A NOTE ON $S(\Omega)$, WHERE n IS AN EVEN PEREECT NUMBER

J. Sándor

Department of Mathematics Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

In a recent paper [1] the following result is proved: If $n=2^{k-1}\left(2^{k}-1\right), 2^{k}-1=$ prime, is an even perfect number, then $S(n)$ $=2^{k}-1$, where $S(n)$ is the well-known Smarandache Function.

Since $S(a b)=\max \{S(a), S(b)\}$ for $(a, b)=1$, and $S(a) \leq a$ with equality for $a=1,4$, and $a=$ prime (see [3]), we have the folowwing one-line proof of this result:
$S\left(2^{k-1}\left(2^{k}-1\right)\right)=\max \left\{S\left(2^{k-1}\right), S\left(2^{k}-1\right)\right\}=2^{k}-1$, since $S\left(2^{k-1}\right) \leq 2^{k-1}<2^{k}-1$ for $k \geq 2$.
On the other hand, if $2^{k}-1$ is prime, then we have $S\left(2^{k}-1\right) \equiv 1$ (mod k) ; an interesting table is considered in [2]. Indeed, k must be a prime too, $k=p ;$ while Fermat's little theorem gives $2^{p}-1 \equiv 1$ $(\bmod p)$. From $2^{p \mathrm{P}}-1=\left(2^{\mathrm{p}}-1\right)\left(2^{\mathrm{p}}+1\right)$ and $\left(2^{\mathrm{p}}-1,2^{\mathrm{p}}+1\right)=1$ we can deduce $S\left(2^{2 \mathrm{P}}-1\right)=\max \left\{\mathrm{S}\left(2^{\mathrm{P}}-1\right), \mathrm{S}\left(2^{\mathrm{P}}+1\right)\right\}=2^{\mathrm{P}}-1$ since $2^{\mathrm{P}}+1$ is being composite, $S\left(2^{\mathrm{P}}+1\right)<2 / 3\left(2^{\mathrm{p}}+1\right)<2^{\mathrm{P}}-1$ for p 23 . Thus, if $2^{\mathrm{k}}-1$ is a Mersenne prime, then $S\left(2^{k}-1\right) \equiv S\left(2^{2 k}-1\right) \equiv 1(\bmod k)$. If $2^{p}-1$ and $2^{2 \mathrm{P}}+1$ are both primes, then $S\left(2^{4 \mathrm{p}}-1\right)=\max \left\{S\left(2^{2 \mathrm{P}}-1\right), \mathrm{S}\left(2^{2 \mathrm{p}}+1\right)\right\}=2^{2 \mathrm{p}}+1 \geqslant 1(\bmod 4 \mathrm{p})$.

References:

1. Sebastian Martin Ruiz, "Smarandache's Function Applied to Perfect Numbers", <Smarandache Notions J.>, 10 (1999), No. 1-2-3, 114-115.
2. Sebastian Martin Ruiz, "A Congruence with Smarandache's Function", <Smarandache Notions J.>, 10 (1999), No. 1-2-3, 130-132. 3. Charles Ashbacher, "An Introduction to the Smarandache Function", Erhus Univ. Press, Vail, AZ, 1995.
