A Note $\mathbf{O n S} \mathbf{S n}^{\mathbf{2}}$)

J. Sàndor
Babes-Bolyai University, Cluj-Napoca, Romania

In the paper[1], it is shown that

$$
\begin{equation*}
S\left(n^{2}\right) \leq n \text { for } n>4 \text { and even. } \tag{1}
\end{equation*}
$$

In this note, we will prove that (1) holds for all $n>4, n \neq$ prime.
Let p be a prime. Then:
Lemma: For $n \neq p, 2 p, 8$ or 9 , we have

$$
\begin{equation*}
\mathrm{n}^{2} \mid(\mathrm{n}-1)! \tag{2}
\end{equation*}
$$

Proof: If $n \neq p, 2 p, p^{2}, 8$, or 16 , then n can be written as $n=x y(x \neq y ; x, y \geq 3)$. If $n \neq 16$, then $n=x y$ with $x \geq 3, y \geq 5$. Let $n=x y$ with $y>x ; x \geq 3$. Now $x, y, 2 x, 2 y, 3 x<n-1 ; x$, $y, 2 y$ are different and one of $2 x, 3 x$ is different from $x, y, 2 y$. Therefore, ($n-1$)! contains $x, y, 2 y$ and $2 x$ or $x, y, 2 y$ and $3 x$. In any case one has $(n-1)!\mid x^{2} y^{2}=n^{2}$.

If $n=p^{2}$, then $n-1>4 p$, thus ($n-1$)! contains the factors $p, 2 p, 3 p, 4 p$, so $(n-1)!\mid p^{4}=n^{2}$. For $n=2 p$, clearly p^{2} does not divide $(n-1)$!. For $n=8$ or $9, n^{2}$ does not divide ($n-1$)!, but for $n=16$, this holds true by a simple verification.

As a corollary of (2), we can write

$$
\begin{equation*}
\mathrm{S}\left(\mathrm{n}^{2}\right) \leq \mathrm{n}-1 \text { for } \mathrm{n} \neq \mathrm{p}, 2 \mathrm{p}, 8 \text { or } 9 \tag{3}
\end{equation*}
$$

Since $2 p$ and 8 are even and $S\left(9^{2}\right)=9$, on the basis of (3), (1) holds true for $n \neq p, n>4$.

Reference:

1. J. Sàndor, On Certain New Inequalities and Limits for the Smarandache Function, SNJ 9(1998), No. 1-2, 63-69.
