A NOTE ON THE PRIMES IN SMARANDACHE UNARY SEQUENCE

Maohua Le and Kejian Wu
Zhanjiang Normal college, Zhanjiang, Guangdong, P.R.China

Abstract

For any positive integer n, let p_{n} be the n-th prime, p_{π} and let $u(n)=\left(\begin{array}{ll}10 & -1\end{array}\right) / 9$. In this note we prove that if $\mathrm{p}_{\mathrm{n}} \equiv 1,13$, or $19(\bmod 20)$, and $2 \mathrm{p}_{\mathrm{n}}+1$ is also a prime, then $\mathrm{u}(\mathrm{n})$ is not a prime.

For any positive integer n, let p_{n} be n-th prime,
$p_{n} \quad \infty$
and let $u(n)=\left(\begin{array}{ll}10 & -1) / 9 \text {. Then the sequence } U=\{u(n)\}_{n=1}, ~\end{array}\right.$ is called the Smarandache unary sequence (see [2]).
It is an odd question that if U contain infinit many primes?
In this note we prove the following result:
Theorem. If $p_{n} \equiv 1,13$, or $19(\bmod 20)$, and $2 p_{n}+1$ is also a prime, then $u(n)$ is not a prime.
By using the above result, we see that both $u(12)$ and $\mathrm{u}(15)$ are not primes.

Proof of Theorem. Let $q=2 p_{n}+1$. By Fermat's theorem (see[1], Theorem 71]), if q is a prime, then we have

$$
\begin{equation*}
10^{q-1} \equiv 1(\bmod q) \tag{1}
\end{equation*}
$$

From (1), we get

$$
\left(10^{p_{n}}+1\right)\left(10^{p_{n}}-1\right) \equiv 0(\bmod q)
$$

Since q is a prime, we have either

$$
\begin{equation*}
\mathrm{q} 10+1 \tag{3}
\end{equation*}
$$

or

$$
\mathrm{q}, 10^{\mathrm{p}_{\mathrm{n}}}-1
$$

by (2).
We nou assume that p_{n} satisfies $p_{n} \equiv 1,13$, or $19(\bmod 20)$.

Then p_{n} is an odd prime. Hence, if (3) holds, then we have
(5)

$$
\left(\begin{array}{c}
-10 \\
--- \\
\mathrm{q}
\end{array}\right)=1
$$

where $(-10 / 9)$ is the Legendre symbol. Since $q=2 p_{n}+1$, we hawe $q \equiv 3(\bmod 4)$ and $(-1 / q)=-1$. Therefore, we obtain from (5) that

$$
\begin{equation*}
(10 / q)=(2 / q)(5 / q)=-1 \tag{6}
\end{equation*}
$$

Hoewer, since $q \equiv 3,27$, or $39(\bmod 40)$ if $p_{n} \equiv 1,13$, or $19(\bmod 20)$ respectively, we have

$$
(2 / q)=\left\{\begin{array}{l}
-1, \tag{7}\\
1,
\end{array}(5 / q)=\left\{\begin{array}{l}
-1, \text { if } q \equiv 3 \text { or } 27(\bmod 40) ; \\
1, \text { if } q \equiv 39(\bmod 40)
\end{array}\right.\right.
$$

We find for (7) that $(10 / q)=1$, which contradicts (6). It implies that (3) does not hold. Thus, by (4), we get
(8) $\quad \mathrm{q} ~ 9 \mathrm{u}(\mathrm{n})$.

Notice that $\mathrm{q} \pm 9$ and $1<\mathrm{q}<\mathrm{u}(\mathrm{n})$. We see from (8) that $\mathrm{q} \mid \mathrm{u}(\mathrm{n})$ and $\mathrm{u}(\mathrm{n})$ is not a prime. The theorem is proved.

References:

1. G.H.Hardy and E.M.Wright, "An Introduction to the Theory of Numbers", Oxford University Press, 1937.
2. F. Iacobescu, "Smarandache partition type and other sequences", Bulletin of Pure and Applied Sciences, 16E (1997), No. 2, 237-240.
