A CONJECTURE CONCERNING INDEXES OF BEAUTY

Maohua Le
Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P. R. CHINA

Abstract. In this paper we prove that 64 is not an index of beauty.
Key words: divisor, index of beauty,

For any positive integer n, let $d(n)$ be the number of distinct divisors of n. It is a well known fact that if

$$
\begin{equation*}
n=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{1}} \tag{1}
\end{equation*}
$$

is the factorization of n, then we have

$$
\begin{equation*}
d(n)=\left(a_{1}+1\right)\left(a_{2}+1\right) \cdots\left(a_{k}+1\right) \tag{2}
\end{equation*}
$$

(see[1]). For a fixed positive integer m, if there exist a positive integer n such that

$$
\begin{equation*}
m=\frac{n}{d(n)}, \tag{3}
\end{equation*}
$$

then in is called an index of beauty. Recently, Muthy 121 proposed the foliowing conjecture:

Conjecture Every positive integer is an index of beanit.
In this paper we give a counter-example for the above-mentioned conjecture. We prove the following result:

Theorem 64 is not an index of beauty.
Proof We now suppose that 64 is an index of beauty. Then there exist a positive integer n such that

$$
\begin{equation*}
n=64 d(n) . \tag{4}
\end{equation*}
$$

We see from (4) that n is even. Hence, n has the factorization

$$
\begin{equation*}
n=2^{a_{0}} p_{1}^{a_{1}} \cdots p_{r}^{a_{1}} \tag{5}
\end{equation*}
$$

where p_{1}, \cdots, p_{r} are odd primes with $p_{1}<\cdots<p_{r}, a_{0}$ is a positive integer with $a_{0} \geqslant 6, a_{1}, \cdots, a_{r}$ are positive integers. Let

$$
\begin{equation*}
b=a_{0}-6 \tag{6}
\end{equation*}
$$

By (4), (5) and (6), we get

$$
\begin{equation*}
2^{b} p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}=(b+7)\left(a_{\mathrm{i}}+1\right) \cdots\left(a_{r}+1\right) . \tag{7}
\end{equation*}
$$

Since p_{1}, \cdots, p_{r} are odd primes, we have

$$
\begin{equation*}
p_{i}^{a_{i}} \geq \frac{2}{3}\left(a_{1}+1\right), i=1, \cdots, r \tag{8}
\end{equation*}
$$

From (7) and (8), we get

$$
\begin{equation*}
b+7 \geq 2^{b}\left(\frac{3}{2}\right)^{r} \geq 2^{b-1} 3 . \tag{9}
\end{equation*}
$$

It implies that $b \leqslant 2$.
If $b=2$, thén from (7) we get $r=1$ and

$$
\begin{equation*}
4 p_{1}^{a_{1}}=9\left(a_{1}+1\right) \tag{10}
\end{equation*}
$$

whence we get $p_{1}=3, a_{1} \geqslant 2$ and

$$
\begin{equation*}
4 \cdot 3^{a_{1}-2}=a_{1}+1 . \tag{11}
\end{equation*}
$$

Since $4 \cdot 3^{a_{1}-2}>4\left(1+\left(a_{1}-2\right) \log 3\right)>4\left(a_{1}-1\right)>a_{1}+1$, (11) is impossible.
If $b=1$, then from (7) we get

$$
\begin{equation*}
p_{1}^{a_{1}} \cdots p_{r}^{a_{r}}=4\left(a_{1}+1\right) \cdots\left(a_{r}+1\right) . \tag{12}
\end{equation*}
$$

Since p_{1}, \cdots, p_{r}, are odd primes, (12) is impossible.
If $b=0$, then from (7) we get

$$
\begin{equation*}
p_{1}^{a_{1}} \cdots p_{r_{r}}^{a_{r}}=7\left(a_{1}+1\right) \cdots\left(a_{r}+1\right) . \tag{13}
\end{equation*}
$$

We see from (13) that $a_{1}+1, \cdots, a_{1}+1$ are odd. It implies that a_{1}, \cdots, a_{r} are even. So we have $a_{i} \geqslant 2(i=1, \cdots, r)$ and

$$
\begin{equation*}
p_{i}^{u_{i}} \geq 3\left(a_{i}+1\right), i=1, \cdots, r . \tag{14}
\end{equation*}
$$

By (13) and (14), we get $r=1$. Further, by (13), we obtain $p_{1}=7$ and

$$
\begin{equation*}
7^{a_{1}-1}=a_{1}+1 . \tag{15}
\end{equation*}
$$

However, since $a_{1} \geqslant 2$, (15) is impossible. Thus, 64 is not an index of beauty. The theorem is proved.

References

[1] G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford Univ. Press, Oxford, 1937.
[2] A. Murthy, Some more conjectures on primes and divisors, Smarandche Notions J. 12(2001), 311-312.

