A NOTE ON THE SMARANDACHE DIVISOR SEQUENCES

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let α_1 , α_2 , α_3 , ..., α_r be a set of r natural numbers and p_1 , p_2 , p_3 ,..., p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_r)$ is defined as the number of ways in which the number

α2 α3 · αι α1 N $p_1 \quad p_2 \quad p_3 \quad \dots \quad p_r \qquad \text{could be expressed as the}$ = product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, \ldots)$ $(\alpha_r) = F(N)$, where α_1 α.2 α3 αr αη $p_2 p_3 \dots p_r \dots$ N = P₁ p_n and p_r is the rth prime. $p_1 = 2, p_2 = 3$ etc. In [2] we have defined SMARANDACHE DIVISOR SEQUENCES as follows $P_n = \{x \mid d(x) = n\}$, d(x) = n umber of divisors of n. $P_1 = \{1\}$

 $P_{2} = \{ x \mid x \text{ is a prime } \}$ $P_{3} = \{ x \mid x = p^{2}, \text{ p is a prime } \}$ $P_{4} = \{ x \mid x = p^{3} \text{ or } x = p_{1}p_{2}, \text{ p ,}p_{1}, p_{2} \text{ are primes } \}$

Let F_1 be a SFP of N. Let $\Psi_{F1} = \{ y | d(y) = N \}$, generated by the SFP F_1 of N. It has been shown in Ref. [3] that each SFP generates some elements of Ψ or P_n . Here each SFP generates infinitely many elements of P_n . Similarly Ψ_{F1} , Ψ_{F2} , Ψ_{F3} ,... $\Psi_{F'(N)}$, are defined. It is evident that all these F_k 's are disjoint and also

 $\mathsf{P}_{\mathsf{N}} = \bigcup \Psi_{\mathsf{F}\mathsf{k}} \quad 1 \leq \mathsf{k} \leq \mathsf{F}'(\mathsf{N}) \; .$

THEOREM(7.1) There are F'(N) disjoint and exhaustive subsets in which P_N can be decomposed.

PROOF: Let $0 \in P_N$, and let it be expressed in canonical form as follows

$$\theta = p_1 \quad p_2 \quad p_3 \quad \dots \quad p_r$$

Then $d(\theta) = (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) \dots (\alpha_r + 1)$

Hence $\theta \in \Psi_{Fk}$ for some k where F_k is given by

 $N = (\alpha_1 + 1)(\alpha_2 + 1)(\alpha_3 + 1) \dots (\alpha_r + 1)$

Again if $\theta \in \Psi_{Fs}$, and $\theta \in \Psi_{Ft}$ then from unique factorisation

theorem F_s and F_t are identical SFPs of N.

REFERENCES:

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'Some New Smarandache Sequences, Functions And Partitions ', SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "Amarnath Murthy", 'Some more Ideas on SFPS. SNJ, Vol. 11, No. 1-2-3, 2000.
- [4] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texas at Austin, USA.