A GENERAL RESULT ON THE SMARANDACHE STAR FUNCTION

(Amarnath Murthy , S.E. (E \&T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRCT: In this paper, the result (theorem-2.6) Derived in REF. [2], the paper "Generalization Of Partition Function, Introducing 'Smarandache Factor Partition' which has been observed to follow a beautiful pattern has been generalized.

DEFINITIONS In [2] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ is defined as the number of ways in which the number

$$
N=\quad p_{1}^{\alpha 1} p_{2}^{\alpha 2} p_{3}^{\alpha 3} \ldots p_{r}^{\alpha r} \quad \text { could be expressed as the }
$$ product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$

. $\left.\alpha_{r}\right)=F^{\prime}(N)$, where

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
Also for the case

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots=\alpha_{r}=\ldots=\alpha_{n}=1
$$

we denote

$$
\begin{aligned}
& F(1,1,1,1,1 \ldots)=F(1 \# n) \\
& \leftarrow n \text {-ones } \rightarrow
\end{aligned}
$$

Smarandache Star Function

(1) $F^{\prime \prime}(N)=\sum_{d / N} F^{\prime}\left(d_{r}\right) \quad$ where $d_{r} \mid N$
(2) $F^{\prime * *}(N)=\sum_{d_{r} / N} F^{\prime *}\left(d_{r}\right)$
d_{r} ranges over all the divisors of N.
If N is a square free number with n prime factors, let us denote

$$
F^{\prime * *}(N)=F^{* *}(1 \# n)
$$

Here we generalise the above idea by the following definition

Smarandache Generalised Star Function

(3) $\quad F^{n_{*}}(N)=\sum F^{\prime(n-1) *}\left(d_{r}\right)$

$$
d_{r} / N \quad n>1
$$

and d_{r} ranges over all the divisors of N.
For simplicity we denote

$$
F^{\prime}\left(N p_{1} p_{2} \ldots p_{n}\right)=F^{\prime}(N @ 1 \# n) \text {, where }
$$

$$
\left(N, p_{i}\right)=1 \text { for } i=1 \text { to } n \text { and each } p_{i} \text { is a prime. }
$$

$F^{\prime}(N @ 1 \# n)$ is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).

In [3] a proof of the following result is given:
$F^{\prime}\left(N p_{1} p_{2} p_{3}\right)=F^{\prime *}(N)+3 F^{\prime 2}(N)+F^{\prime 3 *}(N)$
The present paper aims at generalising the abve result.

DISCUSSION:

THEOREM(3.1)

$$
F^{\prime}(N @ 1 \# n)=F^{\prime}\left(N p_{1} p_{2} \ldots p_{n}\right)=\sum_{m=0}^{n}\left[a_{(n, m)} F^{\prime m *}(N)\right]
$$ where

$$
a_{(n, m)}=(1 / m!) \sum_{k=1}^{m}(-1)^{m-k} \cdot{ }^{m} C_{k} \cdot k^{n}
$$

PROOF:

$$
\begin{aligned}
& \text { Let the divisors of } \mathrm{N} \text { be } \\
& \mathrm{d}_{1}, \quad \mathrm{~d}_{2}, \ldots, \quad d_{k}
\end{aligned}
$$

Consider the divisors of $\left(N p_{1} p_{2} . . p_{n}\right)$ arranged as follows

(there are t primes in the term $d_{1} p_{i} p_{j} \ldots$ apart from d_{1})

$$
d_{1} p_{1} p_{2} \ldots p_{n}, \quad d_{2} p_{1} p_{2} \ldots p_{n}, \quad d_{n} p_{1} p_{2} \ldots p_{n}, \quad \text {------say type }(n)
$$

There are ${ }^{n} \mathrm{C}_{0}$ divisors sets of the type (0)
There are ${ }^{n} \mathrm{C}_{1}$ divisors sets of the type (1)
There are ${ }^{n} \mathrm{C}_{2}$ divisors sets of the type (2) and so on
There are ${ }^{n} C_{t}$ divisors sets of the type (t)

