A LOWER BOUND FOR $S\left(2^{p^{-1}}\left(2^{p-1}\right)\right)$

Maohua Le

Abstract. Let p be a prime, and let $n=2^{p-1}\left(2^{p}-1\right)$. In this paper we prove that $S(n) \geqslant 2 p+1$.

Key words . Smarandache function, function value, lower bound.

For any positive integer a, let $S(a)$ be the Smarandache function. $\ln [2]$, Sandor showed that if $n=2^{p-1}\left(2^{p}-1\right)$
is an even perfect number, then $S(n)=2^{p}$-1 .It is a well known fact that if n is an even perfect number, then p must be a prime But, its inverse proposition is false (see [1,Theoerms 18 and 276]). In this paper we give a lower bound for $S(n)$ in the general cases. We prove the following result.

Theorem, If p is a prime and n can be expressed as (1), then $S(n) \geqslant 2 p+1$.

Proof. Let

$$
\begin{equation*}
2^{p}-1=q_{1}^{r I} q_{2}^{r 2} \ldots q_{t}^{r t} \tag{2}
\end{equation*}
$$

be the factorization of $2^{p}-1$, where $q_{1}, q_{2}, \ldots, q_{\mathrm{t}}$ are primes with $q_{1}<q_{2}<\ldots<q_{t}$ and $r_{1}, r_{2}, \ldots, r_{t}$ are positive integers . By (1) and (2), we get
(3) $\quad S(n)=\max \left(S\left(2^{p-1}\right), S\left(q_{1}^{r 1}\right), S\left(q_{2}^{r 2}\right), \ldots S\left(q_{1}^{r}\right)\right)$.

It is a well known fact that $q_{i} \equiv 1(\bmod 2 p)$ for $i=1,2, \ldots, t$. So we have

$$
\begin{equation*}
2 p+1 \leqslant q_{1}<q_{2}<\ldots<q_{t} . \tag{4}
\end{equation*}
$$

Since $q_{i}=S\left(q_{i} \leqslant S\left(q_{i}^{r i}\right)\right.$ for $i=1,2, \ldots, t$, we get from (4) that

$$
\begin{equation*}
2 p+1 \leqslant \max \left(S\left(q_{1}^{r l}\right), S\left(q_{2}^{r 2}\right), \ldots, S\left(q_{t}^{r t}\right)\right) \tag{5}
\end{equation*}
$$

On the other hand, if m is the largest integer such that $(2 p+1)$! is a multiple of 2^{m}, then

$$
\begin{equation*}
m=\sum_{k=1}^{\infty}\left[\frac{2 p+1}{2^{k}}\right] \geqslant\left[\frac{2 p+1}{2}\right]=p . \tag{6}
\end{equation*}
$$

It implies that $2^{p} \mid(2 p+1)$!. So we have

$$
\begin{equation*}
S\left(2^{p-1}\right) \leqslant S\left(2^{p}\right) \leqslant 2 p+1 \tag{7}
\end{equation*}
$$

Thus,by (3),(5) and (7), we obtain $S(n) \geqslant 2 p+1$.The theorem is proved.

References

[1] G.H.Hardy and E.M. Wright, An introduction to the Theory of Numbers, Oxford University Press, Oxford, 1937.
[2] J.Sandor, A note on $S(n)$, where n is an even perfect number, Smarandache Notions J.11(2000), 139 .

Department of Mathemaics
Zhanjing Normal College
Zhanjing, Guangdong
P.R. CHINA

