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Abstract: In this paper we verify a conjecture concerning the
Smarandache dual function.

Key words: Smarandache dual function; factorial; gap of primes

For any positive integers n, let S'(n) denote the greatest positive
integer m such that n=0 (mod m!). Then S'(n) is called the
Smarandache dual function. In (2], Sandos conjectured that

Sk 2 1) )=g-1, (i)
Where k is a positive integer, q 1s the first prime following 2k+1. In this
paper we prove the following result. |

Theorem. (1) holds for any positive integér k.

Proof. Since g is a pri-me with ¢ > 24+1, we have

(26~ 1) (2k + 1120 (mod ¢). (2)
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It implies that S*((2/f~1)! Ck+1))<g-1. Further, since ¢ is the least

prime with ¢ >24+1, by Bertrand Postulate (see [1, Theorem 418]), we

have

qg=>2(2k+1). (3)
Hence, by (3), any prime divisor p of ¢-1 satisfies

p<2k-1. (4)

For any positive integer a and any prime p, let ord,a denote the
order of p in a. It is a well known fact that
ord n! = fi[-?;J, ()
r=1 P
where [x] s the Gauss function of x. We now suppose that
S*((2k ~ 1) (2k + 1))<<g—1. Then there exists a prime p sucn that
ord,(24-1)!+ord ,(2k+ 1)1 < ord,(g-1)!. _ (6)
Hence, by (5) and (6), we get

[2k:1J+[2kjl}<[q71J
P L P p

tor a suitable positive integer 7. From (7), we get

L e
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whence we obtain
- 4k<<q-1. (8)
It foilows that g=>4k+2, a contradiction with (3). Thus, we get

*

S((2k - 1) (2% + 1))=g~1. The theorem is proved.

154



References

[1] G.H.Hardy and E.M. Wri ght, An introduction to the theory of numbers,
Oxford University Press, Oxford, 1938.

[2] J. Sandor, On certain generalizations of the Smarandache function,

Smarandache Notions J. | 1(2000), 2002-212.

155





