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ABSTRCT: In this paper ,the result ( theorem-2.6) Derived in 

REF. [2], the paper "Generalization Of Partition Function, 

Introducing 'Smarandache Factor Partition' which has been 

observed to follow a beautiful pattern has been generalized. 

DEFINITIONS In [2] we define SMARANDACHE FACTOR 

PARTITION FUNCTION, as follows: 

Let U1, U2 , U3 , ... Ur be a set of r natural numbers 

and P1, P2, P3 , .. ·Pr be arbitrarily chosen distinct primes then 

F(a1 , U2 , U3 , ... Ur ) called the Smarandache Factor Partition of 

(a1, U2 , U3 , ... u r ) is defined as the number of ways in which the 

number 

0.1 0.2 0.3 o.r 

N = Pr could be expressed as the 

product of its' divisors. For simplicity, we denote F(a1 , U2 , U3 , 

. Ur ) = F' (N) ,where 

N = pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

Also for the case 
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= U r = = an = 1 

we denote 

F(1,1,1,1,1 ... ) = F ( 1 #n) 
+- n - ones ~ 

Smarandache Star Function 

(1) F'-( N} = I. F'(d r } where d r IN 
diN 

(2) F'** ( N) = L F'* (d r ) 

dr/N 

d r ranges over all the divisors of N. 

If N is a square free num~er with n prime factors, let us denote 

F' ** ( N ) = F** ( 1 #n) 

Here we generalise the above idea by the following definition 

Smarandache Generalised Star Function 

(3) F,n*(N) = L F'(n-1)* (d r ) 

drlN n > 1 

and d r ranges over all the divisors of N. 

For simplicity we denote 

F'(Np1P2 ... Pn) = F'(N@1#n) ,where 

( N,Pi) = 1 for i = 1 to n and each Pi is a prime. 

F' (N@1 #n) is nothing but the Smarandache factor partition of (a 

number N multiplied by n primes which are coprime to N). 
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In [3J a proof of the following result is given: 

F'(Np1P2P3) = F'*(N) +3F,2*(N) + F,3*(N) 

The present paper aims at general ising the abve result. 

DISCUSSION: 

THEOREM(3.1 ) 

F'(N@1#n) = F'(Np1P2 ... Pn) = 

where 
m 

n 
I. [ 3(n,m) F,m*(N)] 
m=O 

3(n,m) = (11m!) I. (_1)m-k .mCk .kn 
k=1 

PROOF: 
Let the divisors of N be 

d 1 , ..... , 

Consider the divisors of (Np1P2. .Pn) arranged as follows 

. , -------say type (0) 

-------say type (1) 

-------say type (2) 

-------say type (t) 

( the rea ret p rim e sin the t e r m d 1 PiP j . . . a part fro m d 1 ) 

There are nCo divisors sets of the type (0) 

There are nC 1 divisors sets of the type (1) 

There are nC 2 divisors sets of the type (2) and so on 

There are nCt divisors sets of the type (t) 
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There are nCn divisors sets of the type (n) 

Let Np1P2 ... Pn = M .Then 

F*(M) = nCo[sum of the factor partitions of all the divisors of row (0) ] 

+ nC 1 [sum of the factor partitions of all the divisors of row (1) ] 

+ nC 2[sum of the factor partitions of all the divisors of row (2)] 

+ 
+ nCt[sum of the factor partitions of all the divisors of row (t)] 

+ 

+ nCn[sum of the factor partitions of all the divisors of row (n)] 

Let us consider the contributions of divisor sets one by one. 

Row (0) or type (0) contributes 

Row (1) or type (1) contributes 

= [F'*(d 1) + F'*(d2) + ... + F'*(d k)] 

= F,2*(N) 

Row (2) or type (2) contributes 

Applying theorem (5) on each of the terms 

on summing up 

F'(d 1p1p2) = F'*(dd + F'**(d 1) 

F'(d2P1P2) = F'*(d2) + F'**(d2) 

(1) ,(2) . upto (n) we get 

----(1) 

----(2) 

----(k) 

At this stage let us denote the coefficients as a(n.r) etc. say 
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Consider row (t) , one divisor set is 

and we have 

F'(d 1@1#t) = a(t,1}F'*(d 1) + a(t,2)F,2*(d 1) + + a(t,t)F,t*(d 1) 

F'(d2@1#t) = a(t,1)F'*(d 2 ) + a(t,2)F,2*(d2) + + a(t,t)F,t*(d 2 ) 

summing up both the sides ,columnwise we get for row (t) or 

divisors of type (t) one of the nC t divisor sets contributes 

F,2*(N) + F,3*(N) a(t,t)F,(t+1)*(N) a(t,1) a(t,2) + ... + 

similarly for row (n) we get 

All the divisor sets of type (0) contribute 

nco a(o,o)F'*(N) factor partitions. 

All the divisor sets of type (1) contribute 

All the divisor sets of type (2) contribute 

nC2 {a(2,1)F'2'~(N) +a(2,2)F,3*(N)} factor partitior:s. 

