ABOUT THE SMARANDACHE COMPLEMENTARY CUBIC FUNCTION

by Marcela Popescu and Mariana Nicolescu

DEFINITION. Let $g: \mathbb{N}^n \to \mathbb{N}^n$ be a numerical function defined by g(n) = k, where k is the smallest natural number such that nk is a perfect cube: $nk = s^3, s \in \mathbb{N}^n$.

Examples: 1) g(7)=49 because 49 is the smallest natural number such that $7 \cdot 49 = 7 \cdot 7^2 = 7^3$; 2) g(12) = 18 because 18 is the smallest natural number such that $12 \cdot 18 = (2^2 \cdot 3) \cdot (2 \cdot 3^2) = 2^3 \cdot 3^3 = (2 \cdot 3)^3$; 3) $g(27) = g(3^3) = 1$; 4) $g(54) = g(2 \cdot 3^3) = 2^2 = g(2)$.

PROPERTY 1. For every $n \in \mathbb{N}^n$, $g(n^3) = 1$ and for every prime p we have $g(p) = p^2$.

PROPERTY 2. Let n be a composite natural number and $\mathbf{n} = \mathbf{p}_{i_1}^{\alpha_{i_1}} \cdot \mathbf{p}_{i_2}^{\alpha_{i_2}} \cdots \mathbf{p}_{i_r}^{\alpha_{i_r}}$, $0 < \mathbf{p}_{i_1} < \mathbf{p}_{i_2} < \cdots < \mathbf{p}_{i_r}$, $\alpha_{i_1}, \alpha_{i_2}, \dots, \alpha_{i_r} \in \mathbb{N}^{\bullet}$ its prime factorization. Then $\mathbf{g}(\mathbf{n}) = \mathbf{p}_{i_1}^{\mathbf{d}(\overline{\alpha}_{i_1})} \cdot \mathbf{p}_{i_2}^{\mathbf{d}(\overline{\alpha}_{i_r})}$, where $\overline{\alpha}_{i_1}$ is the remainder of the division of α_{i_1} by 3 and $\mathbf{d}: \{0, 1, 2\} \rightarrow \{0, 1, 2\}$ is the numerical function defined by $\mathbf{d}(0) = 0, \mathbf{d}(1) = 2$ and $\mathbf{d}(2) = 1$.

If we take into account of the above definition of the function g, it is easy to prove the above properties.

OBSERVATION: $d(\overline{\alpha_{i_j}}) = \overline{3 - \alpha_{i_j}}$, for every $\alpha_{i_j} \in \mathbb{N}^n$, and in the sequel we use this writing for its simplicity.

REMARK 1. Let $\mathbf{m} \in \mathbf{N}^{\mathsf{m}}$ be a fixed natural number. If we consider now the numerical function $\tilde{g}: \mathbf{N}^{\mathsf{m}} \to \mathbf{N}^{\mathsf{m}}$ defined by $\tilde{g}(\mathbf{n}) = \mathbf{k}$, where k is the smallest natural number such that $\mathbf{n}\mathbf{k} = \mathbf{s}^{\mathsf{m}}, \mathbf{s} \in \mathbf{N}^{\mathsf{m}}$, then we can observe that \tilde{g} generalize the function g, and we also have: $\tilde{g}(\mathbf{n}^{\mathsf{m}}) = \mathbf{1}, \forall \mathbf{n} \in \mathbf{N}^{\mathsf{m}}, \quad \tilde{g}(\mathbf{p}) = \mathbf{p}^{\mathsf{m}-1}, \forall \mathbf{p}$ prime and $\tilde{g}(\mathbf{n}) = \mathbf{p}_{i_1}^{\mathsf{m}-\overline{\alpha_{i_1}}} \cdot \mathbf{p}_{i_2}^{\mathsf{m}-\overline{\alpha_{i_2}}}, \quad \text{where}$ $\mathbf{n} = \mathbf{p}_{i_1}^{\alpha_1} \cdot \mathbf{p}_{i_2}^{\alpha_2} \cdots \mathbf{p}_{i_r}^{\alpha_r}$ is the prime factorization of n and $\overline{\alpha_{i_1}}$ is the remainder of the division of α_{i_1} by m, therefore the both above properties holds for \tilde{g} , too.

REMARK 2. Because $1 \le g(n) \le n^2$, for every $n \in \mathbb{N}^n$, we have: $\frac{1}{n} \le \frac{g(n)}{n} \le n$, thus $\sum_{n \ge 1} \frac{g(n)}{n}$ is a divergent serie.

