a NOTE ON THE VALUES OF ZETA

Taekyun Kim

Carlitz considered the numbers $\eta_{k}(q)$ which are determined by

$$
\eta_{0}(q)=0, \quad(q \eta(q)+1)^{k}-\eta_{k}(q)= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k>1 .\end{cases}
$$

These numbers $\eta_{k}(q)$ induce Carlitz's k th q-Bernoulli numbers $\beta_{k}(q)=\beta_{k}$ as

$$
\beta_{0}=1, \quad q(q \beta+1)^{k}-\beta_{k}= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k>1\end{cases}
$$

where we use the usual convention about replacing β^{i} by $\beta_{i}(i \geq 0)$.
Now, we modify the above number $\eta_{m}(q)$, that is,

$$
B_{0}(q)=\frac{q-1}{\log q}, \quad(q B(q)+1)^{k}-B_{k}(q)= \begin{cases}1 & \text { if } k=1 \\ 0 & \text { if } k>1 .\end{cases}
$$

where we use the usual convention about replacing $B^{i}(q)$ by $B_{i}(q)(i \geq 0)$.
In [1], I have constructed a complex q-series which is a q-analogue of Hurwitz's ζ-function. In this a short note, I will compute the values of zeta by using the q-series.

Let $F_{q}(t)$ be the generating function of $B_{i}(q)$:

$$
F_{q}(t)=\sum_{k=0}^{\infty} B_{k}(q) \frac{t^{k}}{k!} \quad \text { for } q \in \mathbb{C} \text { with }|q|<1
$$

This is the unique solution of the following q-difference equation:

$$
F_{q}(t)=e^{t} F_{q}(q t)-t .
$$

It is easy to see that

$$
F_{q}(t)=-t \sum_{n=0}^{\infty} q^{n} e^{[n] t}+\frac{q-1}{\log q} e^{\frac{1}{1}-q^{2}} .
$$

Thus we have:

$$
B_{k}(q)=\left.\frac{d^{k}}{d t^{k}} F_{q}(t)\right|_{t=0}=-k \sum_{n=0}^{\infty} q^{n}[n]^{k-1}+\frac{(-1)^{k}}{(q-1)^{k-1}} \frac{1}{\log q}
$$

Hence, we can define a q-analogue of the ζ-function as follows:
For $s \in \mathbb{C}$, define (see[1])

$$
\zeta_{q}(s)=\sum_{n=1}^{\infty} \frac{q^{n}}{[n]^{s}}-\frac{1}{s-1} \frac{(1-q)^{s}}{\log q}
$$

Note that, $\zeta_{q}(s)$ is analytic continuation in \mathbb{C} with only one simple pole at $s=1$ and

$$
\zeta_{q}(1-k)=-\frac{B_{k}(q)}{k} \quad \text { where } k \text { is any positive integer. }
$$

Now, we define q-Bernoulli polynomial $B_{\pi}(x ; q)$ as

$$
B_{n}(x ; q)=\left(q^{x} B(q)+[x]\right)^{n}=\sum_{k=0}^{n}\binom{n}{k} q^{x i} B_{k}(q)[x]^{n-k}
$$

Let $T_{q}(x, t)$ be generating function of q-Bernoulli polynomials.
Note that

$$
T_{q}(x, t)=F_{q}\left(q^{x} t\right) e^{[x] t}
$$

Thus

$$
\begin{aligned}
B_{k+1}(x ; q) & =\left.\frac{d^{k+1}}{d t^{k+1}} T_{q}(x, t)\right|_{t=0} \\
& =-(k+1) \sum_{n=0}^{\infty}\left([n] q^{x}+[x]\right)^{k} q^{n+x}+\frac{q-1}{\log q}\left(\frac{1}{q-1}\right)^{k+1}
\end{aligned}
$$

So, we can also define a q-analogue of the Hurwitz ζ-function as follows:
For $s \in \mathbb{C}$,(see [1])

$$
\begin{aligned}
\zeta_{q}(s, x) & =\sum_{n=0}^{\infty} \frac{q^{n+x}}{\left([n] q^{x}+[x]\right)^{s}}-\frac{(1-q)^{s}}{\log q} \frac{1}{s-1} \\
& =\sum_{n=0}^{\infty} \frac{q^{n+x}}{[n+x]^{s}}-\frac{(1-q)^{s}}{\log q} \frac{1}{s-1}, \quad 0<x \leq 1
\end{aligned}
$$

Note that, $\zeta_{q}(s, x)$ has an analytic continuation in \mathbb{C} with only one simple pole at $s=1$.
Remark. $\zeta_{q}(s, x)$ is called q-analogue of Hurwitz ζ-function.