All the divisor sets of type (3) contribute 

nC3{a(3,1)F,2*(N) + a(3,2)F,3*(N) + a(3,3)F,4*(N} factor partitions. 
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All the divisor sets of row (t) or type (t) contribute 

nCt {a(t,1)F,2*(N) + a(t,2)F'3*(N) + ... + a(t,t)F,(t+1 h (N)} 

All the divisor sets of row (n) or type (n) contribute 

Summing up the contributions from the divisor sets of all the types 

and considering the coefficient of F,m*(N) for m = 1 to (n+1) we 

get, coefficient of F'*(N) = a(O,O) = 1 = a(n+1,1) 

coefficient of F,2*(N) 

= a(n+1,2) 

coefficient of F'3*(N) 

= a(n+1,3) 

coefficient of F,m*(N) = 

coefficient of F,(n+1)*(N) = 

n nC n- 1C nC n-1C a(n+1,n+1) = Cn.a(n,n) - n· n-1 .a(n-1,n-1) = n· n-1- - -

= 1 

Consider a(n+1,2) 
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= nC + nC + + nC 1 2· • • n 

= (2 n+1 
- 2)/2 . 

Consider a(n+1,3) 

n 
=( 1/2) { nC 2 2 2 + nC 323 + ... + nCn 2;-)} - { L nCr - nC 1 - nCo} 

r=O 
n 

= (1/2) { L nCr 2 r - nC 1.2 1 - nC o.2° } - { 2 n - n - 1 } 
r=O 

= ( 1 /2) { 3 n - 2 n - -I} - 2 n + n + 1 

=(1/2){3n _2n+1 +1} ---------- (3. 1 ) 

= {1/3!} { (1). 3 n + 1 _ (3). 2 n + 1 + (3). (1) n + 1 _ ( 1) (0) n+ 1 } 

Evaluating a(n+1.4) 

n n 

= (1/2)[ (1/3) {L nCr 3 f 
- 32 nC 2 - 3 nC 1 - nCo} +{ L nCr - nC2 - nC 1 

r=O r=O 
n 

_ nCo} - { L nC r .2r - 22 nC 2 - 2 nC 1 - nCo}] 
r=J 

= (1/2) [(1/3){ 4 n - 9n(n-1 )/2 - 3n -1 } + { 2
n 

- n(n-1 )/2 - n - 1 } 
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- { 3n - 4n(n-1 )/2 - 2n -1} 

a(n+1,4) = (1/4!) [(1) 4 n+1 - (4) 3n+1 + (6) 2 n+1 _ (4) 1n+1 + 1(0)n+1] 

Observing the pattern we can explore the possibility of 

r 

a(".r) = (1/r!) L (_1)r-k .rC k .k" -------(3.2) 
k=O 

which is yet to be established. Now we shall apply induction. 

Let the following proposition (3.3) be true for r and all n > r. 

r 

a(n+1,r) = (1/r!) I (_1)r-k .rC k .kn+1 
k=1 

Given (3.3) our aim is to prove that 

r+1 
a(n+1,r+1) = (1/(r+1 )!) L [(-1 )(r+1) - k .r+1Ck (k)n+1 ] 

k=1 
we have 

------(3.3) 

- nC "C nC + + nC a(n+1,r+1) - r a(r,r) + r+1 a(r+1,r~ + r+2 a(r+2,r) .. . n a(n,r) 

r r 
a(n+1,r+1) = nCr {(1/r!) I (_1/-k .rC k .kr} + nC r+1 {(1/r!) I (_1)r-k .rC k k r+

1 

k=O k=O 

r 
+ ... + nC n {(1/r!) I (_1/- k .rC k .kn } 

k=O 
r 

= (1/r!) L [(-1 r- k .rC k {nCr k r + nC r+1 k
r+1 + ... + nCn kn }] 

k=O 

r n 

= (1/r!) I [(-1 )r-I< .rCk { I nC q k q 
-

k=O q=O 

r 

= (1/r!) I [(_1)r-k .rC k (1+k)n]-
k=O 

r-1 
I nC q kq 

} ] 

q=O 

r-1 

(1/r!) I [(_1)r-k .rC k {I nC q k q
}] 

q=O 
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If we denote the 1st and the second term as T 1 and T 2 I we have 

----------( 3.4) 

r 

considerT 1 =(1/r!) L [(_1)r-k.rC k (1+k)n] 
k=O 

r 

= (1/r!) L [(_1)r-k {r!/((k!)(r-k)!)} (1+k)n] 
k=O 

r 

= (1/(r+1)!) L [(-1r-,< {(r+1)!/((k+1)!(r-k)!)}(1+k)n+1 ] 
k=O 

r 
= (1/(r+1)!) L [(_1)r-k .r+1C k+1 (1+k)n+1 ] 

k=O 

r 
= (1/(r+1)!) L [(_1)(r+1)-(k+1) .r+1Ck+1 (1+k)n+1 ] 

k=O 

Let· k + 1 = S I we get I s = 1 at k = 0 and s = r + 1 at k = r 

r+1 
= (1/(r+1)!) L [(_1)(r+1)-S .r+1C s (s)n+1 ]. 