In a similar way, using that we have $1 \leq \tilde{g}(n) \leq n^{m-1}$ for every $n \in \mathbb{N}^{n}$, it results that $\sum_{n\geq 1} \frac{\tilde{g}(n)}{n}$ is also divergent.

PROPERTY 3. The function $g: \mathbb{N}^{*} \to \mathbb{N}^{*}$ is multiplicative: $g(x \cdot y) = g(x) \cdot g(y)$ for every $x, y \in \mathbb{N}^{*}$ with (x, y) = 1.

Proof. For x = 1 = y we have (x, y) = 1 and $g(1 \cdot 1) = g(1) \cdot g(1)$. Let $x = p_{i_1}^{\alpha_{i_1}} \cdot p_{i_2}^{\alpha_{i_2}} \cdots \cdot p_{i_r}^{\alpha_{i_r}}$ and $y = q_{j_1}^{\beta_{i_1}} \cdot q_{j_2}^{\beta_{i_2}} \cdots \cdot q_{j_s}^{\beta_{i_s}}$ be the prime factorization of x and y, repectively, so that $x \cdot y = 1$.

Because (x, y) = 1 we have $p_{i_h} = q_{j_k}$, for every $h = \overline{1, r}$ and $k = \overline{1, s}$. Then $g(x \cdot y) = p_{i_1}^{\overline{3-\alpha_{i_1}}} \cdot p_{i_2}^{\overline{3-\alpha_{i_2}}} \cdots p_{i_l}^{\overline{3-\alpha_{i_l}}} \cdot q_{j_l}^{\overline{3-\beta_{i_l}}} \cdot q_{j_2}^{\overline{3-\beta_{i_l}}} \cdots q_{j_k}^{\overline{3-\beta_{i_l}}} = g(x) \cdot g(y).$

REMARK 3. The property holds also for the function $\tilde{g}:\tilde{g}(x \cdot y) = \tilde{g}(x) \cdot \tilde{g}(y)$, where (x,y) = 1.

PROPERTY 4. If (x, y) = 1, x and y are not perfect cubes and x, y > 1, then the equation g(x) = g(y) has not natural solutions.

Proof. Let $x = \prod_{h=1}^{r} p_{i_h}^{\alpha_h}$ and $y = \prod_{k=1}^{s} q_{j_k}^{\beta_{j_k}}$ (where $p_{i_h} \neq q_{j_k}, \forall h = \overline{1, r}, k = \overline{1, s}$, because (x, y) = 1) be their prime factorizations. Then $g(x) = \prod_{h=1}^{r} p_{i_h}^{\overline{3-\alpha_{i_h}}}$ and $g(y) = \prod_{k=1}^{s} q_{j_k}^{\overline{3-\beta_{j_k}}}$ and there exist at least $\overline{\alpha_{i_a}} \neq 0$ and $\overline{\beta_{j_k}} \neq 0$ (because x and y are not perfect cubes), therefore $1 \neq p_{i_h}^{\overline{3-\alpha_{i_h}}} = q_{j_k}^{\overline{3-\beta_{j_k}}} \neq 1$, so $g(x) \neq g(y)$.

CONSEQUENCE 1. The equation g(x) = g(x+1) has not natural solutions because for $x \ge 1$, x and x+1 are not both perfect cubes and (x, x-1) = 1.

REMARK 4. The property and the consequence is also true for the function \tilde{g} : if (x, y) = 1, x > 1, y > 1, and it does not exist $a, b \in N^*$ so that $x = a^m$, $y = b^m$ (where m is fixed and has the above significance), then the equation $\tilde{g}(x) = \tilde{g}(y)$ has not natural solutions; the equation $\tilde{g}(x) = \tilde{g}(x+1)$, $x \ge 1$ has not natural solutions. too.

It is easy to see that the proofs are similary, but in this case we denote by $\overline{\alpha}_{ij} = \alpha_{ij}$ (mod m) and we replace $\overline{3-\alpha}_{ij}$ by $\overline{m-\alpha}_{ij}$.

PROPERTY 5. We have $g(x \cdot y^2) = g(x)$, for every $x, y \in \mathbb{N}^n$.

Proof. If (x,y) = 1, then $(x,y^3) = 1$ and using property 1 and property 3, we have: $g(x \cdot y^3) = g(x) \cdot g(y^3) = g(x)$.