For $u \in \mathbb{C}$ with $u \neq 0,1$, let $H_{k}(u: q)$ be q-Euler numbers (See [4]). It is known in [4] that $H_{k}(u: 1)=H_{k}(u)$ is the ordinary Euler number which is defined by

$$
\frac{1-u}{e^{t}-u}=\sum_{k=0}^{\infty} H_{k}(u) \frac{t^{k}}{k!}
$$

In the case $u=-1, H_{k}(-1)=E_{k}$ is the classical Euler number is defined by

$$
\frac{2}{e^{t}+1}=\sum_{n=0}^{\infty} E_{n} \frac{t^{k}}{n!}
$$

Note that $E_{2 k}=0(k \geq 1)$. In [4], $\ell_{q}(s, u)$ is defined by $\ell_{q}(s, u)=\sum_{n=1}^{\infty} \frac{u^{-n}}{[n]^{2}}$ and $\ell_{q}(-k, u)=$ $\frac{u}{u-1} H_{k}(u: q)$ for $k>1$.

Theorem 1. For $s \in \mathbb{C}, f \in \mathbb{N} \backslash\{1\}$, we have
(1) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{[n\}^{n}} q^{n}=-\zeta_{q}^{*}(s)+\frac{2}{[2]^{n}} \zeta_{q^{2}}^{*}(s)$.
(2) $\zeta_{q}^{*}(s)=\frac{1}{[f]^{5}} \sum_{a=1}^{f} \zeta_{q^{\prime}}^{*}\left(s, \frac{a}{f}\right)$, where $\zeta_{q}^{*}(s)=\sum_{n=1}^{\infty} \frac{q^{n}}{[n]}$.

It is easy to see that

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n} q^{n}}{[n]^{2 k+1}} \sum_{j=0}^{\infty} \frac{\theta^{2 j+1}[n]^{2 j+1}}{(2 j+1)!}+\frac{1}{\log q} \sum_{j=0}^{k-1} \frac{(1-q)^{2 k-2 j}}{2 k-2 j-1} \frac{\theta^{2 j+1}}{(2 j+1)!} \\
&-\frac{1}{\log q} \sum_{j=0}^{k-1} \frac{\theta^{2 j+1}}{(2 j+1)!} \frac{\left(1-q^{2}\right)^{2 k-2 j}}{2 k-2 j-1} \frac{1}{[2]^{2 k-2 j}} \\
&=\sum_{j=0}^{k-1} \frac{(-1)^{j} \theta^{2 j+1}}{(2 j+1)!}\left(-\zeta_{q}(2 k-2 j)+\zeta_{q^{2}}(2 k-2 j) \frac{2}{[2]^{2 k-2 j}}\right) \\
& \quad-\frac{q}{1+q} \frac{\theta^{2 k+1}}{(2 k+1)!}(-1)^{k}+\sum_{j=k+1}^{\infty} \frac{\theta^{2 j+1}(-1)^{j}}{(2 j+1)!} \frac{q^{-1}}{1+q^{-1}} H_{2 j-2 k}\left(-q^{-1}, q\right) .
\end{aligned}
$$

If $q \rightarrow 1$, then we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{2 k+1}} \sin (n \theta)=\sum_{j=0}^{k-1} \frac{(-1)^{j}}{(2 j+1)!} \theta^{2 j+1}\left(\frac{2}{2^{2 k-2 j}}-1\right) \\
&(-1)^{k-j+1} \frac{(2 \pi)^{2 k-2 j}}{2 \cdot(2 k-2 j)!} B_{2 k-2 j}-\frac{1}{2} \frac{\theta^{2 k+1}}{(2 k+1)!}(-1)^{k} .
\end{aligned}
$$

Let $k=2$ and $\theta=\frac{\pi}{2}$. Then we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{5}}=\pi^{5}\left(\frac{1}{2^{6} \cdot 5!}-\frac{B_{2}}{2^{4} \cdot 3!}+\frac{7}{12} B_{4}\right)
$$

It is easy to see that

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(2 n+1)^{5}} & =2 \sum_{n=1}^{\infty} \frac{1}{(4 n-3)^{5}}+\sum_{n=1}^{\infty} \frac{1}{(2 n)^{5}}-\sum_{n=1}^{\infty} \frac{1}{n^{5}}-1 \\
& =\frac{1}{2^{9}} \zeta\left(5, \frac{1}{4}\right)-\frac{2^{5}-1}{2^{5}} \zeta(5)-1
\end{aligned}
$$

Thus we have

$$
\zeta(5)-\frac{1}{2^{4}} \frac{1}{2^{5}-1} \zeta\left(5, \frac{1}{4}\right)-1=-2^{5} \pi^{5}\left(\frac{1}{2^{6} \cdot 5!}-\frac{B_{2}}{2^{4} \cdot 3!}+\frac{7}{12} B_{4}\right)
$$

Therefore we obtain the following:
Proposition 2. $\zeta(5)-\frac{1}{2^{4}\left(2^{5}-1\right)} \zeta\left(5, \frac{1}{4}\right)-1$ is irrational.

References

[1] T. Kim, On the Values of q-Analogue of Zeta and L-functions, Preprint.
[2] T. Kim, On a q-analogue of the p-adic log gamma functions and related integrals, J. Number Theory 76 (1999), 320-329.
[3]
[4] J. Satho, q-Analogue of Riemann's zeta-function and q-Euler Numbers, J. Number Theory 31 (1989), 346-362.

Taekyun Kim

Department of Mathematics
Korean Minjok Leadership Academy
1334; Sosa, Kangwon, Korea
e-mail: taekyun@minjok-h.ed.kangwon.kr

