Maohua Le
 Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R. China.

Abstract. In this paper we give a formula expressing the Smarandache function $\mathrm{S}(\mathrm{n})$ by means of n without using the factorization of n.

For any positive integer n, let $S(n)$ denote the Smarandache function of n. Then we have

$$
\begin{equation*}
S(n)=\min \{a|a \in N, n| a!\}, \tag{1}
\end{equation*}
$$

(See [1]). In this paper we give a formula of $\mathrm{S}(\mathrm{n})$ without using the factorization of n as follows:

Theorem. For any positive integer n, we have
(1) $\quad S(n)=n+1-\left[\sum_{k=1}^{n} n^{-(n \sin (k!\pi / n))^{2}}\right]$

Proof. Let $\mathrm{a}=\mathrm{S}(\mathrm{n})$. It is an obvious fact that $\mathrm{l} \leq \mathrm{a} \leq \mathrm{n}$. We see from (1) that
(2) $\mathrm{n} \mid \mathrm{k}!, \mathrm{k}=\mathrm{a}, \mathrm{a}+1, \ldots, \mathrm{n}$.

It implies that
(4) $n^{-(n \sin (k!\pi / n))^{2}}=n^{0}=1, \quad k=a, a+1, \ldots, n$.

On the other hand, since $n \nmid k!$ for $k=1, \ldots$, $a-1$, we have $\sin (\mathrm{k}!\pi / \mathrm{n}) \neq 0$ and
(5)

Hense, by (5), we get

$$
-(n \sin (k!\pi / n))^{2}
$$

(6) $0<\mathrm{n}<1 / \mathrm{n}, \quad \mathrm{k}=1, \ldots, \mathrm{a}-1$.

Therefore, by (4) and (6), we obtain
(7) $n+1-a<\sum_{k=1}^{n} n-(n \sin (k!\pi / n))^{2}<n+1-a+(a-1) / n<n+2-a$.

Thus, by (7), we get (1) immediately. The theorem is proved.

Reference

1. F Smarandache, A function in the number theory, Smarandache function J. 1 (1990), No.l, 3-17.