If
$$(x, y) = 1$$
 we can write: $x = \prod_{h=1}^{r} p_{i_{h}}^{\alpha_{i_{h}}} \cdot \prod_{t=1}^{n} d_{1,}^{\alpha_{i_{t}}}$ and $y = \prod_{k=1}^{s} q_{j_{k}}^{\beta_{i_{k}}} \cdot \prod_{t=1}^{n} d_{1,}^{\beta_{i_{t}}}$ where
 $p_{i_{h}} = d_{1,} \cdot q_{j_{k}} = d_{1,} \cdot p_{i_{h}} = q_{j_{k}}, \forall h = \overline{1, r}, k = \overline{1, s}, t = \overline{1, n}.$ We have $g(x \cdot y^{3}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{i_{h}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\alpha_{i_{t}}})$
 $\cdot \prod_{k=1}^{s} q_{j_{k}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{n} d_{1,}^{3\beta_{i_{t}}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{k=1}^{z} q_{j_{k}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\alpha_{t} + 3\beta_{t}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{s} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{n} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{\alpha_{t} + 3\beta_{t}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{s} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{n} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \int_{t=1}^{s} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \int_{t=1}^{s} d_{i_{t}}^{\alpha_{t} + 3\beta_{t}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{r} d_{1,}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{3\beta_{i_{k}}}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{\alpha_{h}}) = g(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{r} d_{i_{t}}^{\alpha_{h}})) = g(\sum_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{s} d_{i_{t}}^{\alpha_{h}})) = g(x).$
We used that $(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}}, \prod_{t=1}^{n} d_{i_{t}}^{\alpha_{h}}) = 1$ and $(\prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{s} d_{i_{t}}^{\beta_{h}} \cdot \prod_{t=1}^{s} d_{i_{t}}^{\alpha_{h}}) = 1$ and the

above properties.

REMARK 5. It is easy to see that we also have $\tilde{g}(x \cdot y^m) = \tilde{g}(x)$, for every $x, y \in N^{\dagger}$.

OBSERVATION. If $\frac{x}{y} = \frac{u^3}{y^3}$, where $\frac{u}{y}$ is a simplified fraction, then g(x) = g(y). It is easy to prove this because $x = kn^3$ and $y = kv^3$, and using the above property we have: $g(x) = g(k \cdot u^3) = g(k) = g(k \cdot v^3) = g(v)$

OBSERVATION. If $\frac{x}{v} = \frac{u^m}{v^m}$ where $\frac{u}{v}$ is a simplified fraction, then, using remark 5, we have $\tilde{g}(x) = \tilde{g}(y)$, too.

CONSEQUENCE 2. For every $x \in \mathbb{N}^n$ and $n \in \mathbb{N}$,

$$g(x^{n}) = \begin{cases} 1, & \text{if } n = 3k; \\ g(x), & \text{if } n = 3k + 1; \\ g^{2}(x), & \text{if } n = 3k + 2, & k \in \mathbb{N}, \end{cases}$$

where $g^2(x) = g(g(x))$.

Proof. If n=3k, then x^n is a perfect cube, therefore $g(x^n) = 1$. If n=3k+1, then $g(x^n) = g(x^{3k} \cdot x) = g(x^{3k}) \cdot g(x) = g(x)$. If n=3k+2, then $g(x^n) = g(x^{3k} \cdot x^2) = g(x^{3k}) \cdot g(x^2) = g(x^2)$.

PROPERTY 6.
$$g(x^2) = g^2(x)$$
, for every $x \in \mathbf{N}^*$.

Proof. Let $x = \prod_{h=1}^{r} p_{i_h}^{\alpha_{i_h}}$ be the prime factorization of x. Then $g(x^2) = g(\prod_{h=1}^{r} p_{i_h}^{2\alpha_{i_h}}) = \prod_{h=1}^{r} p_{i_h}^{\overline{3-2\alpha_{i_h}}}$ and $g^2(x) = g(g(x)) = g(\prod_{h=1}^{r} p_{i_h}^{\overline{3-\alpha_{i_h}}}) = \prod_{h=1}^{r} p_{i_h}^{\overline{3-3-\alpha_{i_h}}}$, but it is easy to observe that $\overline{3-2\alpha_{i_h}} = \overline{3-3-\alpha_{i_h}}$, because for :

$$\overline{\alpha_{i_{h}}} = 0 \quad \overline{3 - 2\alpha_{i_{h}}} = \overline{3 - 0} = 0 \quad \text{and} \quad \overline{3 - 3 - \alpha_{i_{h}}} = \overline{3 - 3 - 0} = \overline{3 - 0} = 0$$

$$\overline{\alpha_{i_{h}}} = 1 \quad \overline{3 - 2\alpha_{i_{h}}} = \overline{3 - 2} = 1 \quad \text{and} \quad \overline{3 - 3 - \alpha_{i_{h}}} = \overline{3 - 3 - 1} = \overline{3 - 2} = 1$$

$$\overline{\alpha_{i_{h}}} = 2 \quad \overline{3 - 2\alpha_{i_{h}}} = \overline{3 - 4} = \overline{3 - 1} = 2 \text{ and} \quad \overline{3 - 3 - \alpha_{i_{h}}} = \overline{3 - 3 - 2} = \overline{3 - 1} = 2,$$

therefore $g(x^2) = g^2(x)$.

