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Abstract

For any positive integer n, let p, be the n-th prime,
Pa
and letu(n) = (10 - 1)/9. In this note we prove that if
p. = 1,13, or 19 (mod 20), and 2p,~1 is also a prime, then u(n) is not a prime.

For any positive integer n, let p, be n-th prime,
Pa : *
and let u(n)=(10 - 1)/9. Then the sequence U = {u(n)} -,
is called the Smarandache unary sequence (see [2]).
It is an odd question that if U contain infinit many primes?
In this note we prove the following result:
Theorem. Ifp, = 1, 13, or 19 (mod 20), and 2p,~1 is also a prime, then u(n) is not a prime.
By using the above result, we see that both u(12) and
u(15) are not primes.
Proof of Theorem. Let q =2p,+1. By Fermat's theorem
(see[1], Theorem 71)), if q is a prime, then we have

(1 109" = 1 (mod q).

From (1), we get

Pa Pa

(2) (10 = 1)10 -1)=0(modq).
Since q is a prime, we have either

Pn
(3) q 10 =1
or

Pa
(4) q. 10 - 1,
by {2).

We nou assume that p, satisfies p, = 1, 13, or 19 (mod 20).
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Then p, 1s an odd prime. Hence, if (3) holds, then we have

(3)
-10

feeny =1,

\ q!

where (-10/9) is the Legendre symbol. Since q=2p,+1,
we hawe q = 3 (mod 4) and (-1/q) = -1. Therefore, we obtain from (5) that

(&) (10/q) = (2/q)(5/q) = -1.
Hoewer, since q = 3, 27, or 39 (mod 40) if p, = 1, 13, or 19 (mod 20) respectively, we have

-1 -1,1fq = 3 or 27 {mod 40),
(7 (2g= { (5/q)=

1 1,if q = 39 (mod 40).
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We find for (7) that (10/q) = 1, which contradicts (6). It implies that (3) does not hold. Thus, by
(4), we get '

(8) g 9u(n).

Notice that g9 and 1<q<u(n). We see from (8) that qu(n) and u(n) is not a prime. The
theorem is proved.
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