ABOUT THE SMARANDACHE COMPLHMDANTARY CUBIC FUNCTION

by Marcela Popescu and Mariana Nicolescu

DEFLNTTION. Let $\mathrm{g}: \mathrm{N}^{*} \rightarrow \mathrm{~N}^{*}$ be a numerical function defined by $\mathrm{g}(\mathrm{n})=\mathrm{k}$, where k is the smallest natural number such that nk is a perfect cube: $\mathrm{nk}=\mathrm{s}^{3}, \mathrm{~s} \in \mathrm{~N}^{*}$.

Examples: 1) $g(7)=49$ because 49 is the smallest natural number such that $7 \cdot 49=7 \cdot 7^{2}=7^{3}$:
2) $g(12)=18$ because 18 is the smallest natural number such that $12 \cdot 18=\left(2^{2} \cdot 3\right) \cdot\left(2 \cdot 3^{2}\right)=2^{3} \cdot 3^{3}=(2 \cdot 3)^{3}$;
3) $g(27)=g\left(3^{3}\right)=1$;
4) $g(54)=g\left(2 \cdot 3^{3}\right)=2^{2}=g(2)$.

PROPERTY 1. For every $n \subseteq \mathbf{N}^{*} . g\left(n^{3}\right)=1$ and for every prime p we have $g(p)=p^{2}$.
PROPERTY 2. Let n be a composite natural number and $n=p_{i_{1}}^{\alpha_{1}} \cdot p_{i_{2}}^{\alpha_{2}} \ldots \cdots p_{i,}^{\alpha_{1}}$, $0<\mathrm{p}_{\mathrm{i}_{1}}<\mathrm{p}_{\mathrm{i}_{2}}<\cdots<\mathrm{p}_{\mathrm{i}}, \quad \alpha_{\mathrm{i}_{1}}, \alpha_{\mathrm{i}_{2}}, \ldots, \alpha_{\mathrm{i}_{i}} \in \mathrm{~N}^{-} \quad$ its prime factorization. Then $\mathrm{g}(\mathrm{n})=\mathrm{p}_{\mathrm{i}_{1}}^{\mathrm{d}\left({\overline{a_{1}}}_{1}\right)} \cdot \mathrm{p}_{\mathrm{i}_{2}}^{\mathrm{d}\left(\bar{c}_{i_{2}}\right)} \cdots \cdots \mathrm{p}_{\mathrm{i}_{.}}^{\mathrm{d}\left(\bar{\alpha}_{i_{4}}\right)}$, where $\bar{\alpha}_{\mathrm{i}_{1}}$, is the remainder of the division of $\alpha_{\mathrm{i}_{1}}$, by 3 and $\mathrm{d}:\{0.1,2\} \rightarrow\{0,1.2\}$ is the numerical function defined by $\mathrm{d}(0)=0, \mathrm{~d}(1)=2$ and $\mathrm{d}(2)=1$.

If we take into account of the above definition of the function g, it is easy to prove the above properties.

OBSERVATION: $\mathrm{d}\left(\overline{\alpha_{i}}\right)=\overline{3-\overline{\alpha_{i}}}$, for every $\alpha_{\mathrm{i}_{j}} \in \mathrm{~N}^{*}$, and in the sequel we use this writing for its simplicity.