There are ${ }^{n} C_{n}$ divisors sets of the type (n)
Let $N p_{1} p_{2} \ldots p_{n}=M$.Then
$F^{*}(M)={ }^{n} C_{0}[$ sum of the factor partitions of all the divisors of row (0)]
$+{ }^{n} C_{1}$ [sum of the factor partitions of all the divisors of row (1)]
$+{ }^{n} C_{2}$ [sum of the factor partitions of all the divisors of row (2)]

+ . .
$+{ }^{n} C_{t}$ [sum of the factor partitions of all the divisors of row (t)]
+ . .
$+{ }^{n} C_{n}[s u m$ of the factor partitions of all the divisors of row (n)]

Let us consider the contributions of divisor sets one by one.
Row (0) or type (0) contributes

$$
F^{\prime}\left(d_{1}\right)+F^{\prime}\left(d_{2}\right)+F^{\prime}\left(d_{3}\right)+\ldots+F^{\prime}\left(d_{n}\right)=F^{\prime \star}(N)
$$

Row (1) or type (1) contributes

$$
\begin{aligned}
& {\left[F^{\prime}\left(d_{1} p_{1}\right)+F^{\prime}\left(d_{2} p_{1}\right)+\ldots F^{\prime}\left(d_{k} p_{1}\right)\right] } \\
= & {\left[F^{\prime *}\left(d_{1}\right)+F^{\prime *}\left(d_{2}\right)+\ldots+F^{\prime *}\left(d_{k}\right)\right] } \\
= & F^{\prime 2 \star}(N)
\end{aligned}
$$

Row (2) or type (2) contributes

$$
\left[F^{\prime}\left(d_{1} p_{1} p_{2}\right)+F^{\prime}\left(d_{2} p_{1} p_{2}\right)+\ldots+F^{\prime}\left(d_{k} p_{1} p_{2}\right)\right.
$$

Applying theorem (5) on each of the terms

$$
\begin{align*}
& F^{\prime}\left(d_{1} p 1 p 2\right)=F^{\prime \star}\left(d_{1}\right)+F^{\prime * *}\left(d_{1}\right) \tag{1}\\
& F^{\prime}\left(d_{2} p_{1} p_{2}\right)=F^{\prime *}\left(d_{2}\right)+F^{\prime * *}\left(d_{2}\right) \tag{2}\\
& \cdot \\
& \cdot \tag{k}\\
& F^{\prime}\left(d_{k} p 1 p 2\right)=F^{\prime *}\left(d_{k}\right)+F^{\prime * *}\left(d_{k}\right)
\end{align*}
$$

on summing up (1), (2) ...upto (n) we get

$$
F^{\prime 2 \star}(N)+F^{\prime 3 \star}(N)
$$

At this stage let us denote the coefficients as $a_{(n, r)}$ etc. say
$F^{\prime}(N @ 1 \# r)=a_{(r, 1)} F^{\prime *}(N)+a_{(r, 2)} F^{\prime 2 \star}(N)+\ldots+a_{(r, t)} F^{\prime+*}(N)+\ldots+$ $a_{(r, r)} F^{\prime r *}(N)$

Consider row (t), one divisor set is $d_{1} p_{1} p_{2} \ldots p_{t}, d_{2} p_{1} p_{2} \ldots p_{t}, \ldots d_{k} p_{1} p_{2} \ldots p_{t}$,
and we have
$F^{\prime}\left(d_{1} @ 1 \# t\right)=a_{(t, 1)} F^{\prime *}\left(d_{1}\right)+a_{(t, 2)} F^{\prime 2 *}\left(d_{1}\right)+\ldots+a_{(t, t)} F^{\prime t *}\left(d_{1}\right)$
$F^{\prime}\left(d_{2} @ 1 \# t\right)=a_{(t, 1)} F^{\prime *}\left(d_{2}\right)+a_{(t, 2)} F^{\prime 2 \star}\left(d_{2}\right)+\ldots+a_{(t, t)} F^{\prime t *}\left(d_{2}\right)$
$\dot{F}^{\prime}\left(d_{k} @ 1 \# t\right)=a_{(t, 1)} F^{\prime *}\left(d_{k}\right)+a_{(t, 2)} F^{\prime 2 *}\left(d_{k}\right)+\ldots+a_{(t, 1)} F^{\prime t *}\left(d_{k}\right)$
summing up both the sides columnwise we get for row (t) or divisors of type (t) one of the ${ }^{n} C_{t}$ divisor sets contributes $a_{(t, 1)} F^{2 *}(N)+a_{(t, 2)} F^{3 *}(N)+\ldots+a_{(t, t)} F^{\prime(t+1) *}(N)$
similarly for row (n) we get

$$
a_{(n, 1)} F^{\prime 2 \star}(N)+a_{(n, 2)} F^{\prime 3 *}(N)+\ldots+a_{(n, n)} F^{(n+1) \star}(N)
$$

