A SUM CONCERNING SEQUENCES

Maohua Le

Abstract . Let $A=\{a(n)\}^{\infty}{ }_{n=1}$ be a sequence of positive integers. In this paper we prove that if the trailing digit of $a(n)$ is not zero for any n, then sum of $a(n) / \operatorname{Rev}(a(n))$ is divergent.

Key words. decimal number, reverse, sequence of positive integeers.

Let $a=a_{m} \ldots a_{2} a_{1}$ be a decimal number. Then the deaimal number $a_{1} a_{2} \ldots a_{m}$ is called the reverse of a and denote by $\operatorname{Rev}(a)$. For example, if $a=123$, then $\operatorname{Rev}(a)=321$. Let $S=\{s(n)\}^{\infty} n=1$ be a certain Smarandache sequence such that $s(n)>0$ for any positive integer n. In [1], Russo that proposed to study the limit

$$
\begin{equation*}
L(s)=\lim _{N \rightarrow \infty} \sum_{n=1}^{N} \frac{s(n)}{\operatorname{Rev}(s(n))} \tag{1}
\end{equation*}
$$

In this paper we prove a general result as follows.
Theorem . Let $A=\{a(n)\}^{\infty}{ }_{n=1}$ be a sequence of positive integers If the trailing digit of $a(n)$ is not zero for any n, then the sum of $a(n) / \operatorname{Rev}(a(n))$ is divergent.

Proof . Let $a(n)=a_{m} \cdots a_{2} a_{1}$, where $a_{1} \neq 0$. Then we have

$$
\begin{equation*}
\operatorname{Rev}(a(n))=a_{1} a_{2} \cdots a_{m} \tag{2}
\end{equation*}
$$

We see from
(2) that

$$
\begin{equation*}
\frac{a(n)}{\operatorname{Rev}(a(n))}>\frac{1}{10} \tag{3}
\end{equation*}
$$

Thus, by (3), the sum of $a(n) / \operatorname{Rev}(a(n))$ is divergent. The

References

[1] F. Russo, Some results about four SmarandacheU-product sequences, Smarandache Notions J.11(2000),42-49.Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. CHINA