REMARK 6. For the function \tilde{g} is not true that $\tilde{g}(x^2) = \tilde{g}^2(x)$, $\forall x \in \mathbb{N}^{-}$. For example, for m=5 and $x=3^2$. $\tilde{g}(x^2) = \tilde{g}(3^4)=3$ while $\tilde{g}(\tilde{g}(3^2)) = \tilde{g}(3^3) = 3^2$.

More generally $\tilde{g}(x^k) = \tilde{g}^k(x)$, $\forall x \in N^{-}$ is not true. But for particular values of m.k and x the above equality is possible to be true. For example for m = 6, $x = 2^2$ and k = 2; $\tilde{g}(x^2) = \tilde{g}(2^4) = 2^2$ and $\tilde{g}^2(x) = \tilde{g}(\tilde{g}(2^2)) = \tilde{g}(2^4) = 2^2$.

REMARK 6'. a) $\tilde{g}(x^{m-1}) = \tilde{g}^{m-1}(x)$ for every $x \in \mathbb{N}^*$ iff *m* is an odd number, because we have $\overline{m - (m-1)\alpha_{i_n}} = \overline{m - m - \dots - m - \alpha_{i_n}}$, for every $\alpha_{i_n} \in \mathbb{N}$. $\overline{m-1 \text{ times}}$ Example: For m = 5, $\tilde{g}(x^4) = \tilde{g}^4(x)$, for every $x \in \mathbb{N}^*$. $b) \quad \tilde{g}(x^{m-1}) = \tilde{g}^m(x)$. for every $x \in \mathbb{N}^*$ iff *m* is an even number, because we have $\overline{m - (m-1)\alpha_{i_n}} = \overline{m - m - \dots - m - \alpha_{i_n}}$, for every $\alpha_{i_n} \in \mathbb{N}$. $\overline{m \text{ times}}$ Example: For m = 4. $\tilde{g}(x^3) = \tilde{g}^4(x)$, for every $x \in \mathbb{N}^*$.

PROPERTY 7. For every $x \in N^*$ we have $g^3(x) = g(x)$.

Proof. Let $x = \prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}}$ be the prime factorization of x. We saw that $g(x) = \prod_{h=1}^{r} p_{i_{h}}^{\overline{3-\alpha_{h}}}$ and $g^{3}(x) = g(g^{2}(x)) = g(\prod_{h=1}^{r} p_{i_{h}}^{\overline{3-3-\alpha_{h}}}) = \prod_{h=1}^{r} p_{i_{h}}^{\overline{3-3-3-\alpha_{h}}}$. But $\overline{3-\alpha_{h}} = \overline{3-3-3-\alpha_{h}}$, for every $\alpha_{i_{h}} \in N$, because for: $\overline{\alpha_{i_{h}}} = 0$ $\overline{3-\alpha_{h}} = 0$ and $\overline{3-3-3-\alpha_{h}} = \overline{3-3-0} = \overline{3-0} = 0$ $\overline{\alpha_{i_{h}}} = 1$ $\overline{3-\alpha_{h}} = 2$ and $\overline{3-3-3-\alpha_{h}} = \overline{3-3-3-1} = \overline{3-3-2} = \overline{3-1} = 2$ $\overline{\alpha_{i_{h}}} = 2$ $\overline{3-\alpha_{h}} = 1$ and $\overline{3-3-3-\alpha_{h}} = \overline{3-3-3-2} = \overline{3-3-1} = \overline{3-2} = 1$,

therefore $g^{3}(x) = g(x)$, for every $x \in N^{\bullet}$.

REMARK 7. For every $x \in N^*$ we have $\tilde{g}^3(x) = \tilde{g}(x)$ because $\overline{m - \alpha_{i_h}} = \overline{m - m - m - \alpha_{i_h}}$, for every $\alpha_{i_h} \in N$. For $\overline{\alpha_{i_h}} = a \in \{1, ..., m-1\} = A$, we have $\overline{m - \alpha_{i_h}} = m - a \in A$, therefore $\overline{m - m - \alpha_{i_h}} = \overline{m - (m - a)} = \overline{a} = a$, so that $\overline{m - m - m - \alpha_{i_h}} = \overline{m - a} = \overline{m - \alpha_{i_h}}$, which is also true for $\overline{\alpha_{i_h}} = 0$, therefore it is true for every $\alpha_{i_h} \in N^*$.

