it results

a,..(p)=pa(p)+1 and a_(p)=pa (p)+1 (6)

‘or this, to add some numbers in the scale [ p] we do as follows. We start to add from the
digits of "decimals”, that is from the column of a,(p) . If adding some digits it is obtained
pa,(p) then it is utllized a unit from the class of units (coefficients of a,(p) ) to obtain
pa,(p)=1=a(p) . Continuing to add. if agains it is obtained pa,(p) , then a new unit
must be used, from the class of units, etc.



For example if”‘ls; =442, Mg = 412 and ry = 44 then

m+n+r=442 +
412
44

dcba

We start to add from the column corresponding to a,(5) :
43,(5)~ 3,(5) ~ 44,(5) = 5a,(5) + 4a,(5) .
Now utilizing a unit from the first colummn we obtain
56,(9) +44;(5) = a,(5) +4a,(5) , s0b =4 .
Continumg, 4a,(5)+44,(5) + 4,(5) = 54,(5) + 4a,(5) and using a new untt it results
4a;(5) + 4uy(5)+~ a,(5) = a (5)+ 4a5(5) ,s0 c=4and d =1 . Fmally, adding the
remained units 4a,(5) + 24,(5) = 54,(5) + a,(5) = 5a,(5) - 1 = a,(5) it results that b must be
modified and a =0 . So m+n+r =1450, .
We have applied the formula (5) to the calculus of the values of S for any mteger between
¥, = 31,000,000 and N, = 31,001,000 . A program has been designed to generate the
factorization of every integer n E{NﬂNz] ( TIME (minutes) : START : 40:8:93, STOP :
56:38:85, more than 16 miutes ) .
Afterwards, the Smarandache function has been calculated for every n=p - pitepl
as follows :
1) max p,-a, is determmned
2) Sy = S{p2), fori determined above
3) Because 5‘(;7‘,") < p, -a,, we ignore the factors for which p;°a, <5, .
4) Are calculated S{p* ) for p, -a, > S, and is determined the greatest of these

values.
(TIME (minutes): START: 25:52:75, STOP: 25:55:27, leas than 3 seconds)

2. Some diofantine equations concerning the function S.
In this section we shall apply the formula (5) for the study of the solutions of some
diofantine equations proposed in (6).

a) Usmg (5) it can be proved that the diofantine equation

S{x-y) = 5(x)+ 5{y) (N

has infinitely many sotutions. Indeed. let us observe that from (2) every relatively prime
- integers x; and y, can't be a solution from (7). Letnow x= p* - 4 , y = p*- B be such

that S(x) = S(p*) and S(3) = 5(p*).
Then S(x-y) = S{p***) and (7) becomes

p((a + b)[;])(p) = p(a[pl)w - p(bm)(p)

or



((‘”b)m)w = (am)m *(bm)o,) ®)
There exists mfinitely many values for a and b satisfying yhis equality. For example
a=a;(p)=100,; , b=a,(p)=10, and (8) bccom&s(ll()!;,)m = (100[”)(?) - (lom)
b) We shall prove now that the equation

123

S(x-y)=S5(x)-S(y)
has no solution x, y > 1.
Let m=S(x) and n= S(y). It is sufficient to prove that S(x-y) = m-n. But it i8 said that
m!- n! divide (m+ n)!, so
(m-n)! : (m=n)! imbnt ix.y
¢) If we note by (x, y) the greatest common divisor of x and y, then the ecuation
(x,3) = (S(x), SO¥)) 9
has infinitelly many solutions. Indeed, because x = S(x) , the equality holding if and only if
X is a prime it results that (9) has as solution every pair x, y of prime numbers and also
every parr of product of pnime numbers.
Let now 3(x) = p(am) , S(y) = q(bm) ) be such that (x,y)=d >1. Then

(p) (¢
because(p.g)=1 . if

a s (ai.pi )f_,.,}

it result that the equality (9) becomes

, by = (bf,;) and (P,bx = (ava) =1

it b, . A
R

/ Y

‘é\(am)(},)’(bm)(q,jz d

and it is satisfied for various positive integers @ and 4. For example if x = 2-3° and
). | Yoo
y =2-5 it results 4 = 2 and the equality 3\(‘1[”)(3) ’(blfl)(s)/!: 2 is satisfied for many values
of a.beN. »
d) If {x, y} is the least common muitiple of x and v then the equation
[x,»]=[S(x), 5] (10)

has as solutions every pair of prime numbers. Now, if x and y are composite numbers
such that S(x) = S{ p*"} and S(») = 5{p* ) with p, = p, then the pair x, y can' be

solution of the equation because i this case we have
[x, 31> p" - p) > S(x)-S(») 2 S(x),S(»)
andit x = p° A and y = p°- B with S(x) = S{p*) , S(») = S( p*) then

- ] :
[S(x). 5()‘)1 = g_d"(;))(p,’p(blpl) j: P (a(;l)(,,)’(blpl)(,)

(p)



and [x, p] = p™*“*.[ 4, B] so0 (10) is satified also for many vatues of non relatively prime
mtegers.
¢) Fmaly we consider the equation

S(x)+y=x-3()

which has as solution every pair of prime numbers, but also the composit numbers x = y.
It can be found other composit number as solutions. For exampie if p and g are
consecutive prime numbers such that

q—p:h)O (11)
and x = p- 4 , y=q- B then our equatic s equivalent to

y-x=50)-5(x) (12)

IfwcconsidcrmcdiofanﬁnccquationqB—pA:hitrestﬂtsﬁ'om(ll)ﬂlatAﬂzBozlisa
particular solution, so the general solutionis 4 =1+rg , B =1+ rp for arbitrary integer r.
Then for r=1itresults x = p(l+gq) , y=q(l+p) and y - x = h. In addition, because p
andqarcconsocurivcprﬁncs'rtmsmlsﬂxatp+landq¢-lamcompositcandso

S(x)=p, S(¥)=q, S(y)-S(x)=h
and (12) holds.
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SMARANDACHE NUMERICAL FUNCTIONS
by

Ion Balacenociu

Departament of Mathematics

University of Craiova,Rcomania

F. Smarandache defines (11 a numerical function
) ;m'.——» N .5Cn> s the smallést integer m swuch that
m/! is divisible by n.Using certain results on
standardised structures, three kinds of Smarandache
functirons are defined and are etablished some

compatibility relations between these Ffunctions.

1.Standardising functions.Let X be a nonvoid set, r < XxX an

equl val ence relaticn, i the cecrresponding quotient set and CI,=<> a

totally ordered set.
1.1 Definition.If g : X —> I is an arbitrarely injective function,

then f : X —— I defined by f(x) = g{x0 is a standardising functien.
In this case the set X is said to be I[r,(I,%3,f] standardised.

If r. and r, are two equivalence relations on X,then r = rlA L. is

defined as x r y if and only if x 4 and x r, Y- Cf course r 1is

an equivalence relaticn.

In the following theorem we consider functicons having the same

meonctonicity. The functions fL : X — I , i = 1,s are of the

same monotonicity if for every x,y from X it results

kaxJ < kay) if and enly if fCxd = fJCy) for k,j =1,s
]



1.2 Theorem. I the standardising functicons fL i X — I

corresponding to the equivalencs relaticons r, 1 = 1,s, are of
L
the scome monoctonicity then f = max ¢ £ > is a standardising
L L
function corresponding to r = A r, having the same
L L

monotonicity as .
L

Prcof. We give the procf of thecrem in case s = 2 .Let x , X
i "z
e Ee the equivalence clases cof x carresponding to T T, and tao
T
r = r‘ A rz respectively and i , i , i the gquotient sets on X.
f‘1 Pz r
We have fCx) = gCx D and £ Cx) = glx D ,where
1 1 T r 2z 2 ' r
1 z

g, : ir — I , i=1,2 are injective functions. The function

g : X >I defined by gC;r)= max(gtC; D,gzc; J} is injective.
r 1‘1 l‘z
. S1 -2 S 1 v ‘
Indeed , if x # X and max{g (x~ J,g (x 22> =
r r 1 r 2 r
1 z
= max(gLC;z),gzc;z)} ,then be cause of the injectivity of g,
Ty "2
and g, we have for example max{QLCx:),ngx: > > =
1 z

1]

c1 -z -2 -z .
= g’.ert) = ngxrz) max (g1er1),ngxr23) and we cbtain a

contradicticn because f1sz) gE;:) < g1Cx: ) = f1Cxﬁ)

1 1
£ ex = gcx' D < gCx> ) =f Cx® ,that is
2 2 r 2 r 2
1 z
f and f are not of the same moncicnicity From the injec-—

1 Z

tivity of g it results that f:X ——I defined by fCx)= gC;<r)

is a standardising function.In addition we have £CxMISFCxD) -
gCx* ) € gix®)  em max(g Cx'J,g. Cx' 1> < max{g (x> 2,g. (x> ddes
r - r t z v, 1t e 2

- max<f1Cx1),szx13}5 max(fthZJ,fZszn - fiCx1)Sf1sz) and

szxt)szsz) because fz and fz are of the same monotonicity.

