A lucky derivative

Henry Bottomley

5 Leydon Close, London SE16 5PF, U.K.

se16@btinternet.com http://www.se16.btinternet.co.uk/hgb/

Question:

What is the value of the derivative of $f(x) = e^x$ when x = e?

Lucky answer:

We know that the derivative of $g(x) = x^n$ is $g'(x) = n \cdot x^{n-1}$,

and when x = n this is $g'(n) = n \cdot n^{n-1} = n^n$,

so the derivative of $f(x) = e^x$ when e = x is $f'(e) = x \cdot e^{x-1} = x^x = e^e = 15.15426...$

As a check, note that $f(e) = e^e = f'(e)$ and $g(n) = n^n = g'(n)$.

Comments

This is in the tradition of other lucky mathematics. For example, when simplifying the fraction 16/64, canceling the 6s in the numerator and denominator leaves the correct result of 1/4.

In the smarandacheian lucky answer to the derivative, the only incorrect part is the word "so". The derivative of $f(x) = e^x$ with respect to x is $f'(x) = e^x$, not x.e^{x-1} (unless x = e in which case these are equal).

Conversely, $x.e^{x-1}$ has the indefinite integral (x-1). $e^{x-1}+C$ rather than $e^{x}+C$.

The derivative of $h(x) = c^x$ is $h'(x) = \log_e(c).c^x$ for a positive constant c,

and so when x = c it is h'(c) = log_e(c).c^c, not c^c (unless c = e in which case these are equal).

This lucky (i.e. wrong) derivative method can produce the correct answer to the more general question:

"What is the value of the derivative of $h(x) = c^x$ when $x = c.log_e(c)$?"

(if c is a positive integer then x is close to the cth prime number): $h'(c.log_e(c)) = c.log_e(c).c^{c.log_e(c)-1} = log_e(c).c^{c.log_e(c)}.$

References:

Ashbacher, Charles, "Smarandache Lucky Math", in *Smarandache Notions Journal, Vol. 9*, p. 143, Summer 1998. <u>http://www.gallup.unm.edu/~smarandache/SNBook9.pdf</u> Smarandache, Florentin, "The Lucky Mathematics!", in *Collected Papers, Vol. II*, p. 200, University of Kishinev Press, Kishinev, 1997. http://www.gallup.unm.edu/~smarandache/CP2.pdf