PROPERTY 8. For every $x, y \in \mathbb{N}^*$ we have $g(x \cdot y) = g^2(g(x) \cdot g(y))$.

Proof. Let
$$x = \prod_{h=1}^{r} p_{i_{h}}^{\alpha_{h}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\alpha_{t}}$$
 and $y = \prod_{k=1}^{s} q_{j_{k}}^{\beta_{k}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\beta_{t}}$ be the prime factorization of x
and y, respectively, where $p_{i_{h}} \neq d_{i_{t}}, q_{j_{k}} \neq d_{i_{t}}, p_{i_{h}} \neq q_{j_{k}}, \forall h = \overline{1, r}, k = \overline{1, s}, t = \overline{1, n}$. Of course
 $x \cdot y = \prod_{h=1}^{r} p_{i_{h}}^{\alpha_{i_{h}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\beta_{k}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\alpha_{t}} + \beta_{i_{t}}$, so $g(x \cdot y) = \prod_{h=1}^{r} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{i_{k}}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\overline{3-\alpha_{i_{t}}}}$. On the
other hand, $g(x) = \prod_{h=1}^{r} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\overline{3-\alpha_{i_{t}}}}$ and $g(y) = \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\overline{3-\beta_{k}}}$, so that
 $g^{2}(g(x) \cdot g(y)) = g^{2}(\prod_{h=1}^{r} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{i_{k}}}} \cdot \prod_{t=1}^{n} d_{i_{t}}^{\overline{3-\alpha_{i_{t}}}} + \overline{3-\beta_{i_{t}}}) = \prod_{h=1}^{r} p_{i_{h}}^{\overline{3-\beta_{k}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}} \cdot \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}} + \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\beta_{k}}} \cdot \prod_{k=1}^{$

REMARK 8. In the case when (x,y) = 1 we obtain more simply the same result. Because $(x,y) = 1 \Rightarrow (g(x),g(y)) = 1 \Rightarrow (g^2(x),g^2(y)) = 1$ so we have:

 $g^{2}(g(x) \cdot g(y)) = g(g(g(x) \cdot g(y))) = g(g(g(x)) \cdot g(g(y))) = g(g^{2}(x) \cdot g^{2}(y)) = g(g^{2}(x)) \cdot g(g^{2}(y)) = g^{3}(x) \cdot g^{3}(y) = g(x) \cdot g(y) = g(x \cdot y).$

REMARK 9. If (x, y) = 1, then $g(xyz) = g^2(g(xy) \cdot g(z)) = g^2(g(x)g(y)g(z))$ and this property can be extended for a finite number of factors, therefore if $(x_1, x_2) = (x_2, x_3) = \dots = (x_{n-2}, x_{n-1}) = 1$, then $g(\prod_{i=1}^n x_i) = g^2(\prod_{i=1}^n g(x_i))$.

PROPERTY 9. The function g has not fixed points $x \neq 1$.

Proof. We must prove that the equation g(x) = x has not solutions x > 1. Let $x = p_{i_1}^{\alpha_{i_1}} \cdot p_{i_2}^{\alpha_{i_2}} \cdots \cdot p_{i_r}^{\alpha_{i_r}}, \alpha_{i_j} \ge 1, j = \overline{1, r}$ be the prime factorization of x. Then $g(x) = \prod_{j=1}^{r} p_{i_1}^{\overline{3-\alpha_{i_j}}}$ implies that $\alpha_{i_j} = \overline{3-\alpha_{i_j}}, \forall j \in \overline{1, r}$ which is not possible.

REMARK 10. The function \tilde{g} has fixed points only in the case m = 2k, $k \in \mathbb{N}^{*}$. These points are $x = p_{i_1}^k \cdot p_{i_2}^k \cdots p_{i_r}^k$, where $p_{i_1}, j = \overline{1, r}$ are prime numbers.

PROPERTY 10. If $\left(\frac{x}{(x,y)}, y\right) = 1$ and $\left(\frac{y}{(x,y)}, x\right) = 1$ then we have g((x,y)) = (g(x), g(y)), where we denote by (x,y) the greatest common divisor of x and y.

