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Abstract: In this paper we verity a cof0ecture concernIng the 
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For any positive integers n, let S*(n) denote the greatest positive 
integer m such that n = 0 (lnod In!). Then S*(n) is called the 
Slnarandache dual function. In [2J, Sandos conjectured that 

. ,. 
S ((2k-l )!(2k+ 1 )!)=q-l, (1) 

Where k is a positive integer, q is the first prin1e follovving 2k+ 1. In this 
paper we prove the following result. 

Theorem. (1) holds for any positive integer k. 
Proof. Since q is a prilne vvith q 2k+ 1, we have 

(2k - 1 )! (2 k + I)! ¢ U (In od q). (2) 
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It ilnplies that S· ((2k 1) (2k + 1)1) S; q -1. Further, since q is the least 
prilne vvith q >2k+ 1, by Belirand Postulate (see [1, TheorelTI 418]), we . 
have 

q 2(2k+ 1). 

Hence, by (3), any prilne divisor p of q-1 satisfies 

p S; 2k-1. 

(3) 

(4) 
For any positive integer a and any prilne p, let ordp a denote the 

order of p in Q. It is a well known fact that 

ordpn!= ~[~J, (5) 
r=l P 

where [x] is the Gauss function of x. We now suppose that 
S· ((2k --1)1 (2k + 1 )!)<q -1 . Then there exists a prilne p suen that 

ordp(2k-l ) 1 +ordp (2k+ I)! ordp( q-l)!. (6) 
Hence, by (5) and (6), we get 

[ 2:~ 1 J + [ 2:~ 1 J<[ qp~ 1 J 
for a suitable positive integer r. From (7), \ve get 

,[2k~ll+12k~lJ+l ~[Lf 1 
.PJLP pJ 

(8) 

whence we obtain 

4k<q-1. (8) 
It follows that q 2 4k + 2, a contradiction with (3). Thus, we get 
s* ((2k -1) (2k + 1)1) = q -1 . The theoreln is proved. 
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