7



Let us supose now that + and L are two algebraic lows
on X and I respectively.
1.3.Definition. The standardising functicen f:X —s I 15 <said
to ze L -zompatibile with T and 4L if for every x.y in
X the triplet Cfo),ny),foTy))satisfias the conditien Z. In
this case 1% is said that the function I -standardise the struc -
trure (X, in the structure (I,<,40.
For example,if £ is +the Smarandache function s:m'-—» N ,C SCn2
1s the smallest integer such that (S(n22! is divisible by n) then
we get the following X-stadardisations:
ad S Zl—standardisa cm’,.: in CW.,S,+) because we have

21:SCa.b)SSCa)+SCb)

=2 but S wverifie algo the relation

Zz; maxC3SCa2,SCbl)<SCa.b)<sSCad. SCb)

s S Zz-standardise the structure CDJ’,.) in Cm.,ﬁ,.D

2. Smarandache functions of first kind..The Smarandache
function S is defined by means of the following

functions Sp , for every prime number p lLet sp:m'.—» m' having
the property that CSanD)! is divisible by pn and 1is the
smallest positive integer with this preperty.Using the notion of

standardising functions in this section we give some genseralisa-

sicn of s .
P

2.1.Definition.For every n e N* the relation r.< N'x N is defi-

-
ned as follows: id if n= uCu=1 or u=p number prime,ie&N 2> and
a,b e N then a rnb if and only if it exists ke N such
that k! = M uLa, k! = M udz and k is the smallest positive

integer with this property.



WD 1 f n= p t.p ;. jo ¢ , then
1 2 ]
r = r ANr A A -
o] Lz LQ
P, 1 Pz Pe
2. 2. Definition. For @ach n e m' the Smarandache function of

»
first kind is the numerical function S :m'._» N defined as fallows
n

i) if n = uCu=t or u=p number primel then S (ad = k, k being
gl
the smallest positive integer with the property that k! = M uﬁl
L L L
1 2 s
vJ  1if n = . . RN , then S Cad= pax{ S . Cad>
- }31 P2 PS o} tgjgs pL‘J

Pl
Let us ckserve that

a) the functions S are standardising functicons corresponding
i al

to the equivalence relations L and for n=1 'we get x = m'
r
-1
-»
for every xa N and Sﬁro= 1 for every n.

) if n=p then Sn is the function Sp defined by Smarandache.
cJ) the functions Sn are increasing and soc,are of the same mocno-
tonicity in the sense given in the above section.
2. 3. Theorem. The functiocns Sn ,for n « N‘, Zt—standardise cm',+3 in
cm',s,+) by < max{S Cad,S Cbl3>SS Ca+bd<S Cad+S Cb> feor
1 n n n n n

- ‘ » ) » _
every a,b e N and Zz—standardxse C N ,+D in CN ,Z<,.D by
o max(S Cal),S (bd> £ S Ca+b) £ S (ad.S (b) ,for every a,b e N
2 ™ n n n ol

. . L . -
Proof.lLet, for instance, p be a prime number ,=p ,i e€ N and

a.= S Cad, b.= S (b)) ,k= S Ca+bd . Then by the definition of s
L L L

n
P P P
-
CDefiniticon 2.2.2 the numbers a ,b‘,k are the smallest posi-
i - ib iCa+b
tive integers such that a.!=Mpla, b= Mp‘ and k! =Mp Ca ).
La ib - - - =
Because k! =Mp =aMp we get a %k and b =< k ,sc max€a ,b 2% k

That is the first inequalities in Z1 and Zz holds.

i +
Now, Ca+b™>1 = a®1ca®™+1>. . .ca"+ b™ = Ma"t B"1= Mpt 3P g



g0 k< a+b which implies that £ is valide.

L L L

If n = pl1 .pzz .- .. p_' , from the first case we have
z max{s (a),s (b)} = s (a+b) < s (a) + 8 _(b)j=i3
P P pi P Pi

J J J 3 b

in consequence
max{maxs (a),maxs . (b)}< max{s (a+b)} < max(s _ (a)} +

P! p. 1 P Pl

J J 3
max{ S _ (b)} , j=1,8 . That is
] PJJ

max{s_(a),s (b)} = s (a+b) = s _(a) + s_(b)

For the proof of the second part in Zz let us notice that
(a+b)! £ (ab)! e» a+b < ab - a>1 and b > 1 and that
ours inequality is satigsfied for n=1 because 81(a+b)=81(a)=
= Si(b) = 1.

Let now n>1.It results that for a'= Sn(a) we have a.> 1. Indeed,
i i i
1 2

ho) e e . g: then a‘= 1 if and only if Sh(a)=

if n=p ,

1

= max {Spn(a)} =1 which implies that p,=p,= . . . =p =1 ,
]

so n=1.It results that for every n>1 we have sh(a)= a.>1 and

*”» = » - =
Sn(b)= b > 1.Then (a +b )! = (a .b )! we obtain

Sn(a+b) < Sh(a) + Sn(b)s Sn(a).sn(b) from n > 1.

3.Smarandache functions of the second kind. Por every n e ('N’,let
8_ by the Smarandache function of the first kind defined above.
3.1.Definition. The Smarandache functions of the second kind are

k - ) k =
the functions S : N —/@ N defined by s (n)=sn(k),for k €N,
We observe that for k=1 the function Sk is the Smarandache

function S8 defined in [1],with the modify S{1)= 1.Indeed for.

t = L = L =
nl 8 (n) = sn(l) = m?X{Spjfl)} m?x{sp g ; 1} S(n).

10



3. 2. Theorem. The Smarandache functions of the second kind Za-stan-

dardise (N ,.) in (N°,<,+) by

23: max{sk(a),sk(b)} < Sk(a.b) < sk(a) + Sk(bLfor every a,b = i
and Z‘—standardise (N',-) in (N‘,S,-) by

z,: max{Sk(a),Sk(b)} = Sk(a.b) < Sk(a).sk(bLfor every a,bem.
Proof.The equivalence relation corresponding to 8k is r& defined
by a ryh if and only if there exists a'e N* such that a*l=Mak,
a’lz ku and a. is the smallest integer with this property.
That is,the functions Sk are standardising functions attached to
the equivalence relations rk.

This functions are not of the some monotonicity because, for exam-
ple, Sz(a) =< Sz(b) - S(az) < S(bz) and from these inequalities
Si(a) < Si(b) does not result.

Now for every a,b = i let Sk(a) = a. ,Sk(b) = b’ ,sk(a.b)= s.
Then a. ,b.,s are respectively these smallest positive 1n£egers
such that a.l = Mak , b'! = Hb. ,81 = H(afbk) and so 81 =Mak=

=Mbk,that is, a.S s and b,S s,which implies that lax{a.,b.}ss

or max { s“(a),s(b)} = s“(a.b) (3.1)

‘ - - » - k. k
Because of the fact that (a + b )l = M{(a t b 1)= M(ab ).it re-
sults that 8 = a.+ b', 80

s(a.b) < 8(a) + s°(b) (3.2)
From (3.1) and (3.2) it results that
max{s“(a),s“(b)} < s(a) + s(b) (3.3)

which 1is the relation z,

From (a.b‘)l = M(a.!.b.!) it results that Sk(a.b) < Sk(a).sk(b)

and thus the relation .

4

11



4. The Smarandache functions of the third kind.

We considere two arbitrary sequances (a) 1=at,az,. - oesa,
(b) 1=b ,b,,. . .,b.

n

with the propertiesg that a = a.a, nm= b,‘ .bh .Obviously, there are
infinitely many such sequences;because chosing an arbitrary value
for a,, the next terms in the net can be easily determined by the
imposed condition.

