A LOWER BOUND FOR $S(2^{p-1}(2^p-1))$

Maohua Le

Abstract. Let p be a prime, and let $n=2^{p-1}(2^p-1)$. In this paper we prove that $S(n) \ge 2p+1$.

Key words Smarandache function, function value, lower bound.

For any positive integer *a*, let S(a) be the Smarandache function $\ln[2]$, Sandor showed that if (1) $n=2^{p-1}(2^p-1)$ is an even perfect number , then $S(n)=2^p-1$. It is a well known fact that if *n* is an even perfect number , then *p* must be a prime But , its inverse proposition is false (see [1, Theoerms 18 and 276]). In this paper we give a lower bound for S(n) in the general cases. We prove the following result.

Theorem, If p is a prime and n can be expressed as (1), then $S(n) \ge 2p+1$.

Proof. Let

(2) $2^{p}-1=q_{1}^{r_{1}}q_{2}^{r_{2}}...q_{t}^{r_{t}}$ be the factorization of $2^{p}-1$, where $q_{1},q_{2},...,q_{t}$ are primes with $q_{1} < q_{2} < ... < q_{t}$ and $r_{1},r_{2},...,r_{t}$ are positive integers. By (1) and (2), we get

(3)
$$S(n) = \max(S(2^{p-1}), S(q_1^{r_1}), S(q_2^{r_2}), \dots, S(q_r^{r_r})).$$

It is a well known fact that $q_i \equiv 1 \pmod{2p}$ for i=1,2,...,t. So we have

(4) $2p+1 \leq q_1 < q_2 < \dots < q_r$.

Since $q_i = S(q_i) \leq S(q_i^{r_i})$ for i=1,2,...,t, we get from (4) that

(5) $2p+1 \leq \max(S(q_1^{r_1}), S(q_2^{r_2}), \dots, S(q_t^{r_t}))).$ On the other hand, if *m* is the largest integer such that (2p+1)! is a multiple of 2^m , then (6) $m = \sum_{k=1}^{\infty} \left[\frac{2p+1}{2^k}\right] \geq \left[\frac{2p+1}{2}\right] = p.$

It implies that $2^p \mid (2p+1)!$. So we have

(7) $S(2^{p-1}) \leq S(2^p) \leq 2p+1.$

Thus, by (3), (5) and (7) , we obtain $S(n) \ge 2p+1$. The theorem is proved.

References

- G.H.Hardy and E.M. Wright, An introduction to the Theory of Numbers, Oxford University Press, Oxford, 1937.
- [2] J.Sandor, A note on S(n), where *n* is an even perfect number, Smarandache Notions J.11(2000),139.

Department of Mathemaics Zhanjing Normal College Zhanjing ,Guangdong P.R. CHINA