5=1 

replacing s by k we get 
r+1 

= (1/(r+1 )!) L [(-1 )(r+1) - k .r+1Ck (k)n+1 ] 
k=1 

in this if we include k = 0 case we get 

r+1 
T1 =(1/(r+1)!) L [(_1)(r+1) - k .r+1C k (k)n+1] ----(3.5) 

k=O 

Tl is nothing but the right hand side member of (3.3). 

To prove (3.3) we have to prove a(n+1,r+1) = Tl 

I n view of (3.4) our next step is to prove that T 2 = 0 
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r r-1 

T 2 = (1 I r! ) I: [( -1 ) r- k . r C k { L n C q k q }] 

k=O q=O 

r 

= (11r!) L [(_1)r-i< .rCk {nCo kO + nC 1 k 1 + nC2 k
2 + ... + nCr_1 kr-1 }] 

k=O 

r r 

= (1/r!) L [(_1)r-k .rCk ] + nCd (1/r!) L {(_1)r-k .rCk k}] + 
k=O k=O 

r r 

nC 2 [(1/r!) L{(_1)r-k rC k k
2}] + ... + nC r_d(1/r!) L {(-1r-k .rCk k

r-1 }] 
k=O k=O 

r r 

= (1/r!) L [(_1)r-k .rCk ] + nC 1[ (1/r!) L {(_1)r-k .rCk k}] + 
k=O k=O 

[nC a + nc a + + nc a ] 2· (2,r) 3· (3,r) , _.. r-1 . (r-1.r) 

= X + y + Z say where 
r r 

. X = (1/r!) L [(_1)r-k .rCk ] 
k=O 

y = nC1[ (1/r!) L {(-1r-k .rCk k}] 
k=O -

We shall prove that X = 0 I Y = 0 I Z = 0 seperately. 

r 

(1) X = (1/r!) L [(_1)r-k .rCk ] 
k=O 

r 

= (1/r!) L [(_1)r-k .rCr_k ] 

k=O 

let r - k = w then we get at k = 0 w = r and at k = r w = o. 

o 
= (1/r!) L [(_1)W .rCw ] 

w=r 
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r 
= (1/r!) L [(_1)W .rew ] 

w=O 

=(1 - 1)r Ir! 

= 0 

We have proved that X = 0 

(2) r 
y = nC1[ (1/r!) l: {(-1 )r-k .rCk k }] 

k=O 
r 

= nCd (1/(r-1)!) l: {(_1)r-1-(k-1) .r-1Ck_1 }] 
k=1 

r-1 
= nC 1[ (1/(r-1)!) l: {(_1)r-1-(k-1) .r-1Ck_1 }] 

k-1 =0 

= 0 

We have proved that Y = 0 

(3) To prove 

Proof: 

Refer the matrix 

3(1,2) 3(1,3) 3(1,4) 

3(2,3) 3(2,4) 

a(3,2) aQdl 3(3,4) 

a(4,3) a£i..1l_ 3(4,5) ••• 
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3 (1, r) 

3(2,r) 

3(3,r) 

3(4,r) 



a(r-1,r-1) a(r-1,r) 

a(r,r-1) 

The Diagonal elements are underlined. And the the elements 

above the leading diagonal are shown with bold face. 

We have 

r 

= [(1/r!) I {(_1)r-k .rCk k}] = Y/ nC 1 = 0 for r >1 
k=O 

All the elements of the first row except a(1,1) (the one on the 
leading diagonal) are zero. 
Also 

a(n+1,r) = a(n,r-1) + r. a(n,r) --------(3.7) 

( This can be easily established by simplifying the right hand side.) 

(7) gives us 

a(2,r) = a(1,r-1) + r. a(1,r) = 0 for r > 2 

i.e. a(2,r) can be expresssed as a linear combination of two 

elements of the first row ( except the one on the leading diagonal) 

=> a(2,r) = 0 r > 2 

Similarly a(3,r) can be expresssed as a linear combination of two 

elements of the second row of the type a(2,r) with r > 3 

=> a(2,r) = 0 r > 3 

and so on a(r-1,r) = 0 

s u bstituti n g 

a(2,r) =.a(3,r) = ., = a(r-1,r) = 0 in (6) 

we get Z = 0 
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With X = Y = Z = 0 we get T 2 = 0 
ora (n + 1 ,r+ 1) = T 1 - T 2 = T 1 

from (5) we have 
r+1 

T1 =(1/(r+1 )!) L [(-1 )(r+1) - k r+1C k (k)n+1 ] 
k=O 

which gives 
r+ 1 

a(n+1,r+1) = (1/(r+1 )!) L [(-1 )(r+1) - k r+1C k (k)n+1 ] 
k=O 

We have proved ,if the propposition (3.3) is true for r it is true for 

(r+1) as well .We have already verified It for 1, 2, 3 etc. Hence by 

induction (3.3) is true for all n. 

This completes the proof of theorem (3.1) . 

Remarks: This proof is quite lengthy, clumsy and heavy in 

algebra. The readers can try some analytic, combinatorial 

approach. 
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