) - b

Let now the function f,:N° —N" defined by £_(n) = §_(b_),

n

8. is the Smarandache function of the first kind.Then it is ea-
s}

8ily to 8ee that

S

1

(i) for a =1 and bn= n,n « N it results that f:

™

b
St

(ii) for a = n and bn= 1,n e iThe it results that £

a

4.1.Definition. The Smarandache functions of the third kind are the

functions 8:= fb in the case that the sequances (a) and (b)

-3

are different fron those concerned in the situation (i) and (ii)

from above.

4. 2. Theorem. The functions f: Zs-standardise (W*,-) in

([N‘l’<-1+l‘) bY i
z_: max (£.(k),£(n)} S £(k.n) < b_.£2(k) + b £ (n)

3

b » b - 1)
Proof.Let fa(k) = 8 (hk) k, fa(n) = 8, (bn) = n and fa(kn)=

a
k n

=S (h&“)= t . Then k.,n. and t are the smallest posgitive in-

a

kn
b, b B,
tegers such that k.! = Ma , n‘!= M anh and ti= M a "=
bh
= H(ak.an) . Of course,
nax{k',n' } =t (4.1)

12



b b

» » k L] - n
Now,because (bk.n })! = M(n 1) , (bn.k )t = M(k 1) and
™ - » - - bk - bn
(bkn + b k ) o= H[(bkn )!-(bnk )] = M{(n 1) (k1) ] =
bn bk bk bn bkbn
= H[(an ) . (ak ) ] = M[(ak.an) ] it results that
t<bkx+bn" (4.2)

From (4.1) and (4.2) we obtain

-» -» -
max{k ,n } < t = bnk + bn (4.3)

From (4.3) we get Zs 80 the Smarandache functions of the

third kind satisfy
b b b
T,: max{s_(k),s (n)} = s (kn) < b_s’(k) + b S (n),for evry k,neN"

4.3.Example. Let the sequances (a) and (b) defined by a = bn = n

-

n<N
The corresponding Smarandache function of the third kind  is

=» »
S: N — N , s: {n) = 8 (n) and Zd becomes

max{s, (k),S_(n)} < §_ (kn) S 08 (k) + kS_(n) ,for every k,neN"

This relation is equivalent with the following relation written

by meens with the Smarandache functiocn:

max {8(x"),s(n™)} < s[(xn)*®] < n.5(x*) + k.s(nD)
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THE SOLUTION OF THE DIOPHANTINE EQUATION a,(n)=n (Q)

[}

by Pal Gronas

This problem is closely connected to Problem 29916 in the first issue of the "Smarandache
Function Journal™ (see page 47 in [1}). The question is: "Are there an infinity of nonprimes
n such that o,(n) = n?”". My calculations will show that the answer is negative.

Let us move on to the first step in deriving the solution of (). As the wording of
Problem 29916 indicates. (Q) is satisfied if n is a prime. This is not the case for n = 1

because o,(1) = 0.

Suppose []%., pI* is the prime factorization of a composite number n > 4, where P1:---. Dk
are distinct primes, r; € N and pyry > pir; for all i ¢ {1.....k} and p; < pioy for all
1€ {2..... k — 1} whenever k > 3.

First of all we consider the case where £ = 1 and r; > 2. Using the fact that 7(p') < py 5,
we see that pi' =n =o,(n) = 0,(p]') = n=on(p!) < Ya—oP1S1 = Mig;—”il. Therefore
2p 7 < ry(ry + 1) (Q) for some r; > 2. For p1 2 5 this inequality (©;) is not satisfied for
any ry 2 2. So py < 3, which means that p; € {2,3}. By the help of (©;) we can find a
supremum for r; depending on the value of p;. For p; = 2 the actual candidates for ry are 2,
3, 4 and for p; = 3 the only possible choice is r; = 2. Hence there are maximum 4 possible
solution of (Q2) in this case, namely n = 4, 8, 9 and 16. Calculating o,(n) for each of these
4 values, we get o,(4) = 6. 0,(8) = 10. 0,,(9) = 9 and o,(16) = 16. Consequently the only
solutions of {2) are n = 9 and n = 16.

Next we look at the case when k > 2:

n = gy(n)

Substituting n with it’s prime factorization we get

k k ry Tk k
I:Ipf‘ = Un(l:Ipf‘) =20 =3 S oI

din 5 =0 3 =0 =1
d4>0

T1

= Y Y max{n(el).. 0ol }

3y =0 3 =0

Tk
. Z max{ py $1,...,px Sk } since n(p?*) < pi s;

3, =0 3 =0

IA
™

Tk
< Z---Zmax{plrl,...,pkrk} because s; < r,

s, =0 s =0

Tk
= Z...Zplrl (plrIZPiT‘i fOI‘ZZ?)

s =0 3 =0

INA

k
piry [[(ri + 1),
=1
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which is equivalent to

£ pi Plrz("l"'l) r(ry +1) 0
H = ——=— (D)
1=2 pl pl
This inequality motivates a closer study of the functions f(z) = r“—:1 and g(z) = :—gf—_‘#
for z € (1, >c). where a and b are real constants > 2. The derivatives of these two functions
T - , - 5)z% +(2- -+
are f'(z) = W(I +1)lna—1] and ¢'(z) = =22 9‘,(31 22221 Hence f/(z) > 0 forz > 1

since (z+1)lna—-12>(1+1)In2-1=2In2-1>0. So f is increasing on 1, x).

2-Ind++/(Inb)2 +4

Moreover g{z) reaches its absolute maximum value for z = max{1, ST =z}
Now \/{lnb)2 + 1 < Inb+2 for b > 2. which implies that ¢ < B=iolilaizd) 2 < 2. 3

Futhermore it is worth mentioning that f{z) — x and g(z) - 0as z — .
Applving this to our situation means that —Ll (¢ 2 2) is strictly increasing from 2 to
x. Besides —pﬁ—_rl < max{ 2, ;;, ;} = max{2. 2} < 3 because 2 =2 ;—22 whenever p; > 2.
1 ot 1

3 (Q3) for all ry € N. In other words, H;—’» <3 Now[[l,2>2.2.2=153 which
implies that £ < 3.
Let us assume k£ = 2. Then (Q;) and (Q3) state that

Combining this knowledge with (0,) we get that [T5, 2 < Hf‘_z f’;_l < r"p(’f;flﬁ) < ”2(:11:}1) <

2 A

1) i

p?._l < st and 2 <3 ie
14

1
p2 < 6 Next we suppose r; > 3. It 1S obwous that py p2 > 2 -3 = 6, which is equivalent to
P2 2 2. Using this fact we get 2 < 2 o T_Llfrz < max{ 2, —} < max{ 2,p2 } = p2, so

— rp+l
pi< 4. Accordingly p» < 2. a contradmtxon w thh implies that r; < 2. Hence p; € {2.3,5}
and r; € {1.2}.
s
Futhermore 1 < 2 < P o nlntl) ¢ nilns Ll) which implies that r; < 6. Consequently.

= 5+t piTt = T2nic

,
2
ro<+1

ri{r:

1 +1
ry—1 ) >
P,

by fixing the values of p; and rp, the inequalities and pyry > parp give us

enough information to determine a supremum (less than 7) for ry for each value of p,.
This is just what we have done, and the result is as follows:

p2ir2| M r n = py'py oy(n) IF g,(n) =n THEN
21 3 1<r, <3| 2-37 2+ 3ri(ri + 1) 312

211 5} 1<r <2 2.5™ 2 +5r{r; +1) 5]2

201 I pp 27 1 2; 242y, 0=2

202 3 2 36 34 34 = 36
212125 1 ip 3py +6 n=256

311 2 2<r; <5 3.2n 2r} = 2r; + 12 ryr =3
31l I;pp25 1 3p1 2p1 +3 =3

511 2 : 40 ! 30 30 =40

By looking at the rightmost column in the table above, we see that there are only contra-
dictions except in the case wheren = 3-2" and r; = 3. Son =3-2% =24 and 0,(24) = 24.
In other words. n = 24 is the only solution of {?) when k =2

15



Finally, suppose & = 3. Then we know that 2 .2 < 3, ie. p,py < 12. Hence p; = 2
and ps > 3. Therefore 2zl < "(’ 2 < 9 (Q4) and by applying (Q3) we find that

1

P23 =2 <2 giving p3 = 3.
Combining the two inequalities (Q,) and (04) we get that 2= = 1_1 g 4_1 < 2. Knowing that
the left side of this inequality is a product of two strictly i increasing functions on (1,o¢), we

see that the onlv possxble choices for ry and r3 are r; = r3 = 1. [nserting these values in
(Q2), weget &5 - =1c< f—ﬁr—J'IB %{%ﬂ This implies that r; = 1. Accordingly (Q) is
satisfied onlv 1f n = ) 3 P = 6p1

6pp = O'n(6P1)
= (1) +n(2) +1(3 ZZU"%%

=0 ;=0

1 1
= 0+2+3+3+3 > max{n(p),n(2'3)}

=0 ;=0
1 1
= 8+ > max{p,n(23)}
=0 ;=0

= 8+4p; because 7(2'3)<3<p; forall i,j € {0,1}

pno= 4

which contradicts the fact that p; > 5. Therefore (€2) has no solution for & = 3.
Conclusion: ¢,(n) = n if and only if n is a prime, n =9, n = 16 or n = 24.