All the divisor sets of type (0) contribute

$$
{ }^{n} C_{0} a_{(0,0)} F^{\prime *}(N) \text { factor partitions. }
$$

All the divisor sets of type (1) contribute

$$
{ }^{n} C_{1} a_{(1,1)} F^{\prime 2 *}(N) \text { factor partitions. }
$$

All the divisor sets of type (2) contribute

$$
{ }^{n} C_{2}\left\{a_{(2,1)} F^{\prime 2:}(N)+a_{(2,2)} F^{, 3 *}(N)\right\} \text { factor partitior:s. }
$$

All the divisor sets of type (3) contribute
${ }^{n} C_{3}\left\{a_{(3,1)} F^{2 *}(N)+a_{(3,2)} F^{\prime 3 *}(N)+a_{(3,3)} F^{\prime 4 *}(N\}\right.$ factor partitions.

All the divisor sets of row (t) or type (t) contribute

$$
{ }^{n} C_{t}\left\{a_{(t, 1)} F^{\prime 2 *}(N)+a_{(t, 2)} F^{\prime 3 *}(N)+\ldots+a_{(t, t)} F^{\prime(t+1) *}(N)\right\}
$$

All the divisor sets of row (n) or type (n) contribute
${ }^{n} C_{n}\left\{a_{(n, 1)} F^{\prime 2 \star}(N)+a_{(n, 2)} F^{\prime 3 \star}(N)+\ldots+a_{(n, n)} F^{\prime(n+1) \star}(N)\right\}$
Summing up the contributions from the divisor sets of all the types and considering the coefficient of $F^{\prime m *}(N)$ for $m=1$ to $(n+1)$ we get, coefficient of $F^{\prime *}(N)=a_{(0,0)}=1=\mathbf{a}_{(n+1,1)}$
coefficient of $\mathrm{F}^{\prime 2 *}(\mathrm{~N})$
$={ }^{n} C_{1} a_{(1,1)}+{ }^{n} C_{2} a_{(2,1)}+{ }^{n} C_{3} a_{(3,1)}+\ldots{ }^{n} C_{t} a_{(t, 1)}+\ldots+{ }^{n} C_{n} a_{(n, 1)}$
$=a_{(n+1,2)}$
coefficient of $F^{3 *}(N)$
$={ }^{n} C_{2} a_{(2,2)}+{ }^{n} C_{3} a_{(3,2)}+{ }^{n} C_{4} a_{(4,2)}+\ldots{ }^{n} C_{t} a_{(t, 2)}+\ldots+{ }^{n} C_{n} a_{(n, 2)}$
$=\mathbf{a}_{(\mathrm{n}+1,3)}$
coefficient of $F^{\prime m_{*}}(N)=$
$a_{(n+1, m)}={ }^{n} C_{m-1} \cdot a_{(m-1, m-1)}+{ }^{n} C_{m} \cdot a_{(m, m-1)}+\ldots+{ }^{n} C_{n} \cdot a_{(n, m-1)}$
coefficient of $F^{\prime(n+1) \star}(N)=$
$a_{(n+1, n+1)}={ }^{n} C_{n} \cdot a_{(n, n)}={ }^{n} C_{n} \cdot{ }^{n-1} C_{n-1} \cdot a_{(n-1, n-1)}={ }^{n} C_{n} \cdot{ }^{n-1} C_{n-1} \cdot$.
${ }^{2} \mathrm{C}_{2} \cdot \mathrm{a}_{(1,1)}$

$$
=1
$$

Consider $a_{(n+1,2)}$

$$
={ }^{n} C_{1} a_{(1,1)}+{ }^{n} C_{2} a_{(2,1)}+\ldots{ }^{n} C_{1} a_{(t, 1)}+\ldots+{ }^{n} C_{n} a_{(n, 1)}
$$

$$
\begin{aligned}
& ={ }^{n} C_{1}+{ }^{n} C_{2}+\ldots+{ }^{n} C_{n} \\
& =2^{n}-1 \\
& =\left(2^{n+1}-2\right) / 2
\end{aligned}
$$