Proof. Because
$$\left(\frac{x}{(x,y)}, y\right) = 1$$
 and $\left(\frac{y}{(x,y)}, x\right) = 1$, we have $\left(\frac{x}{(x,y)}, (x,y)\right) = 1$ and $\left(\frac{y}{(x,y)}, x\right) = 1$, we have $\left(\frac{x}{(x,y)}, (x,y)\right) = 1$ and $\left(\frac{y}{(x,y)}, (x,y)\right) = 1$, then x and y have the following prime factorization: $x = \prod_{h=1}^{r} p_{i_h}^{\alpha_{i_h}} \cdot \prod_{t=1}^{n} d_{i_t}^{\alpha_{i_t}}$
and $y = \prod_{k=1}^{s} q_{j_k}^{\beta_{j_k}} \cdot \prod_{t=1}^{n} d_{i_t}^{\alpha_{i_t}}$, $p_{i_k} \neq d_{i_t}, q_{j_k} \neq d_{i_t}$, $p_{i_h} \neq q_{j_k}$, $\forall h = \overline{1, r}, k = \overline{1, s}, t = \overline{1, n}$. Then
 $(x, y) = \prod_{t=1}^{n} d_{i_t}^{\alpha_{i_t}}$, therefore $g((x, y)) = \prod_{t=1}^{n} d_{i_t}^{\overline{3-\alpha_{i_t}}}$. On the other hand
 $(g(x), g(y)) = (\prod_{h=1}^{r} p_{i_h}^{\overline{3-\alpha_{i_h}}} \cdot \prod_{t=1}^{n} d_{i_t}^{\overline{3-\alpha_{i_t}}}, \prod_{k=1}^{s} q_{j_k}^{\overline{3-\beta_{i_k}}} \cdot \prod_{t=1}^{n} d_{i_t}^{\overline{3-\alpha_{i_t}}}) = \prod_{t=1}^{n} d_{i_t}^{\overline{3-\alpha_{i_t}}}$ and the assertion
follows

follows.

REMARK 11. In the same conditions, $\tilde{g}((x,y)) = (\tilde{g}(x), \tilde{g}(y)), \forall x, y \in N^{\bullet}$.

PROPERTY 11. If $\left(\frac{x}{(x,y)}, y\right) = 1$ and $\left(\frac{y}{(x,y)}, x\right) = 1$ then we have: g([x,y]) = [g(x),g(y)], where (x,y) has the above significance and [x,y] is the least common multiple of x and y.

Proof. We have the prime factorization of x and y used in the proof of the above property, therefore:

$$g([x \cdot y]) = g(\prod_{h=1}^{T} p_{i_{h}}^{\alpha_{i_{h}}} \cdot \prod_{k=1}^{S} q_{j_{k}}^{\beta_{n_{k}}} \cdot \prod_{t=1}^{n} d_{l_{t}}^{\alpha_{i_{t}}}) = \prod_{h=1}^{T} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{k=1}^{S} q_{j_{k}}^{\overline{3-\beta_{i_{k}}}} \cdot \prod_{t=1}^{n} d_{l_{t}}^{\overline{3-\alpha_{i_{t}}}} and$$

$$[g(x),g(y)] = \left[\prod_{h=1}^{T} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{t=1}^{n} d_{l_{t}}^{\overline{3-\alpha_{i_{t}}}}, \prod_{k=1}^{S} q_{j_{k}}^{\overline{3-\beta_{i_{k}}}} \cdot \prod_{t=1}^{n} d_{l_{t}}^{\overline{3-\alpha_{i_{t}}}}\right] =$$

$$= \prod_{h=1}^{T} p_{i_{h}}^{\overline{3-\alpha_{i_{h}}}} \cdot \prod_{k=1}^{S} q_{j_{k}}^{\overline{3-\beta_{k}}} \cdot \prod_{t=1}^{n} d_{l_{t}}^{\overline{3-\alpha_{i_{t}}}},$$

so we have g([x, y]) = [g(x), g(y)].

REMARK 12. In the same conditions, $\tilde{g}([x,y]) = [\tilde{g}(x), \tilde{g}(y)], \forall x, y \in \mathbb{N}^{\bullet}$.

CONSEQUENCE 4. If
$$\left(\frac{x}{(x,y)}, y\right) = 1$$
 and $\left(\frac{y}{(x,y)}, x\right) = 1$, then $g(x) \cdot g(y) = g((x,y)) \cdot g([x,y])$ for every $x, y \in N^*$.