REMARK: A consequence of this work is the solution of the inequality o,(n) > n ().
This solution is based on the fact that (*) implies (£,).

So o,(n) > n if and only if n = 8,12,18,20 or n = 2p where p 1s a prime. Hence
on(n) <n+4forallneN.

Moreover, since we have solved the inequality o,(n) > n, we also have the solution of
o,(n) < n.
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ON THE SUMATORY FUNCTION ASSOCIATED TO

THE SMARANDACHE FUNCTION

E. Radescu , N. Radescu , C. Dumitrescu

It is sai1d that for every numerical function f it can be atta-

shed the sumatory function

F (n) = % £(4) (1)
dlﬁ

The functicn f is expressed as

£(n) = I u(u).F(v) (2)

uv=n
Wwhere =« is the Mébius functionm (~(1)=1 , u{(n)=0 if n is

divisible by the square of a prime number , u(n)=(-1)k if n is the

product of k different prime numbers)

If £ is the sSmarandache function and n = pa then

o >3
F(p) = L s(p)

1=t

In (2] it is proved that
s(p') = p-1).3 - a_(3) (3)

(pl

wWhere dm](j) is the sum of the digits of the integer j,written in
the generalised scale
(2] = a(p) , a,(p) , ... , & (P), ...

with a (p} = (p° - 1)/(p - 1)

So
= ; a{a + 1)
F(p ) =Ls(p) = (p - 1) —5—— + L& (j)

i=1

(4)

Using the expresion of o given by (3) it results

(1))

Q
(« + 1)(s(p%) = =_/(a)) = 2(F_(P7) = L &
1=

17



In the following we give an algorithm to calculate the sum in

the right hand of (4). For this, let °u”= ks'krd' ... .kx the
expresicn of a in the scale [p] and j$’= ks'ks-;‘ ... .k . We

i b
shall say that ktare the digits of order i, for j = 1,2, ... ,<.

p
To calculate the sum of all the digits of order i,let v = a-a (p)+1.

Now we consider two cases
(i} 1f k= 0, let

z. (@) = { K k__ k. ) , the equality u = a (p) de-

R RV T

notiig that for the number writen between parantheses,the classe of

units is a (p).

Then zi(a) is the number of all zeros of order i for the inte-

gers j £ = and a. =:Q(a) - q(a) is the number of the non-null di-

gits.
(ii) if k= 0, let 13 the greatest number,less then «,having a

non-null digit of order i.Then ? is of the form

B, = kk _ ....k_ (k _ -1)p00....0 and of course s. (a) =

si(B).It results that there exist QLU?) non-null digits of order i.

Let A ,B ,r ,7 given by equalities

@ =Al{p -1Nal(p) +1) + =Ala,(pP)-alp)) +r
r, = Ba(p) + 4~
Then
> - 0 8;<IL +
s (a) = Ai.av.(p)ﬁpz— - Ap + al(p) _;7— + P (B + 1)
and
< < (4 -
£o,,(3) =Es(a) = 27— Taa(p) +p LA +
-2 -1 L r4 124 [SS 124 [

j=1 v

S~ Ca(p)B (B + 1) + Lo (B + 1)

=g iz

For example if @ = 149 and p = 3 it results :

[3] 1,4, 13, 40 , 121, ...

18



Fa T 10202, 2 (e) = (1020) =48 a = v (a)-z (=) = 101

= 3 uza (3 1
L

For #_, = 10130 = 146 it results v (?) = 143 , z, () =

(101)Q:¢£3,= u, +u = 3uZ +1+u =23(3u+1) +1+u = 44 ,
J{Z: 99 , ua(a) = 137 , za(c) = (10)u=ca(3, = 40 . aa = 97
For 4, = 3000 =120 it results V4(ﬂ) = 81 , 2, (B) =0, = = 108
v_[(=) = 29 , z_{=) =0, 2. = 29, and
>
At = [ 5, - 3, ] 33 , r = 2, Bt = [ a ] ;RS o, s, = 201

Analogously s, = 165 , s, = 145 , S, = 123 and s, = 129 , so

149
L=,(i) = 633 , F ( 3 ) = 22983 .
L=1

Now let us consider n = P, -P,- cee .pk , with

P < p, < ... XK p, Prime numbers.Of course, S(n) = p, and from

F (1) = S(1) = o
F.(p,) = S(1) + s(p,) = p,

F(p,.p,) = p+ 2p, = F(p,) + 2p,

F(p,.p,-p;) = p, +2p, + 2°p, = F(p _.p,) + 2°p

it results

-1
F (P, .p, - -P) = F(p,.P,. ... p_) + 2 'p
That :s
ko
=1
F(p,.2,- p,) =2 p
=1
The 2cuality (2) becocmes
P.= 3(n) =L p{n) Fs(v) =
o ) x
= F(n) - ¢ ;(%) *LF(g5 ) + ...+ LF(p)
T L [ S 1 L=1

and became f(p ) = P, 1t results

L

19



n - - it i-t -
F( 5 ) = E(p,.p,- - P_,-P., P ) —EZ‘ 2 p *L 12 p, =
-1
= F(p, -2, - P, *+2 'Flp _, -pP _,- e )
Analogously,
TSP = ' TR
Flg s ) = Flp-p, ., +2 Flp_,-P_,- --. .p_ ) +
+ 27 )
P iy v <P,

Finaly, we point out as an open problem that, by the Shapiro's

> R such that

theorem,if it exist a numerical function gq : N

gin) =L P(n} s( )
dfn
were P 1s a totaly multiplicative function and P(1) = 1, then
n
S{n) =L ~(d) p(d) 9(7;)
dgn
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A proof of the non-existence of ”Samma”.

by Pal Grenas

Introduction: If [T%, p7 is the prime factorization of the natural number n > 2. then
1t Is easy to verify that

S(n) Hpg ) = max{ S(p{*) }.;-

t=1

From this formula we see that it is essensial to determine S(p”), where p is a prime and

T i1s a natural number.
Legendres formula states that

k o m
(1) n’ — pr Zm:z["/P; ]

t=1

The definition of the Smarandache function tells us that S(p”) is the least natural num-
ber such that p” | (S(p"))!. Combining this definition with (1), it is obvious that S(p") must
satisfy the following two inequalities:

(2) i[(”' <r§i[%ﬁ]

k=1

This formula (2) gives us a lower and an upper bound for S(p"), namely

(3) (p—1r+1< S(p") < pr.

It also implies that p divides S(p"), which means that

r—l].