Consider $\mathrm{a}_{(\mathrm{n}+1,3)}$

$$
\begin{aligned}
& ={ }^{n} C_{2} a_{(2,2)}+{ }^{n} C_{3} a_{(3,2)}+{ }^{n} C_{4} a_{(4,2)}+\ldots{ }^{n} C_{1} a_{(t, 2)}+\ldots+{ }^{n} C_{n} a_{(n, 2)} \\
& ={ }^{n} C_{2}\left(2^{1}-1\right)+{ }^{n} C_{3}\left(2^{2}-1\right)+{ }^{n} C_{4}\left(2^{3}-1\right)+\ldots+{ }^{n} C_{n}\left(2^{n-1}-1\right) \\
& ={ }^{n} C_{2} 2^{1}+{ }^{n} C_{3} 2^{2}+\ldots+{ }^{n} C_{n} 2^{n-1}-\left\{{ }^{n} C_{2}+{ }^{n} C_{3}+\ldots+{ }^{n} C_{n}\right\} \\
& =(1 / 2)\left\{{ }^{n} C_{2} 2^{2}+{ }^{n} C_{3} 2^{3}+\ldots+{ }^{n} C_{n} 2^{n}\right\}-\left\{\sum_{r=0}^{n} C_{r}-{ }^{n} C_{1}-{ }^{n} C_{0}\right\} \\
& =(1 / 2)\left\{\sum_{r=0}^{n} C_{r} 2^{r}-{ }^{n} C_{1} \cdot 2^{1}-{ }^{n} C_{0} \cdot 2^{0}\right\}-\left\{2^{n}-n-1\right\} \\
& =(1 / 2)\left\{3^{n}-2 n-1\right\}-2^{n}+n+1 \\
& =(1 / 2)\left\{3^{n}-2^{n+1}+1\right\} \\
& =\{1 / 3!\}\left\{(1) \cdot 3^{n+1}-(3) \cdot 2^{n+1}+(3) \cdot(1)^{n+1}-(1)(0)^{n+1}\right\}
\end{aligned}
$$

Evaluating $a_{(n+1,4)}$

$$
\begin{aligned}
& a_{(n+1,4)}={ }^{n} C_{3} a_{(3,3)}+{ }^{n} C_{4} a_{(4,3)}+\ldots+{ }^{n} C_{n} a_{(n, 3)} \\
& ={ }^{n} C_{3}\left\{3^{2}+1-2^{3}\right\} / 2+{ }^{n} C_{4}\left\{3^{3}+1-2^{4}\right\} / 2+\ldots+{ }^{n} C_{n}\left\{3^{n-1}+1-2^{n}\right\} / 2 \\
& =(1 / 2)\left[\left\{3^{2} \cdot{ }^{n} C_{3}+3^{3}{ }^{n} C_{4}+\ldots+3^{n-1} \cdot{ }^{n} C_{n}\right\}+\left\{{ }^{n} C_{3}+{ }^{n} C_{4}+\ldots+{ }^{n} C_{n}\right\}\right. \\
& \left.\quad-\left\{{ }^{n} C_{3} 2^{3}+{ }^{n} C_{4} 2^{4}+\ldots+{ }^{n} C_{n} 2^{n}\right\}\right]
\end{aligned}
$$

$$
=(1 / 2)\left[(1 / 3)\left\{\sum_{r=0}^{n}{ }^{n} C_{r} 3^{r}-3^{2}{ }^{n} C_{2}-3{ }^{n} C_{1}-{ }^{n} C_{0}\right\}+\left\{\sum_{r=0}^{n}{ }^{n} C_{r}-{ }^{n} C_{2}-{ }^{n} C_{1}\right.\right.
$$

$$
\left.\left.-{ }^{n} C_{0}\right\}-\left\{\sum_{r=0}^{n}{ }^{n} C_{r} \cdot 2^{r}-2^{2 n} C_{2}-2^{n} C_{1}-{ }^{n} C_{0}\right\}\right]
$$

$$
=(1 / 2)\left[(1 / 3)\left\{4^{n}-9 n(n-1) / 2-3 n-1\right\}+\left\{2^{n}-n(n-1) / 2-n-1\right\}\right.
$$

$$
a_{(n+1,4)}=(1 / 4!)\left[(1) 4^{n+1}-(4) 3^{n+1}+(6) 2^{n+1}-(4) 1^{n+1}+1(0)^{n+1}\right]
$$