Proof. Because $[x, y] = \frac{xy}{(x, y)}$ we have $[g(x), g(y)] = \frac{g(x) \cdot g(y)}{(g(x), g(y))}$ and using the last two

properties we have:

$$g(x) \cdot g(y) = (g(x), g(y)) \cdot [g(x), g(y)] = g((x, y)) \cdot g([x, y]).$$

REMARK 13. In the same conditions, we also have $\tilde{g}(x) \cdot \tilde{g}(y) = \tilde{g}((x,y)) \cdot \tilde{g}([x,y])$ for every $x, y \in N^{\bullet}$.

PROPERTY 13. The sumatory numerical function of the function g is

$$F(n) = \prod_{j=1}^{k} \left(\frac{\alpha_{i_{j}} + \overline{3 - \alpha_{i_{j}}}}{3} (1 + p_{i_{j}} + p_{i_{j}}^{2}) + h_{p_{i_{j}}}(\alpha_{i_{j}}) \right)$$

where $n = p_{i_1}^{\alpha_{i_1}} \cdot p_{i_2}^{\alpha_{i_2}} \cdots \cdot p_{i_k}^{\alpha_{i_k}}$ is the prime factorization of n, and $h_p: N \to N$ is the $\begin{cases} 1 \text{ for } \alpha = 3k \end{cases}$

numerical function defined by $h_p(\alpha) = \begin{cases} 1 \text{ for } \alpha = 3k \\ -p \text{ for } \alpha = 3k+1 \\ 0 \text{ for } \alpha = 3k+2 \end{cases}$, where p is a given number.

Proof. Because the sumatory function of g is defined as $F(n) = \sum_{d'n} g(d)$ and because $(p_{i_1}^{\alpha_{i_1}}, \prod_{t=2}^{k} p_{i_t}^{\alpha_{i_t}}) = 1$ and g is a multiplicative function, we have: $F(n) = \left(\sum_{d_1/p_{i_1}^{\alpha_{i_1}}} g(d_1)\right) \cdot \left(\sum_{d_2/p_{i_2}^{\alpha_{i_2}} \dots p_{i_k}^{\alpha_{k_k}}}\right)$ and so on, making a finite number of steps we

obtain: $F(n) = \prod_{j=1}^{k} F(p_{i_j}^{\alpha_{i_j}}).$

But it is easy to prove that:

$$F(p^{\alpha}) = \begin{cases} \frac{\alpha}{3}(1+p+p^{2})+1 \text{ for } \alpha = 3k; \\ \frac{\alpha+2}{3}(1+p+p^{2})-p \text{ for } \alpha = 3k+1; \\ \frac{\alpha+1}{3}(1+p+p^{2}) \text{ for } \alpha = 3k, k \in \mathbb{N}, \text{ for every prime } p \end{cases}$$

Using the function h_p , we can write $F(p^{\alpha}) = \frac{3-\overline{\alpha}}{3}(1+p+p^2) + h_p(\alpha)$, therefore we have the demanded expression of F(n).

REMARK 14. The expression of F(n), where F is the sumatory function of \tilde{g} , is similarly, but it is necessary to replace

 $\frac{\alpha_{i_1} + \overline{3 - \alpha_{i_1}}}{3} \quad by \quad \frac{\alpha_{i_1} + \overline{m - \alpha_{i_1}}}{m} \quad (where \ \overline{\alpha_{i_1}} \text{ is now the remainder of the division of } \alpha_{i_1} \text{ by}$ m and the sum $1 + p_{i_1} + p_{i_2}^2 \quad by \sum_{k=0}^{m-1} p_{i_1}^k)$ and to define an adapted function h_p .

In the sequel we study some equations which involve the function g.

- 1. Find the solutions of the equations $x \cdot g(x) = a$, where $x, a \in \mathbb{N}^{\bullet}$.
- If a is not a perfect cube, then the above equation has not solutions.

If a is a perfect cube, $a = b^3, b \in N^*$, where $b = p_{i_1}^{\alpha_{i_1}} \cdot p_{i_2}^{\alpha_{i_2}} \cdots p_{i_k}^{\alpha_{i_k}}$ is the prime factorization of b, then, taking into account of the definition of the function g, we have the solutions $x = b^3 / d_{i_1 i_2 \dots i_k}$ where $d_{i_1 i_2 \dots i_k}$ can be every product $p_{i_1}^{\beta_1} p_{i_2}^{\beta_2} \cdots p_{i_k}^{\beta_k}$ where $\beta_1, \beta_2, \dots, \beta_k$ take an arbitrary value which belongs of the set $\{0, 1, 2\}$.