S(p") = p(r — i) for a particular 0 < 7 < [ >

“Samma”: Let T(n) = 1 - log(S(n)) + ¥, % for n > 2. I intend to prove that

lima_ T(n) = o0, i.e. "Samma” does not exists.
First of all we define the sequence pr=2,p, =3, p3 =35 and p, = the nth prime.
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Next we consider the natural number p?. Now (3) gives us that

S(f) < pik Yie{l,...,m} and Yke{l,....n}
4
1 S 1
S(pf) T pik
¢
SE L FE (R 5]
S S T oSoek i=1 Px Pl
¢
o] mo] "l
“) 25w 2 (L) (X0

since S(k) >0 forall £ >2, p’ <p* whenever a <m and 6<n and pl =p? if and

only if a=c¢ and b=4d.
Futhermore 5(p},) < pn, n, which implies that —log S(p?) > —log(pm n) because log z
is a strictly increasing function in the intervall [2,00). By adding this last inequality and

(4), we get

i IR L1y &l
Tlwh) = 1= los(SGR) + 2 5y 2 1=loglemm) + (X 0) (L 7)
4
T(rr) 2 L=logp2)+ (3 =) (5 1) (n=pn)
k=1 Pk k=1
i
Pm Tl iml
T i + 2 | — 102 Pm 7 -+ ) 7
i) 2 142 (lgpnt 3 g) + -2+ X 2) (1 g)
4
pm 1 ™o m]
lim T(p?r + 2. lim { - log pn - li - —)- <
A T 2 1+ 2 Jim (~logam+ 3 7) + fim |( 243 ) (1 9)]
| = 1 &1
# 2 lim (<logan + 3 p) + dim [(~2+ 1 ) (29

= 1+ 2y + lim (—2+ii>- lim (Z%) (v = Euler’s constant)

M —00

since both $f_; + and $"i_, i diverges as ¢ — oc. In other words, lim, .., T(n) = co0. O
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CALCULATING THE SMARANDACHE FUNCTION FOR POWERS OF A PRIME

J. R. SUTTON
(16a Overland Rocad, Mumbles, SWANSEA SA3 4aLP, UK)

Introduction

The Smarandache function 1s an integer function., S. of an
integer wvariable, n. S is the smallest integer such that
S! is divisible by n. If the prime factorisation of n 1is

known

Pi
n=1ln,
where the p. are primes then it has been shown that

S(n) = Max (S(m; "))

so a method of calculating S for prime powers will be
useful in calculating S(n).

The inverse function

It is easier to start with the inverse problem. For a given

prime, p. and a given value of S, a multiple of p, what 1is
the maximum power, m, of p which 1s a divisor of S! ? If we
consider the case p=2 then all even numbers in the
factorial contribute a factor of 2, all multiples of &
contribute another, all multiples of 8 yet another and so

on.
m = S DIV2 + (S DIV2)DIVZ2 + ((S DIV2)DIV2)DIV2 + ...
In the general case
m = S DIVp + (S DIVp)DIVp + ((S DIVp)DIVp)DIVp + ...

The series terminates by reaching a term equal to zero. The
Pascal program at the end of this paper contains a function

invSpp to calculate this function.

24



Using the inverse function

If we now lock at the values of S for succesive powers of a
prime, say p=3,

m 1 2 3 4 5 6 7 8 9 10 ...
* # # * * * * *®
S(3*m) 3 6 9 9 12 15 18 18 21 24 ...

where the asterisked values of m are those found by the
inverse function, we can see that these latter determine
the points after which S increases by p. In the Pascal
program the procedure tabsmarpp fillls an array with the
values of S for successive powers of a prime.

The Pascal program

The program tests the procedure by accepting a prime input
from the keyboard, calculating S for the first 1000 powers,
reporting the time for this calculation and entering an
endless loop of accepting a power value and reporting the
corresponding S value as stored in the array.

The program was developed and tested with Acornsoft ISO-
Pascal on a BBC Master. The function ‘time’ 1is an
extension to standard Pascal which delivers the timelapse
since last reset in centi-seconds. On a computer with a
65C12 processor running at 2 MHz the 1000 S values are
calculated in about 11 seconds, the exact time is slightly
larger for small values of the prime.

program TestabSpp(input.output):;
var t,p.x: integer:
Smarpp:array(1..1000] of integer:

function invSpp(prime,smar:integer):inteqger:
var m,x:integer:;

begin

X:=smar:;

repeat

x:=x div prime:

m:=m+x;

until x<prime:

invSpp:=m:;

end; {invSpp}
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procedure tabsmarpp(prime,tabsize:integer):
var i,s.is:integer:
exit:bogclean:;

begin

exit:=false:

1:=1;

is:=1;

s:=prime:

repeat

repeat

Smarpp(i]l:=s:

i:=1+1;

if i>tabsize then exit:=true; |,
until (i>is) or exit:
s:=s+prime;
is:=invSpp(prime,s):

until exit:

end; {(tabsmarpp}

begin
read(p):
t:=time:
tabsmarpp(p.1000):;
writeln((time-t)/100):
repeat
read(x):
writeln(’Smarandache for ‘,p.° to power “,x,° is ‘,Smarpp{x]):
untlil false: ’
end. {testabspp}
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CALCULATING THE SMARANDACHE FUNCTION WITHOUT FACTORISING

J. R. SUTTON
(16A Overland Road, Mumbles, SWANSEA SA3 4LP, UK)

Introduction

The usual way of calculating the Smarandache function S(n) 1is to
factorise n, calculate S for each of the prime powers in the

factorisation and use the equation
o
S(n) = Max (S(m; ))

This paper presents an alternative algorithm for use when S iIs to be
calculated for all integers up to n. The ilntegers are synthesised by

combining all the prime powers in the range up to n.

The Algorithm

The Pascal program at the end of this paper contains a procedure
tabsmarand which f1ills a globally declared array, Smaran., with the
values of S for the integers from 2 to the limit specified by a
parameter. The calculation is carried out in four stages.

Powers of 2

The first stage calculates S for those powers of 2 that fall within
the 1imit and stores them In the array Smaran at the subscript which
corresponds to the value of that power of 2. At the end of this stage

the array contains S for:-

2,4,8,16.32....
interspersed with zeros for all the other entries.

General case

The next stage uses succeslive primes from 3 upwards. For each prime
the S values of the relevant powers of the prime, and also the values
of the prime powers are calculated, and stored in the arrays Smarpp
and Prpwr, by the procedure tabsmarpp. This procedure is essentially
the same as that in a previous paper except that:

a) the calculation stops when the last prime power exceeds

the 1limit
and b) the prime powers are also calculated and stored.
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Then for each non-zero entry in Smarand that entry is multiplied by
successive powers of the prime and the S values calculated and staored
in Smarand. Both of these loops terminate on reaching the limit value.
Finally the S values for the prime powers are coplied into Smarand.
After the prime 3 the array contains:-

2.3.4.0,3,0.,4.,6,0,0.4....

This process is followed for each prime up to the square root of the
limit. This general case could be continued up to the 1limit but it 1is
more effliclent to stop at the square root and treat the larger primes

as seperate cases.

Largest primes

The largest primes, those greater than half the 1limit, contribute only
themselves, S(prime)=prime, to the array of Smarandache values.

Multiples of prime only

The 1lntermediate case between the last two is for primes larger than
the sgquare root but smaller than half the 1limit. In this case no
powers of the prime are needed, only multiples of those entries
already in Smarand by the prime itself. The prime is then copled into

the array.

The Pascal program

The main program calls tabsmarand to calculate S values then enters a
loop in which two integers are input from the keyboard which specify a
range of values for which the contents of the array are displayed for

checking.

The program was developed and tested with Acornsoft IS0-Pascal on a
BBC Master computer. The function “time’ delivers the time lapse (in
centiseconds) since last reset. On a computer with a 65C12 processor
running at 2MHz the following timings were cobtained:-

1imit seconds
1000 6.56
2000 12.87
3000 19.19
4000 25.648
5000 31.80

In this range the times appear almost linear. It would be useful to
have this conflirmed or disproved on a larger, faster computer.
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program Testsmarand(input.output):
const 1imit=5000;

var count,st,fin:integer:
Smaran:array(1..5001] of integer:

procedure tabsmarand(limit:integer):;
var count.,t,i.s,1is.pp.prime,pwcount,mcount,multiple: integer:

exit: boolean:
Prpwr:array[1..12] of integer:
Smarpp:arrayf{1..12] of integer:

function max(x,y: integer):integer:

begin
if x>y then max:=x else max:=y:;

end; {max}

function invSpp(prime,smar:integer):integer:
var n,x:integer:;

begin

n:=0;

X:=smar:;

repeat

x:=x dlv prime:;
n:=n+x;

until x<prime:;
invSpp:=n:
end: {invSpp)}

procedure tabsmarpp(prime,limit:integer):
var {.,s.is.pp:integer;
exit:boolean;
begin
exit:=false:
pp:=1;
1:=1;
is:=1;