Observing the pattern we can explore the possibility of

$$
\begin{equation*}
a_{(n, r)}=(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n} \tag{3.2}
\end{equation*}
$$

which is yet to be established. Now we shall apply induction.
Let the following proposition (3.3) be true for r and all $n>r$.

$$
\begin{equation*}
a_{(n+1, r)}=(1 / r!) \sum_{k=1}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n+1} \tag{3.3}
\end{equation*}
$$

Given (3.3) our aim is to prove that
$a_{(n+1, r+1)}=(1 /(r+1)!) \sum_{k=1}^{r+1}\left[(-1)^{(r+1)-k} \quad{ }^{r+1} C_{k}(k)^{n+1}\right]$
we have

$$
a_{(n+1, r+1)}={ }^{n} C_{r} a_{(r, r)}+{ }^{n} C_{r+1} a_{(r+1, r)}+{ }^{n} C_{r+2} a_{(r+2, r)}+\ldots+{ }^{n} C_{n} a_{(n, r)}
$$

$$
a_{(n+1, r+1)}={ }^{n} C_{r}\left\{(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} \cdot{ }^{\prime} C_{k} \cdot k^{r}\right\}+{ }^{n} C_{r+1}\left\{(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} . C_{k} k^{r+1}\right.
$$

$$
+\ldots+{ }^{n} C_{n}\left\{(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} \cdot C_{k} \cdot k^{n}\right\}
$$

$$
=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot C_{k}\left\{{ }^{n} C_{r} k^{r}+{ }^{n} C_{r+1} k^{r+1}+\ldots+{ }^{n} C_{n} k^{n}\right\}\right]
$$

$$
=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\left\{\sum_{q=0}^{n} C_{q} k^{q}-\sum_{q=0}^{r-1} C_{q} k^{q}\right\}\right]
$$

$$
=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot C_{k}(1+k)^{n}\right]-(1 / r!) \sum_{q=0}^{r-1}\left[(-1)^{r-k} \cdot C_{k}\left\{\sum^{n} C_{a} k^{q}\right\}\right]
$$

If we denote the $1^{\text {st }}$ and the second term as T_{1} and T_{2}, we have

$$
\begin{equation*}
a_{(n+1, r+1)}=T_{1}-T_{2} \tag{3.4}
\end{equation*}
$$

consider $T_{1}=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}(1+k)^{n}\right]$

$$
\begin{aligned}
& =(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k}\{r!/((k!)(r-k)!)\}(1+k)^{n}\right] \\
& =(1 /(r+1)!) \sum_{k=0}^{r}\left[(-1)^{r-k}\{(r+1)!/((k+1)!(r-k)!)\}(1+k)^{n+1}\right] \\
& =(1 /(r+1)!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r+1} C_{k+1}(1+k)^{n+1}\right] \\
& =(1 /(r+1)!) \sum_{k=0}^{r}\left[(-1)^{(r+1)-(k+1)} \quad{ }^{r+1} C_{k+1}(1+k)^{n+1}\right]
\end{aligned}
$$

Let $k+1=s$, we get, $s=1$ at $k=0$ and $s=r+1$ at $k=r$

$$
=(1 /(r+1)!) \quad \sum_{s=1}^{r+1}\left[(-1)^{(r+1)-s} \quad{ }^{r+1} C_{s}(s)^{n+1}\right]
$$

replacing s by k we get

$$
=(1 /(r+1)!) \quad \sum_{k=1}^{r+1}\left[(-1)^{(r+1)-k} \cdot{ }^{r+1} C_{k}(k)^{n+1}\right]
$$

in this if we include $k=0$ case we get

$$
\begin{equation*}
T_{1}=(1 /(r+1)!) \sum_{k=0}^{r+1}\left[(-1)^{(r+1)-k} \cdot{ }^{r+1} C_{k}(k)^{n+1}\right] \tag{3.5}
\end{equation*}
$$

