A lucky derivative

Henry Bottomley

5 Leydon Close, London SE16 5PF, U.K.
se16@btinternet.com http://www.se16.btinternet.co.uk/hgb/

Question:

What is the value of the derivative of $f(x)=e^{x}$ when $x=e$?

Lucky answer:

We know that the derivative of $g(x)=x^{n}$ is $g^{\prime}(x)=n \cdot x^{n-1}$,
and when $x=n$ this is $g^{\prime}(n)=n \cdot n^{n-1}=n^{n}$,
so the derivative of $f(x)=e^{x}$ when $e=x$ is $f(e)=x . e^{x-1}=x^{x}=e^{e}=15.15426 \ldots$.

As a check, note that $f(e)=e^{e}=f(e)$ and $g(n)=n^{n}=g^{\prime}(n)$.

Comments

This is in the tradition of other lucky mathematics. For example, when simplifying the fraction $16 / 64$, canceling the $6 s$ in the numerator and denominator leaves the correct result of $1 / 4$.
In the smarandacheian lucky answer to the derivative, the only incorrect part is the word "so". The derivative of $f(x)=e^{x}$ with respect to x is $f^{\prime}(x)=e^{x}$, not $x . e^{x-1}$ (unless $x=e$ in which case these are equal).
Conversely, $x . e^{x-1}$ has the indefinite integral ($x-1$). $e^{x-1}+C$ rather than $e^{x+}+C$.
The derivative of $h(x)=c^{x}$ is $h^{\prime}(x)=\log _{e}(c) . c^{x}$ for a positive constant c, and so when $x=c$ it is $h^{\prime}(c)=\log _{e}(c) . c^{c}$, not c^{c} (unless $c=e$ in which case these are equal).
This lucky (i.e. wrong) derivative method can produce the correct answer to the more general question:
"What is the value of the derivative of $h(x)=c^{x}$ when $x=c . \log _{e}(c)$?"
(if c is a positive integer then x is close to the $c^{\text {th }}$ prime number):
$h^{\prime}\left(c \cdot \log _{e}(c)\right)=c \cdot \log _{e}(c) \cdot c^{c \cdot \log _{e}(c)-1}=\log _{e}(c) \cdot c^{c \cdot \log _{e}(c)}$.

References:

Ashbacher, Charles, "Smarandache Lucky Math", in Smarandache Notions Journal, Vol. 9, p. 143, Summer 1998.
http://www.gallup.unm.edu/~smarandache/SNBook9.pdf
Smarandache, Florentin, "The Lucky Mathematics!", in Collected Papers, Vol. I/, p. 200, University of Kishinev Press, Kishinev, 1997.
http://www.gallup.unm.edu/~smarandache/CP2.pdf