:=prime;
repeat
repeat
Smarpp({i]:=s:;
pp:=pp¥prime:
Prpwr[i]:=pp:
1:=i+1;
if pp>1limit then exit:=true:;
until (i>is) or exit:
s:=s+prime;
is:=invSpp(prime.s):
until exit:
end: {(tabsmarpp)
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begin writeln(’Calculate Smarandache function for all integers up to
“,1limit):;
for count:=1 to 1limit do Smaran[count]:=0:
Smaran{limit+1]:=1imit+1;
t:=time:;
{powers of 2}

n o
o N

TV = =W
V U s e
[l o B YR Y]
Ne N

:=false:
repeat
repeat
pp:=pp*2;
Smaran{pp]:=s;
i:=1+1;
if 2%*pp>limit then exit:=true;
until (i>is) or exit;

t=s+2;
is:=invSpp(2.s5):;
until exit:

{general case}
prime:=3;
repeat
tabsmarpp(prime.limit):;
mcount:=1:;
repeat
pwcount:=1;
multiple:=mcount*prime:;
repeat
1f multiple<=1limit then
If Smaran[multiple]=0 then
Smaran[multiple]:=max(Smaran[mcount],Smarpp[pwcount]);

pwcount:=pwcount+1;
multiple:=mcount*Prpwr{pwcount];
until multiple>limit:
repeat
mcount:=mcount+l;
until Smaran[mcount]<>0:
until mcount*prime>limit:;
pwcount:=1:;
repeat
Smaran{[Prpwr[pwcount]]:=Smarpp[pwcount]:;
pwcount: =pwcount+1;
until Prpwr[pwcount]>limit:
repeat
prime:=prime+1;
until Smaran[prime]=0:
until prime*prime>1limit:

1]
X
oo
-
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{multiple case}
repeat mcount:=1:
multiple:=prime:
repeat
if multiple<=1limit then

if Smaran{multiple}=0 then

Smaran[multiple]:=max(Smaran[mcount].prlme);

repeat
mcount:=mcount+1l:
until Smaran[mcount]<>0;
multiple:=mcount¥*prime:
until multiple>limit:
Smaran{prime]:=prime:
repeat
prime:=prime+1:;
until Smaran{prime]=0:
until prime>limit/2:;

{largest primes}
count:=1:;
repeat
if Smarancount]=0 then Smaran{[count]:=count:;
count:=count+1:
until count>limit;
writeln((times/t)/100, “seconds”’):;
end; {(tabsmarand}

begin
tabsmarand(limit):

repeat
writeln( Enter start and finish integers for display of results’):

read(st.fin):;
if (st>1) and (st<=1limit) and (Fin<=1imit) then
for count :=st to fin do writeln(count.,Smaran{count]):
until fin=1:;
end. {(Testsmarand}
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A BRIEF HISTORY OF THE "SMARANDACHE FUNCTION" ( II )

by Dr. Constantin Dumitrescu

{ We apologize, but the following conjecture that:
the equation S(x) = S(x+1l), where S is the Smarandache

Function, has no solutions,

was not completely solved.
Any idea about it is wellccme.

See the previous issue of the journal for the first part of this

article }
*****1‘:***********************************************k***********

ADDENDA:

New References concerninig this function (got by the editorial
board after January 1, 1994):

[69]

(70]

(71]

(72]

(74]

[75]

[76]

[77]

(78]

(79]

[80]

P. Melendez, Belo Horizonte, Brazil, respectively T.
Martin, Phoenix, Arizona, USA, "Problem 26.5 " [questions
(a), respectively (b) and (c)], in  <Mathematical
Spectrum>, Sheffield, UK, Vol. 26, No. 2, 56, 1993;
Veronica Balaj, Interview for the Radio Timisoara,
November 1993, published in <Abracadabra>, Salinas, CA,
Anul II, Nr. 15, 6-7, January 1994;

Gheorghe Stroe, Postface for <Fugit ... / Jjurnal de
lagdr> (on the back cover), Ed. Tempus, Bucharest, 1994;
Peter Lucaci, "Un membru de valocare in Arizona", in
<America>, Cleveland, Ohio, Anul 88, Vol. 88, No. 1, p.
6, January 20, 1994;

Debra Austin, "New Smarandache journal issued”, in
<Honeywell Pride>, Phcenix, Year 7, No. 1, p. 4, January
26, 1994;

Ion Pachia Tatomirescu, "Jurnalul unui emigrant in
<paradisul diavolului>", in <Jurnalul de Timis>,
Timigsoara, Nr. 49, p.2, 31 ianuarie — 6 februarie 1994;
Dr. Nicolae Radescu, Department of Mathematics,

University of Craiova, "Teoria Numerelor", 1994;

Mihail I. Vlad, "Diaspora romineascd / Un roman se afirmi
ca matematician $i scriitor in S.U.A.", in <Jurnalul de
Targovigte>, Nr. 68, 21-27 februarie 1994, p.7;

Th. Marcarov, "Fugit ... / jurnal de lagdr", in <Romania
libera>, Bucharest, March 11, 1994;

Charles Ashbacher, "Review of the Smarandache Function
Journal”, to be published in <Journal of Recreational
Mathematics>, Cedar Rapids, IA, end of 1994:

J. Rodriguez & T. Yau, "The Smarandache Function"
(problem I, and problem II, III ("Alphanumerics and
solutions") respectively], in <Mathematical Spectrum>,

Sheffield, United Kingdom, 1993/4, Vol. 26, No. 3, 84-5;
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(81]

[82]

[83]

(84]

(90]

(91]

[92]

(93]
[94]

J. Redriguez, Problem 26.8, in <Mathematical Spectrum>,
Sheffield, United Kingdom, 1993/4, Vol. 26, No. 3, 91;
Ion Socare, "Valori spirituale vdlcene peste hotare", in
<Riviera Valceani>, Rm. Valcea, Anul III, Nr. 2 (33),
February 1994;

Stefan Smdrdndoiu, "Miscellanea'", in <Pan Matematica>,
Rm. Valcea, Vol. 1, Nr. 1, 31;

Thomas Martin, Problem L14, in <Pan Matematica>, Rm.
Valcea, Vol. 1, Nr. 1, 22;

Thomas Martin, Problems PP 20 & 21, in <Octogon>, Vol. 2,
No. 1, 31;

Ion Proddnescu, Problem PP 22, in <Octogon>, Vol. 2, No.
1, 31;

J. Thompson, Problem PP 23, in <Octogon>, Vol. 2, No. 1,
31; :

Pedro Melendez, Problems PP 24 & 25, in <Octogon>, Vol.
2, No. 1, 31;

C. Dumitrescu, "La Fonction de Smarandache — une nouvelle
fonction dans la théorie des nombres", Congres
International <Henry-Poincaré>, Université de Nancy 2,
France, 14 — 18 Mai, 1994; ,

C. Dumitrescu, "A brief history of the <Smarandache
Function>", republished in <New Wave>, 34, 7-8, Summer
1994, Bluffton College, Ohio; Editor Teresinka Pereira;
C. Dumitrescu, "A brief history of the <Smarandache
Function>", republished in <Octogon>, Brasov, Vol. 2, No.
1, 15-6, April 1994; Editor Mihaly Bencze;

Magda Iancu, "Se 1intoarce acas3d americanul / Florentin
Smarandache", in <Curierul de Vilcea>, Rm. Valcea, Juin
4, 1994;

I. M. Radu, Bucharest, Unsolved Problem (unpublished);
W. A. Rose, University of Cambridge, (and Gregory
Economides, University of Newcastle upon Tyne Medical
School, England), Solutions to Problem 26.5, in
<Mathematical Spectrum>, U. K., Vol. 26, No. 4, 124-5.
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An IHustration of the Distribution of the Smarandache Function

by Henry Ibstedt

The cover illustration is a representation of the values of the Smarandache function for n<53.
The group at the back of the diagram essentially corresponds to S(p)=p, the middle group to
S(2p) =p (p¥2) while the front group represents all the other values of S(n) for n<53.

Diagram 1. Distribution of S(n) up to n = 32000 (not to scale)

y
Z} Number of values of S(n) on lines y= kx ;3433

Number of values of S(n) falling between lines : /
] 2] ] o] [1] -

1862

%
I
n\
!

22835 values of S(n) fall below the liney = x/6
1 >,

- I
T T

It may be interesting to take this graphical presentation a bit further. All the values of
S(n) for n<32000 (conveniently chosen in order to use short integers only) have been sorted
as shown in table 1. Of the 19114 points (n,S(n)) situated above the line y = x/50 only 61
points fall between lines. All of these of course correspond to cases where n is not square free.
Diagram 1 illustrates this for the lines y=x, y=x/2, y=x/3, y=x/4, y=x/5 and y=x/6. The top
line contains 3433 points (n,S(n) although there are only 3432 primes less than 32000. This is
because (4,5(4)) belongs to this line.
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TABLE 1. On the distribution of the Smarandache Function S(n) for n<32000.