REMARK 1. Let $\mathrm{m} \in \mathrm{N}^{-}$be a fixed natural number. If we consider now the numerical function $\tilde{\mathrm{g}}: \mathrm{N}^{-} \rightarrow \mathrm{N}^{-}$defined by $\tilde{\mathrm{g}}(\mathrm{n})=\mathrm{k}$. where k is the smallest natural number such that $\mathrm{nk}=\mathrm{s}^{\mathrm{m}}, \mathrm{s} \in \mathrm{N}^{-}$. then we can obsenve that $\tilde{\mathrm{g}}$ generalize the function g. and we also have: $\tilde{\mathbf{g}}\left(\mathrm{n}^{\mathrm{m}}\right)=1$, $\forall \mathrm{n} \in \mathrm{N}^{-}$. $\tilde{\mathbf{g}}(\mathrm{p})=\mathrm{p}^{\mathrm{m}-1}$, $\forall \mathrm{p}$ prime and $\tilde{\mathrm{g}}(\mathrm{n})=\overline{\mathrm{p}_{i_{1}}} \overline{\mathrm{~m}} \overline{\overline{\alpha_{i}}} \cdot \overline{\mathrm{p}_{1_{2}}} \overline{\mathrm{~m}} \overline{\alpha_{2}} \ldots \ldots \mathrm{p}_{\mathrm{i}_{\mathrm{r}}} \overline{\mathrm{m}-\overline{\alpha_{i}}}$, where $\mathrm{n}=\mathrm{p}_{\mathrm{i}_{1}}^{\alpha_{i}} \cdot \mathrm{p}_{\mathrm{i}_{2}}^{\alpha_{2}}, \cdots \cdots \mathrm{p}_{\mathrm{i}}$, is the prime factorization of n and $\overline{\alpha_{i}}$, is the remainder of the division of a_{1} by m. therefore the both above properties holds for $\tilde{\mathrm{g}}$, too.

REMARK 2. Because $1 \leq g(n) \leq n^{2}$, jo tvery $n \in \mathbb{N}^{-}$. we have: $\frac{1}{n} \leq \frac{g(n)}{n} \leq n$. thus $\sum_{n \geq 1} \frac{g(n)}{n}$ is a divergent serie.

In a similar wav, using that we have $1 \leq \tilde{g}(\mathrm{n}) \leq \mathrm{n}^{\mathrm{m}-1}$ for everv $\mathrm{n} \in \mathrm{N}^{-}$. it resuits that $\sum_{n \geq 1} \frac{\bar{g}(n)}{n}$ is also divergent.

PROPERTY 3. The function $\mathrm{g}: \mathrm{N}^{*} \rightarrow \mathrm{~N}^{*}$ is multiplicative: $\mathrm{g}(\mathrm{x} \cdot \mathrm{y})=\mathrm{g}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{y})$ for every $\mathrm{X}, \mathrm{Y} E \mathrm{~N}^{*}$ with $(\mathrm{x}, \mathrm{y})=1$.

Proof. For $\mathrm{x}=\mathrm{l}=\mathrm{y}$ we have $(\mathrm{x}, \mathrm{y})=1$ and $\mathrm{g}(1 \cdot 1)=\mathrm{g}(\mathrm{l}) \cdot \mathrm{g}(\mathrm{l})$. Let $x=p_{i_{1}}^{\alpha} \cdot p_{i_{5}}^{\alpha}=\ldots \ldots p_{i}^{\alpha}, \quad$ and $y=q_{j_{i}}^{\beta} \cdot q_{j_{2}}^{\beta_{2}}, \cdots \cdots q_{j_{5}}^{\beta_{15}} \quad$ be the prime factorization of x and y, repectivety, so that $\mathrm{x} \cdot \mathrm{y}=1$.

Because $(x, y)=1$ we have $p_{i_{h}}=q_{j_{k}}$, for every $h=\overline{1 . r}$ and $k=\overline{1.5}$.

REMARK 3. The property holds also for the function $\tilde{g}: \tilde{g}(x \cdot y)=\tilde{g}(x) \cdot \tilde{\underline{g}}(\mathbf{y})$. where $(x, y)=1$.

PROPERTY 4. If $(\mathrm{x}, \mathrm{y})=1 . \mathrm{x}$ and y are not perfect cubes and $\mathrm{x} \mathrm{y}>1$, then the equation $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{y})$ has not natural solutions.