T_{1} is nothing but the right hand side member of (3.3).
To prove (3.3) we have to prove $a_{(n+1, r+1)}=T_{1}$
In view of (3.4) our next step is to prove that $\mathrm{T}_{2}=0$

$$
\begin{aligned}
& T_{2}=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\left\{\sum_{q=0}^{r-1} C_{q} k^{q}\right\}\right] \\
& =(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot C_{k}\left\{{ }^{n} C_{0} k{ }^{0}+{ }^{n} C_{1} k^{1}+{ }^{n} C_{2} k^{2}+\ldots+{ }^{n} C_{r-1} k^{r-1}\right\}\right] \\
& =(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\right]+{ }^{n} C_{1}\left[(1 / r!) \sum_{k=0}^{r}\left\{(-1)^{r-k} \cdot{ }^{r} C_{k} k\right\}\right]+ \\
& { }^{n} C_{2}\left[(1 / r!) \sum_{k=0}^{r}\left\{(-1)^{r-k r} C_{k} k^{2}\right\}\right]+\ldots+{ }^{n} C_{r-1}\left[(1 / r!)^{r} \sum_{k=0}\left\{(-1)^{r-k} \cdot{ }^{r} C_{k} k^{r-1}\right\}\right] \\
& =(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\right]+{ }^{n} C_{1}\left[(1 / r!) \sum_{k=0}^{r}\left\{(-1)^{r-k} \cdot{ }^{r} C_{k} k\right\}\right]+ \\
& {\left[{ }^{n} C_{2} \cdot a_{(2, r)}+{ }^{n} C_{3} \cdot a_{(3, r)}+\ldots+{ }^{n} C_{r-1} \cdot a_{(r-1, r)}\right]} \\
& =X+Y+Z \text { say where } \\
& X=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\right], \quad Y={ }^{n} C_{1}\left[\underset{k=0}{(1 / r!)} \sum^{r}\left\{(-1)^{r-k} \cdot{ }^{r} C_{k} k\right\}\right] \\
& z=\left[{ }^{n} C_{2} \cdot a_{(2, r)}+{ }^{n} C_{3} \cdot a_{(3, r)}+\ldots+{ }^{n} C_{r-1} \cdot a_{(r-1, r)}\right]
\end{aligned}
$$

We shall prove that $X=0, Y=0, Z=0$ seperately.
(1) $X=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{k}\right]$

$$
=(1 / r!) \sum_{k=0}^{r}\left[(-1)^{r-k} \cdot{ }^{r} C_{r-k}\right]
$$

let $r-k=w$ then we get at $k=0 w=r$ and at $k=r w=0$.

$$
=(1 / r!) \sum_{w=r}^{0}\left[(-1)^{w} \cdot{ }^{r} C_{w}\right]
$$

$$
\begin{aligned}
& =(1 / r!) \sum_{w=0}^{r}\left[(-1)^{w} \cdot{ }^{r} C_{w}\right] \\
& =(1-1)^{r} / r! \\
& =0
\end{aligned}
$$

We have proved that $X=0$
(2)

$$
\begin{aligned}
& Y={ }^{n} C_{1}\left[(1 / r!) \sum_{k=0}^{r}\left\{(-1)^{r-k} \cdot{ }^{r} C_{k} k\right\}\right] \\
& ={ }^{n} C_{1}\left[(1 /(r-1)!) \sum_{k=1}^{r}\left\{(-1)^{r-1-(k-1)} \cdot{ }^{r-1} C_{k-1}\right\}\right] \\
& ={ }^{n} C_{1}\left[(1 /(r-1)!) \sum_{k-1=0}^{r-1}\left\{(-1)^{r-1-(k-1)} \cdot{ }^{r-1} C_{k-1}\right\}\right] \\
& ={ }^{n} C_{1}\left[(1 /(r-1)!)(1-1)^{r-1}\right. \\
& =
\end{aligned}
$$