N = number of values of S(n) on the line y=x/k, i.e. S(n)=n/k. The points
(n,S(n)) are the only ones between lines y=x/k and y=x/(k+1) for k<50.

k N Points (n,S(n)) between lines:
1 3433 ( 9, §6)
2 1862 ( 16, 6) ( 25, 10)
3 1302 ( 49, 14)
4 1006
5 832 ( 121, 22)
6 707 ( 169, 26)
7 616 ( 45, 6) ( 75, 10)
8 550 ( 125, 15) ( 289, 34)
9 495 ( 361, 38) .
10 450 ( 147, 14)
11 417 { 529, 46)
12 387
13 359 ( 80, 8)
14 336 ( 841, 58)
15 321 { 961, 62)
16 301 {( 250, 15) ( 343, 21) ( 363, 22)
17 283 { 175, 10) ( 245, 14) '
18 273 (1369, 74)
19 256 { 507, 26)
20 250 ( 243, 12) (1681, 82)
21 239 (1843, 86)
22 227 { 225, 10)
23 213 (2209, 94)
24 218
25 204 { 256, 10) ( 867, 34)
26 196 (2809,106)
27 190 ( 605, 22)
28 187 (1083, 38)
29 176 {3481,118)
30 179 (3721,122)
31 163 ( 441, 14) ( 625, 20)
32 164 ( 686, 21) ( 845, 26)
33 159 ( 500, 15) (4489,134)
34 154 (1587, 46)
35 154 (5041,142)
36 153 (5329,146)
37 139
38 139 ( 539, 14) ( 847, 22)
39 136 (6241,158)
40 139 ( 486, 12) (1331, 33)
41 125 {6889,166)
42 133 { 512, 12) (1445, 34)
43 119 (2523, 58)
44 125 (7921,178)
45 126 ( 637, 14) (1183, 26)
46 117 {2883, 62)
47 109 (1805, 38)
48 120 { 729, 15) (9409,194)
49 114 (1089, 22)
50 112

Number of elements below y = x/50: 12774
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PROBLEM (1)
by J. Rodriguez, Sonora, Mexico

Find a s8trictly increasing infinite series of integer numbers
such that £for any consecutive three of them the Smarandache
Function 1s neither increasing nor decreasing.

*Find the largest strictly increasing series of integer numbers
for which the Smarandache Function is strictly decreasing.

a) To solve the first part of this problem, we construct the
following series:

P: » Pstl, Py, P+l ..., Pa, Patl,
where p; , Py , Ps ... are the series of prime odd numbers 5, 7, 11
Of course, S(p;) = p; and S(p;+l) < p; , for any i 2 3.

b) A way to look at this unsolved gquestion is the following{
Because S(p) = p, for any prime number, we should get a large

interval in between two prime numbers. A bigger chance is
when p and q, the primes with that propriety, are very large
(and q # p + ¢, where ¢c = 2, 4, or 6). In this case the

series is finite. But this is not the optimum method!

The Smarandache Function is, generally speaking, increasing {we
mean that for any positive integer k there is another integer j >
k such that S(3j) > S(k)}. This property makes us to think that our

series should be finite.

Calculating at random, for example, the series’ width is at least
seven, because:
for n = 43, 46, 57, 68, 70, 72, 120 then
S(n) = 43, 23, 19, 17, 10, &6, 5 respectively.
We are sure it’s possible to find a larger series, but we worry if
a maximum width does exist, and if this does: how much is it?
[Sorry, the author is not able to solve it!]

See: Mike Mudge, "The Smarandache Function" in the <Personal
Computer World> journal, London, England, July 1992, page 420.
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Solution of a problem by J. Rodriguez

by Pal Graznés

Problem: "Find the largest strictly increasing series of integer numbers for which the
Smarandacne Function is strictly decreasing”.

My intention is to prove that there exists series of arbitrary finite length with the prop-
erties described above.

To begin with, define py =2, p, = 3, p3 = 5 and more generally, p. = the nth prime.
Now we have the following lemma:

Lemma: p¢ < pee; < 2pe forall £ N. (A)

Proof: A theorem conjectured by Bertrand Russell and proven by Tchebychef states that
for all natural numbers n > 2, there exists a prime p such that n < p < 2n. Using this
theorem for n = p, we get px < p < 2pi (x) for at least one prime p. The smallest prime
> Pe IS Disi. SO P > pruy. But then it is obvious that (x) is satisfied by p = px,;. Hence

~—

Pr < prs1 < 2pe. O

This lemma plays an important role in the proof of the :ollowing theorem:

Theorem: Let n be a natural number > 2 and define the series {z:}225 of length n

by zx = 2* paa_i for k€ {0..... n—1}. Then z¢ < zier and S(zx) > S(zx+1) for all
ke {0.....n=2}. () '
Proof: For k£ € {0,...,n — 2} we have the following equivalences: z; < 74y, &

2 ppac < gy i o P2a-x < 2P2a_k-1 according to Lemma (A).
Futhermore py,_, > P2r-(n-1) = Pn+1 2 P3 =35 > 2,50 (pan-z,2) =1 forall ke
{0.....,n = 1}. Hence S(zi) = S(2* pan—s) = max{ §(2%), S(pzn-s) } = max{ S(2%), DP2n—x}-
Consequently pia_z < S(zi) < max{ 2k, pa_: } (=) since S(2%) < 2.

Moreover we know that pey; —pe > 2 for all & > 2 because both p; and pes1 are

odd integers. This inequality gives us the following result:
n—1 n-1
2 (e —P)=pa =P =pa -3 2 3 2=2n-2),
k=2 k=2

SO pn 2 2n —1 foralln > 3. In other words, poyy > 2n + 1 > 2(n —-1) forn > 2, ie.
Dan-z > 2k for k =n — 1. The fact that D2n-+ 1ncreases and 2k decreases as £ decreases
from n —1 to 0 implies that psn_x > 2k for all & < {0,...,n = 1}. From this last
inequality and (=) it follows that S(zi) = psn_z. This formula brings us to the conclusion:
S(z4) = pan-t > pan—s; = S(zx41) forall k€{0,....,n-2}. T

Example: For n =10 Theorem (Q) generates the following series:

L 10T 172737475 6] 787 9]
| Ik | 71134 [244 | 472 | 848 | 1504 | 2752 | 5248 | 9472 | 13872
15(1:,;)!71]67{,61159i53147'43}41l37l 31
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Problem (2)
J. Rodriguez, Sonora, Mexico

*Is it posible to extend the Smarandache Function from the
integer numbers to the rational numbers (by finding then a rational

approach to the factorials, i.e. (3/2)! = 2?2 ) 2

*More intriguering is to extend this function to the real numbers
(by finding then a real approach to the factorials, i.e. (N5)1 =2
) 2

*Idem for the cocmplex numbers (i.e. (4 + 6i)! = 2 ) 2

For example, we know that the Smarandache Function is defined as
follows:
S : 2\ {0} - N, S(n) is as the smallest integer such that
(S(n))! = 1x2x3x...xS(n) is divisible by n.
But what about S(1/2), or S(l), or S(~i) are they equal to what ?
It’s interesting to try enlarging this funtion adopting in the same
time new definitions for division and factorial, respectively.

Reference:
Mike Mudge, "The Smarandache Function", in the <Personal

Computer World> journal, London, July 1992, p.420.
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PROPOSED PROBLEM (3)

Let 7 (n) be Smarandache Function: the smallest integer m such

FL
that m! is divisible by n. Calculate wl(pp ), where p is an cdd

prime pumber.

Sclution.

: 2
The answer 1s p™ , because:

p¥! = 1-2-...+p-...(2pP) ... ((p=1)P)- ... (pp), which is divisible
p+1
by p .

Any another number less than pz will have the property that its

factorial is divisible by‘pg , with k < p + 1, but not

P+1i
divisible by p .