Proof. Let $\mathrm{x}=\prod_{\mathrm{h}=1}^{\mathrm{T}} \mathrm{p}_{\mathrm{i}_{\mathrm{k}}}^{\alpha_{n}}$ and $\mathrm{y}=\prod_{\mathrm{k}=1}^{\mathrm{s}} \mathrm{q}_{\mathrm{j}_{\mathrm{k}}}^{\beta_{j k}} \quad$ (where $\mathrm{p}_{\mathrm{i}_{2}} \neq \mathrm{q}_{\mathrm{j}_{\mathrm{k}}}, \forall \mathrm{h}=\overline{1, r}, \mathrm{k}=\overline{1, \mathrm{~s}}$, because $(x, y)=1)$ be their prime factorizations. Then $g(x)=\prod_{h=1}^{r} \overline{p_{i_{h}}} \overline{\alpha_{1, k}} \quad$ and $g(y)=\prod_{k=1}^{s} \overline{q_{j}} \overline{j_{k}} \overline{\overline{\beta_{i k}}}$ and there exist at least $\bar{\alpha}_{\mathrm{i}_{\mathrm{a}}} \neq 0$ and $\bar{\beta}_{\mathrm{j}_{\mathrm{k}}} \neq 0$ (because x and y are not perfect cubes), therefore $1 \neq \mathrm{P}_{\mathrm{i}_{\mathrm{k}}}^{\overline{3-\overline{\alpha_{1 k}}}}=\mathrm{q}_{\mathrm{j}_{\mathrm{k}}}^{\overline{3-\overline{\beta_{i k}}}}=1$, so $\mathrm{g}(\mathrm{x}) \neq \mathrm{g}(\mathrm{y})$.

CONSEQUENCE 1. The equation $\mathrm{g}(\mathrm{x})=\mathrm{g}(\mathrm{x}-1)$ has not natural solutions because for $x \geq 1, x$ and $x-1$ are not both perfect cubes and $(x, x-1)=1$.

REMARK 4. The property and the consequence is also true for the function $\tilde{g}_{\text {: }}$ if $\left(\mathrm{x} . \mathrm{y}_{\mathrm{y}}\right)=1, \mathrm{x}=1, \mathrm{y}>1$, and it does not exist $\mathrm{a}, \mathrm{b} \in \mathrm{N}^{\mathbf{*}}$ so that $\mathrm{x}=\mathrm{a}^{\mathrm{m}}, \mathrm{y}=\mathrm{b}^{\mathrm{m}}$ (where m is fuxed and has the above significance), then the equation $\tilde{g}(x)=\tilde{g}(y)$ has not natural solutions; the equation $\tilde{\mathbf{g}}(\mathrm{x})=\tilde{\mathbf{g}}(\mathrm{x}-1), \mathrm{x} \geq 1$ has not natural solutions. too.

It is eary to see that the proofs are similary, but in this case we denote by $\bar{\alpha}_{i \mathrm{j}}=\alpha_{1 \mathrm{j}}$ ($\mathrm{mod} m$) and we replace $\overline{3-\overline{\alpha_{1}}}$ by $\overline{m-\overline{\alpha_{i}}}$.

PROPERTY 5. We have $g\left(x \cdot y^{2}\right)=g(x)$, for every $x, y \in N^{*}$.
Proof. If $(x, y)=1$, then $\left(x, y^{3}\right)=1$ and using property 1 and property 3, we have: $g\left(x \cdot y^{3}\right)=g(x) \cdot g\left(y^{3}\right)=g(x)$.

If $(x, y)=1$ we can write: $x=\prod_{h=1}^{\mathrm{r}} p_{i_{t}}^{\alpha_{t}} \cdot \prod_{t=1}^{n} d_{1}^{\alpha_{i_{t}}} \quad$ and $\quad y=\prod_{k=1}^{s} q_{j_{k}}^{\beta_{n}} \cdot \prod_{t=1}^{n} d_{1 .}^{\beta_{t}} \quad$ where