We have proved that $Y=0$
(3) To prove

$$
\begin{equation*}
Z=\left[{ }^{n} C_{2} \cdot a_{(2, r)}+{ }^{n} C_{3} \cdot a_{(3, r)}+\ldots+{ }^{n} C_{r-1} \cdot a_{(r-1, r)}\right]=0 \tag{3.6}
\end{equation*}
$$

Proof:

Refer the matrix

$a_{(1,1)}$	$\mathbf{a}_{(1,2)}$	$\mathbf{a}_{(1,3)}$	$\mathbf{a}_{(1,4)}$	\cdots	$\mathbf{a}_{(1, r)}$
$a_{(2,1)}$	$\underline{a_{(2,2)}}$	$a_{(2,3)}$	$\mathbf{a}_{(2,4)}$	\cdots	$a_{(2, r)}$
$a_{(3,1)}$	$a_{(3,2)}$	$\underline{a_{(3,3)}}$	$\mathbf{a}_{(3,4)}$	\cdots	$\mathbf{a}_{(3, r)}$
$a_{(4,1)}$	$a_{(4,2)}$	$a_{(4,3)}$	$\underline{a}_{(4,4)-}$	$a_{(4,5)} \ldots$	$a_{(4, r)}$

| $a_{(r, 1)}$ | $a_{(r, 2)}$ | $a_{(r, 3)}$ | \cdots | $a_{(r, r-1)}$ |
| :--- | :--- | :--- | :--- | :--- |$\underline{a}_{(r, r)}$

The Diagonal elements are underlined. And the the elements above the leading diagonal are shown with bold face.

We have

$$
a_{(1, r)}=\left[(1 / r!) \sum_{k=0}^{r}\left\{(-1)^{r-k} \cdot \cdot^{r} C_{k} k\right\}\right]=Y /{ }^{n} C_{1}=0 \text { for } r>1
$$

All the elements of the first row except $a_{(1,1)}$ (the one on the leading diagonal) are zero.
Also

$$
\begin{equation*}
a_{(n+1, r)}=a_{(n, r-1)}+r \cdot a_{(n, r)} \tag{3.7}
\end{equation*}
$$

(This can be easily established by simplifying the right hand side.)
(7) gives us

$$
a_{(2, r)}=a_{(1, r-1)}+r \cdot a_{(1, r)}=0 \text { for } r>2
$$

i.e. $a_{(2, r)}$ can be expresssed as a linear combination of two elements of the first row (except the one on the leading diagonal)

$$
\Rightarrow a_{(2, r)}=0 \quad r>2
$$

Similarly $\mathrm{a}_{(3, r)}$ can be expresssed as a linear combination of two elements of the second row of the type $a_{(2, r)}$ with $r>3$
$\Rightarrow a_{(2, r)}=0 \quad r>3$
and so on $a_{(r-1, r)}=0$
substituting
$a_{(2, r)}=a_{(3, r)}=\ldots=a_{(r-1, r)}=0$ in (6)
we get $\quad Z=0$

With $X=Y=Z=0$ we get $T_{2}=0$
or $a_{(n+1, r+1)}=T_{1}-T_{2}=T_{1}$
from (5) we have

$$
T_{1}=(1 /(r+1)!) \sum_{k=0}^{r+1}\left[(-1)^{(r+1)-k} \cdot{ }^{r+1} C_{k}(k)^{n+1}\right]
$$

which gives

$$
a_{(n+1, r+1)}=(1 /(r+1)!) \sum_{k=0}^{r+1}\left[(-1)^{(r+1)-k} \quad{ }^{r+1} C_{k}(k)^{n+1}\right]
$$

We have proved, if the propposition (3.3) is true for r it is true for $(r+1)$ as well. We have already verified it for $1,2,3$ etc. Hence by induction (3.3) is true for all n.

This completes the proof of theorem (3.1).
Remarks: This proof is quite lengthy, clumsy and heavy in algebra. The readers can try some analytic, combinatorial approach.

REFERENCES:

[1] V.Krishnamurthy, "COMBINATORICS Theory and Applications" East West Press Private Ltd. , 1985.
[2] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[3] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
[4] 'Smarandache Notion Journal' Vol. 10 , No. 1-2-3, Spring 1999. Number Theory Association of the UNIVERSITY OF CRAIOVA.