Pedro Melendez

Av, Cristovao Colombo 336
30.000 Belo Horizonte, MG
BRAZIL
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PROPOSED PROBLEM (4)

Let m be a fixed positive integer. Calculate:
: m
lim n(p. )/p.
(> o0 L L .
where m{n) 1s Smarandache Function defined as the smallest integer
m such that m! is divisible by n, and =0 the prime series.

h - . -
Solu*tiorn:
20U 10on

We note by p? 2 prime number greater than m. We show that

n}pcm) = mp,, for any 1 > j
: = . - m = +
12 by absurd n(pL ) a < mp, hen
al = 1-2- ...'pL-...'(Zpy-. ..'((m—k)p?'...-a, with k > 0, will be

e m-k m
divisible by pi but not by P, -

Then this limit is equal to m.

Pedro Melendez

Av . Cristovao Colombo 336
30.000 Belo Horizonte, MG
BRAZIL
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PRCBLEM COF NUMBER THEORY (5)

by A. Stuparu, Vilcea, Recmania, and
D. W. Sharpe, Sheffield, England

Prove that the eguation

S(x) = p, where p is a given prime number,
has just D((p-1)!) solutions, all of them in between p and p!
( S(n) is the Smarandache Function: the smallest integer such that
S(n)! is divisible by n,

and D(n) is the number of positive divisors of n 1.

PRCOF (inspired by a remark of D. w. Sharpe)

Of ccurse the smallest solution is x = P, and the largest one is
X = p!

Any other solution should be an integer number divided by p, but
not by p’ (because S(kp?) >= S(p?) = 2p, where k is a positive
integer).

Therefore x = pq, where g is a a divisor of (p-1)!

Reference: "The Smarandache Function", by J. Redriguez (Mexico) &
T. Yau (USA), in <Mathematical Spectrum>, Sheffield,
UK, 1993/4, Vol. 26, No. 3, pp. 84-5; Editor: D. W.
. Sharpe.

Examples {(of D. W. Sharpe)

S(x) =5, then x € { 5, 10, 15, 20, 30, 40, 60, 120 } (eight
solutions).

S(x) =7 has just 30 solutions, because 6! = 2*x3%x5' and 6! has
just 5x3x2 = 30 positive divisors.
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A PROBLEM CONCERNING THE FIBONACCI RECURRENCE (6)
by T. Yau, student, Pima Community College

"Let S(n) be defined as the smallest integer such that (S(n))! 1is
divisible by n (Smarandache Function). For what triplets this
function verifies the Fibonacci~relationship, i.e. £find n suckh that

S(n) + S(n+l) = S(n+2) ?

Solution:
Checking the first 1200 numbers, I found just two triplets for
which this function verifies the Fibonacci relationship:

S(9) + 5(10) = s(11) <= 6 + 5 = 11,
and
S(119) + S(120) = S(121) & 17 + 5 = 22.
"How many other triplets with the same property do exist ?
(I can’t find a theoretical proof ...)
Reference:

M. Mudge, "Mike Mudge pays a return visit to the Florentin
Smarandache Function", in <Personal Computer World>, London,
February 1993, p. 403.
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GENERALISATION DU PROBLEME 1075° (7)

Scit n un nombre positif entier > 1.
Trouver Card{x, mN(x) = n}. L’on a noté par TN(x) la Fonction
Smarandache: qui est définie pour tout entier x comme le plus petit
nombre m tel que m! est divisible par x.

M. Costewitz, Bordeaux, France

SCLUTION DU PROBLEME™:
(Ce probleme est dans un sens une généralisation du probleme 1075,
publié dans 1’Elemente der Mathematik'.)
Soit n = r* ...r% , la décomposition factorielle unigque de ce
nombre.

Calculons pour tout 1 £ i < s,

[ n/r’ ] =e, 2d, 21, ob [a] signifie la partie entiere

by pa

1 _ -

neag

J
de a.
C’est-a-dire: n! se divise par =%, pour tout 1 < i < s.
Nous nottons par M 1l’ensemble demande.
Biensur,

Nous nottons par R le membre gauche de 1’inclusion antérieure, et
par

R: = { r®%, %57, .. &%ty
Ry = {r* %, ..., r, 1}, pour tous les i.
Soient q, ..., g. tous les nombres premiers différents entre eux,

plus petits que n, et non-diviseurs de n. Il est clair que ceux—cil
sont tous différents de r;, ..., r,.

Construisons les suivantes suites finies:

Qs @5 ..., q,, tels gue N{g,"*) < n < (g >*"Y;

Ger % -.., @, tels que TM(q.®) < n < N(g.;



qt+l > n;

et
el -
f,. = L [ n/q ], pour tous les k.
3=1
t
Nous formons g = I (1+ f, ) de combinaisons entre les nombres
k=1

(éléments) de cettes suites, gue nous réunissons dans un ensemble
notte par Q.

I1 est évident que chaque solution de 1’équation M(x) = n doit
etre de la forme: a.bc, pour tous les i,

( s \ ( S

ou a, € R, b e URJU! U R,
J=1 j=1
J#1 J#1

, C € Q.

Donc, le nombre des solutions pour 1’équation demandée est egale a
S s
q L d: N (e: + 1 ).
i=1  §=1
J#i

["Voir: Aufgabe 1075 par Thomas Martin, "Elemente der Mathematik",
Vol. 48, No.3, 199%83]

["Solution complétée par les éditeurs (C. Dumitrescu)]
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A PROBLEM OF MAXIMUM (8)

by T. Yau, student, Pima Community College

t S5(n) be defined as the smallest integer such that (S(n))! is
sible by n (Smarandache Function). Find:
max{ S(n)/n },
all composite integers n = 4.

lution:
rl 5
=P ... P, , its canonical factorial decomposition.
. T,
use S(n) = max{ S(p; ) } = S(p; ) S pyz,
1<is<s
€asy to see that n should have only a prime divisor for S(n)/n

ecome maximum. Therefore 8 = 1.

H

n = p%, where: p, r are integers, and p is prime.

/n € pr/p Hence p and r should be as small as possible, i.e.

P=2o0r 3 0r5, and r = 2 or 3.

hecking these combinations, we find
n = 3% = 9, whence max{ S(n)/n } = 2/3 v
over all composite integers n # 4.

ference:
M. Mudge, "Mike Mudge pays a return visit to the Florentin
Smarandache Function”, in <Personal Computer World>, London,

February 1993, p. 403.
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ALPHANUMERICS AND SOLUTIONS (9)

by T. Yau. student, Pima Community College

Prove that it N = O there are neither an operation * * " nor integers replacing the letters. for which
the following statement:

SMARANDACHE *
FUNCTION -
IN

= NUMBERTHEORY

is available.

Soiution:
Of course " * " may not be an addition. because in that case *S* (as a digit) shouid be equal o "U", which
involves N = 0. Contradiction.

(Same for a substraction.]
Nor a muitiplication, because the product should have more that 12 digits.

Not a division, because the quotient should have less than 12 digits.
For other kind of operation, | think it's not necessary to check anymore.

Reference:
Mike Mudge, "The Smarandache Function” in the <Personal Computer World> journai, London, July

1992, p. 420.
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THE MOST UNSOLVED PROBLEMS OF THE WORLD
ON THE SAME SUBJECT

are related to the Smarandache Function in the Analytic Number
Theory:

S : Z‘—>N, S{(n) is defined as the smallest integer such
that S(n)! is divisible by n.

The number of these unsolved problems concerning the function is
equal to ... an infinity !! Therefore, they will never be all
solved!

[See: Florentin Smarandache, "An Infinity of Unsolved Problems
concerning a Function in the Number Theory"”, in the <Proceedings
of the International Congress of Mathematicians>, Berkeley,
California, USA, 1986]
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TEACHING THE SMARANDACHE FUNCTION TO THE AMERICAN COMPETION STUDENTS

by T. Yau

The Smarandache Functicn is defined: for all non-null integers. n, to be the smallest integer such that

{Si{n))! is divisible by n {see 1, 2, 3].

In order 1o make students from the American competions to learn and understand better this nation,
used in many east - eurgpean national mathematical competions, the author: caicutates it for some
small numbers, establishes a few proprieties of it, and involves it in relations with other famous

functions in the number theory. _
It’s important for the teachers to familiarize American students with the work done in other countries.

{1 would cail it: multi - scientifical exchange.)

References:
1. Mike Mudge, "The Smarandache Function” in <Personal Computer Warid >, Landon, July 1992,
p.420;
2. Debra Austin, "The Smarandache Function featured” in <Honeywell Pride>, Phoenix, Juin 22,

1993, p.8;
3. R. Muller, "Unsolved Prcblems related to Smarandache Function”, Number Theory Publishing

Co., Chicago, 1983.
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