 $=\prod_{h=1}^{\mathrm{r}} \overline{\overline{3-\overline{\alpha_{i}}}} \cdot \prod_{\mathrm{k}=1}^{\mathrm{s}} \mathrm{q}_{\mathrm{i}}^{\overline{3-\overline{\beta_{\mathrm{B}}}}} \cdot \prod_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{d}_{\mathrm{l}}^{\overline{3-\overline{\alpha_{i}+3 \beta_{n}}}}=\prod_{h=1}^{r} \mathrm{p}_{i_{n}}^{\overline{3-\overline{\alpha_{n}}}} \cdot \prod_{i=1}^{r} \mathrm{~d}_{l}^{\overline{3-\overline{\alpha_{i}}}}=\mathrm{g}\left(\prod_{h=1}^{r} \mathrm{p}_{i_{n}}^{\alpha_{n}}\right) \cdot \mathrm{g}\left(\prod_{t=1}^{n} \mathrm{~d}_{l}^{\alpha_{i}}\right)=$ $=g\left(\prod_{h=1}^{\mathrm{I}} \mathrm{p}_{\mathrm{i}_{\mathrm{h}}}^{\alpha_{h^{\prime}}} \cdot \prod_{\mathrm{t}=1}^{\mathrm{n}} \mathrm{d}_{1}^{\alpha_{h_{1}}}\right)=\mathrm{g}(\mathrm{x})$.
 above properties.

REMARK 5. It is easy to see that we ulso have $\tilde{\mathrm{g}}\left(\mathrm{x} \cdot \mathrm{y}^{\mathrm{m}}\right)=\tilde{g}(\mathrm{x})$. for every $\mathrm{x}, \mathrm{y} \in \mathbf{N}^{-}$.
OBSERVATION. If $\frac{\mathrm{x}}{\mathrm{y}}=\frac{\mathrm{u}^{3}}{\mathrm{v}^{3}}$, where $\frac{\mathrm{u}}{\mathrm{v}}$ is a simplified fraction. then $g(x)=g(y)$. It is easy to prove this because $\mathrm{x}=\mathrm{kn}^{3}$ and $\mathrm{y}=\mathrm{hv}^{3}$. and using the above property we have:

$$
g(x)=g\left(k \cdot u^{3}\right)=g(k)=g\left(k \cdot v^{2}\right)=g(y)
$$

OBSERVATION. If $\frac{x}{y}=\frac{u^{m}}{v^{m}}$ where $\frac{u}{v}$ is a simplified fraction, then, using remark 5 . we have $\tilde{g}(x)=\tilde{g}(y)$, too.

CONSEQUENCE 2. For every $\mathrm{x} \in \mathrm{N}^{*}$ and $\mathrm{n} \in \mathrm{N}$,

$$
\mathrm{g}\left(x^{n}\right)=\left\{\begin{array}{l}
1 . \text { if } n=3 k \\
\mathrm{~g}(\mathrm{x}), \text { if } \mathrm{n}=3 \mathrm{k}+1 \\
\mathrm{~g}^{2}(x), \text { if } n=3 k+2, k \in \mathrm{~N}
\end{array}\right.
$$

where $\mathrm{g}^{2}(\mathrm{x})=\mathrm{g}(\mathrm{g}(\mathrm{x}))$.

Proof. If $\mathrm{n}=3 \mathrm{k}$, then x^{n} is a perfect cube, therefore $\mathrm{g}\left(\mathrm{x}^{\mathrm{n}}\right)=1$.
If $n=3 k+1$, then $g\left(x^{n}\right)=g\left(x^{3 k} \cdot x\right)=g\left(x^{3 k}\right) \cdot g(x)=g(x)$.
If $\mathrm{n}=3 \mathrm{k}+2$, then $\mathrm{g}\left(\mathrm{x}^{\mathrm{n}}\right)=\mathrm{g}\left(\mathrm{x}^{3 \mathrm{k}} \cdot \mathrm{x}^{2}\right)=\mathrm{g}\left(\mathrm{x}^{3 \mathrm{k}}\right) \cdot \mathrm{g}\left(\mathrm{x}^{2}\right)=\mathrm{g}\left(\mathrm{x}^{2}\right)$.
PROPERTY 6. $g\left(x^{2}\right)=g^{2}(x)$, for every $x \in N^{*}$.
Proof. Let $\mathrm{x}=\prod_{\mathrm{h}=1}^{\mathrm{r}} \mathrm{p}_{\mathrm{i}_{4}}^{\alpha_{4}}$ be the prime factorization of x . Then
 easy to observe that $\overline{3-\overline{2 \alpha_{i_{h}}}}=\overline{3-\overline{3-\overline{a_{i h}}}}$, because for:

$$
\begin{array}{lll}
\bar{\alpha}_{t}=0 & \overline{3-\overline{2 \alpha_{n}}}=\overline{3-0}=0 & \text { and } \overline{3-\overline{3-\overline{\alpha_{i_{4}}}}}=\overline{3-\overline{3-0}}=\overline{3-0}=0 \\
\overline{\alpha_{i,}}=1 & \overline{3-\overline{2 \alpha_{i 4}}}=\overline{3-2}=1 \quad \text { and } \overline{3-\overline{3-\overline{\alpha_{i_{h}}}}}=\overline{3-\overline{3-1}}=\overline{3-2}=1 \\
\bar{\alpha}_{h_{4}}=2 & \overline{3-\overline{2 \alpha_{i_{4}}}}=\overline{3-\overline{4}}=\overline{3-1}=2 \text { and } \overline{3-\overline{3-\overline{\alpha_{t_{4}}}}}=\overline{3-\overline{3-2}}=\overline{3-1}=2,
\end{array}
$$

therefore $g\left(x^{2}\right)=g^{2}(x)$.

REMARK 6. For the function \tilde{g} is not true that $\tilde{g}\left(\mathrm{x}^{2}\right)=\tilde{\mathbf{g}}^{2}(\mathrm{x}), \succcurlyeq \mathrm{x} \in \mathbf{N}^{-}$. For example. for $m=5$ and $x=3^{2} . \tilde{\mathbf{g}}\left(x^{2}\right)=\tilde{\mathbf{g}}\left(3^{1}\right)=3$ while $\tilde{\underline{g}}\left(\tilde{\underline{g}}\left(3^{2}\right)\right)=\tilde{\mathbf{g}}\left(3^{3}\right)=3^{2}$.

More generally $\tilde{g}\left(x^{k}\right)=\tilde{g}^{k}(x) . \nabla x \in N^{-}$is not true. But for particular values of m. k and x the above equality is posith is be true. For example for $m=6, x=2^{2}$ and $\mathrm{k}=2: \tilde{\mathbf{g}}\left(\mathrm{x}^{2}\right)=\tilde{\mathbf{g}}\left(2^{4}\right)=2^{2}$ and $\tilde{\mathbf{g}}^{2}(\mathrm{x})=\tilde{\mathbf{g}}\left(\tilde{\mathbf{g}}\left(2^{2}\right)\right)=\tilde{\underline{\mathbf{g}}}\left(2^{4}\right)=2^{2}$.