In the case when $\beta_1 = \beta_2 = \dots = \beta_k = 0$ we find the special solution $x = b^3$, when $\beta_1 = \beta_2 = \dots = \beta_k = 1$, the solution $p_{i_1}^{3\beta_1-1}p_{i_2}^{3\beta_2-1}\dots p_{i_k}^{3\beta_k-1}$ and when $\beta_1 = \beta_2 = \dots = \beta_k = 2$, the solution $p_{i_1}^{3\beta_1-2}p_{i_2}^{3\beta_2-2}\dots p_{i_k}^{3\beta_k-2}$.

We find in this way $1+2C_k^1+2^2C_k^1+\dots+2^kC_k^k=3^k$ different solutions, where k is the number of the prime divisors of b.

2. Prove that the following equations have not natural solutions:

xg(x) + yg(y) + zg(z) = 4 or xg(x) + yg(y) + zg(z) = 5. Give a generalization.

Because $xg(x) = a^3$, $yg(y) = b^3$, $zg(z) = c^3$ and the equations $a^3 + b^3 + c^3 = 4$ or $a^3 + b^3 + c^3 = 5$ have not natural solutions, then the assertion holds.

We can also say that the equations $(xg(x))^n + (yg(y))^n + (zg(z))^n = 4$ or $(xg(x))^n + (yg(y))^n + (zg(z))^n = 5$ have not natural solutions, because the equations $a^{3n} + b^{3n} + c^{3n} = 4$ or $a^{3n} + b^{3n} + c^{3n} = 5$ have not.

3. Find all solutions of the equation xg(x) - yg(y) = 999.

Because $xg(x) = a^3$ and $yg(y) = b^3$ we must give the solutions of the equation $a^3 - b^3 = 999$, wh²ich are (a=10, b=1) and (a=12,b=9).

In the first case:
$$a=10$$
, $b=1$ we have $xa(x) = 10^3 = 2^3 \cdot 5^3$
 $\Rightarrow x_0 \in \left\{ 10^3, 2^2 \cdot 5^3, 2^3 \cdot 5^2, 2 \cdot 5^3, 2^3 \cdot 5 , 2^2 \cdot 5^2, 2^2 \cdot 5 , 2 \cdot 5^2, 2 \cdot 5 \right\}$

and $yb(y)=1 \Rightarrow y_0 = 1$ so we have 9 different solutions (x_0, y_0) .

In the second case: a=12, b=9 we have $xa(x) = 12^3 = 2^6 \cdot 3^3$ $\Rightarrow x_0 \in \left\{ 2^6 \cdot 3^3, 2^5 \cdot 3^3, 2^6 \cdot 3^2, 2^4 \cdot 3^3, 2^6 \cdot 3, 2^5 \cdot 3^2, 2^4 \cdot 3^2, 2^5 \cdot 3, 2^4 \cdot 3 \right\}$

and $yb(y)=9^3 = 3^9 \Rightarrow y_0 \in \{3^9, 3^8, 3^7\}$ so we have another $9 \cdot 3 = 27$ different solutions (x_0, y_0) .

4. It is easy to observe that the equation g(x)=1 has an infinite number of solutions: all perfect cube numbers.

5. Find the solutions of the of the equation g(x)+g(y)+g(z) = g(x)g(y)g(z). The same problem when the function is \tilde{g} .

It is easy to prove that the solutions are, in the first case, the permutations of the sets $\{u^3, 4v^3, 9t^3\}$, where $u, v, t \in N^{"}$, and in the second case $\{u^m, 2^{m-1}v^m, 3^{m-1}t^m\}$, $u, v, t \in N^{"}$.

Using the same ideea of [1], it is easy to find the solutions of the following equations which involve the function g:

a) $g(x) = kg(y), k \in \mathbb{N}^{\bullet}, k > 1$

b) Ag(x) + Bg(y) + Cg(z) = 0, $A, B, C \in \mathbb{Z}^{+}$

c) Ag(x) + Bg(y) = C, $A, B, C \in \mathbb{Z}^{n}$, and to find also the solutions of the above equations when we replace the function g by \tilde{g} .

REFERENCES

[1] Ion Bäläcenoiu, Marcela Popescu, Vasile Seleacu, About the Smarandache square's complementary function, Smarandache Function Journal, Vol.6, No.1, June 1995.

[2] F. Smarandache, Only problems, not solutions!, Xiquan Publishing House, Phoenix-Chicago, 1990, 1991, 1993.

Current Address: University of Craiova, Department of Mathematics, 13, "A.I.Cuza" street, Craiova-1100, ROMANIA