REMARK 6^{\prime}. a) $\underline{g}\left(x^{-1}\right)=\tilde{g}^{-1}(x)$ for every $x \in N^{*}$ iff m is an odd number. because we have $\overline{m-\overline{(m-1) \alpha_{i_{h}}}}=\underbrace{m-m-\ldots-\overline{m-\overline{\alpha_{i_{i}}}}}$, for every $\alpha_{i_{i}} \in \mathbf{N}$.
m-1 times
Example: For $m=5, \quad \tilde{g}\left(x^{4}\right)=\tilde{g}^{4}(x)$, for every $x \in \mathbf{N}^{*}$.
b) $\tilde{g}\left(x^{m-1}\right)=\tilde{g}^{m}(x)$. for every $x \in N^{*}$ iff m is an even number, because we have $\overline{m-\overline{(m-1) \alpha_{i_{4}}}}=m-\overline{m-\ldots-\overline{m-\overline{\alpha_{i_{4}}}}}$, for every $\alpha_{i_{h}} \in \mathbf{N}$.
m times
Example: For $m=4$. $\tilde{g}\left(x^{3}\right)=\tilde{g}^{4}(x)$. for every $x \in N^{*}$.
PROPERTY 7. For every $\mathrm{x} \in \mathrm{N}^{*}$ we have $\mathrm{g}^{3}(\mathrm{x})=\mathrm{g}(\mathrm{x})$.
Minj. Let $\mathrm{x}=\prod_{\mathrm{h}=1}^{\mathrm{I}} \mathrm{p}_{\mathrm{i}_{\mathrm{h}}}^{\alpha,}$ be the prime factorization of x . We saw that $\mathrm{g}(\mathrm{x})=\prod_{\mathrm{h}=1}^{\Gamma} \mathrm{p}_{\mathrm{i}_{\mathrm{h}}}^{\overline{\alpha_{i_{h}}}}$ and

$$
\mathrm{g}^{3}(x)=\mathrm{g}\left(\mathrm{~g}^{2}(x)\right)=\mathrm{g}\left(\prod_{h=1}^{r} \overline{\mathrm{p}_{i_{n}}} \overline{\overline{3-\overline{\alpha_{n}}}}\right)=\prod_{h=1}^{r} \mathrm{p}_{i_{n}}^{3-\overline{3-\overline{\alpha_{n}}}}
$$

But $\overline{3-\overline{\alpha_{2}}}=\overline{3-\overline{3-\overline{3-\overline{\alpha_{n}}}}}$, for every $u_{i,} \in N$. because for:

$$
\begin{aligned}
& \overline{a_{i_{1}}}=0 \quad \overline{3-\overline{\alpha_{i t}}}=0 \text { and } \overline{\overline{3-\overline{3-\overline{a_{n}}}}}=\overline{3-\overline{3-\overline{3-0}}}=\overline{3-\overline{3-0}}=\overline{3-i}=0
\end{aligned}
$$

$$
\begin{aligned}
& \overline{a_{i_{i}}}=2 \quad \overline{3-\overline{\alpha_{i b}}}=1 \text { and } \overline{3-\overline{3-\overline{3-\overline{a_{n}}}}}=\overline{3-\overline{3-\overline{3-2}}}=\overline{\overline{3-\overline{3-1}}}=\overline{3-2}=1 \text {, }
\end{aligned}
$$

therefore $g^{3}(x)=g(x)$, for every $x \in N^{*}$.
 for every $u_{i_{1}} \in N$. For $\overline{\alpha_{i_{h}}}=a \in\{1, \ldots, m-1\}=A$, we have $\overline{\mathrm{m}-\overline{\alpha_{i_{1}}}}=\mathrm{m}-\mathrm{a} \in \mathrm{A}$, therefore $\overline{\mathrm{m}-\overline{\mathrm{m}-\alpha_{i_{s}}}}=\overline{\mathrm{m}-(\mathrm{m}-a)}=\bar{a}=a$, so that $\overline{m-\bar{m}-\overline{\mathrm{m}-\overline{a_{i_{b}}}}}=\overline{\mathrm{m}-\mathrm{a}}=\overline{\mathrm{m}-\overline{a_{i_{b}}}}$, which is also true for $\overline{\alpha_{i n}}=0$, therefore it is true for every $\alpha_{i_{n}} \in \mathbf{N}^{*}$.

PROPERTY 8. For every $x, y \in N^{*}$ we have $g(x \cdot y)=g^{2}(g(x) \cdot g(y))$.
Proof. Let $x=\prod_{h=1}^{T} p_{i_{k}}^{\alpha_{k}} \cdot \prod_{t=1}^{n} d_{L_{k}}^{\alpha_{k_{s}}}$ and $y=\prod_{k=1}^{s} q_{j_{k}}^{\beta_{n_{k}}} \cdot \prod_{t=1}^{n} d_{L}^{\beta_{k}}$ be the prime factorization of x and y, respectively, where $p_{i_{t}} \neq d_{l_{i}}, q_{j_{k}} \neq d_{l_{t}}, p_{i_{b}} \neq q_{j_{k}}, \forall h=\overline{1, r}, k=\overline{1, s, t}=\overline{1, n}$. Of course

$$
\cdot \prod_{t=1}^{n} \mathrm{~d}_{l}^{3-3-\left(\overline{3-\overline{\alpha_{k}}}+\overline{3-\overline{\beta_{k}}}\right)}=\prod_{h=1}^{r} \mathrm{p}_{i_{k}}^{\overline{3-\overline{\alpha_{k}}}} \cdot \prod_{k=1}^{s} \mathrm{q}_{j_{k}}^{3-\overline{\beta_{k}}} \cdot \prod_{t=1}^{n} \mathrm{~d}_{l}^{\overline{3-\left(\overline{\alpha_{4}+\beta_{k}}\right)}}=g(x \cdot y), \text { because }
$$

$3-3-\overline{3-a}=\overline{3-\bar{a}}$ and $3-3-(\overline{3-\bar{a}+\overline{3-\bar{b}})}=\overline{3-\overline{(a+b)},}, \forall a, b \in N$.
REMARK 8. In the case when $(\mathrm{x}, \mathrm{y})=1$ we obtain more simply the same result Because $(\mathrm{x}, \mathrm{y})=1 \Rightarrow(\mathrm{~g}(\mathrm{x}), \mathrm{g}(\mathrm{y}))=1 \Rightarrow\left(\mathrm{~g}^{2}(\mathrm{x}), \mathrm{g}^{2}(\mathrm{y})\right)=1$ so we have:

$$
\begin{aligned}
& \quad g^{2}(g(x) \cdot g(y))=g(g(g(x) \cdot g(y)))=g(g(g(x)) \cdot g(g(y)))=g\left(g^{2}(x) \cdot g^{2}(y)\right)= \\
& =g\left(g^{2}(x)\right) \cdot g\left(g^{2}(y)\right)=g^{3}(x) \cdot g^{3}(y)=g(x) \cdot g(y)=g(x \cdot y) .
\end{aligned}
$$

REMARK 9. If $(\mathrm{x}, \mathrm{y})=1$, then $\mathrm{g}(\mathrm{xyz})=\mathrm{g}^{2}(\mathrm{~g}(\mathrm{xy}) \cdot \mathrm{g}(\mathrm{z}))=\mathrm{g}^{2}(\mathrm{~g}(\mathrm{x}) \mathrm{g}(\mathrm{y}) \mathrm{g}(\mathrm{z})$) and this property can be extended for a finite number of factors, therefore if $\left(x_{1}, x_{2}\right)=\left(x_{2}, x_{3}\right)=\cdots=\left(x_{n-2}, x_{n-1}\right)=1$, then $g\left(\prod_{i=1}^{n} x_{i}\right)=g^{2}\left(\prod_{i=1}^{n} g\left(x_{i}\right)\right)$.

PROPERTY 9. The function g has not fixed points $\mathrm{x} \neq 1$.
Proof. We must prove that the equation $g(x)=x$ has not solutions $x>1$.
Let $x=p_{i_{1}}^{\alpha_{1}} \cdot p_{i_{2}}^{\alpha_{2}} \cdots \cdots p_{i_{i}}^{\alpha_{1}}, \alpha_{i_{j}} \geq 1, j=\overline{1, r}$ be the prime factorization of x. Then $g(x)=\prod_{j=1}^{r} \overline{p_{i}} \overline{\overline{3-\overline{\alpha_{i}}}}$ implies that $\alpha_{i_{j}}=\overline{3-\overline{\alpha_{i}}}, \forall j \in \overline{1, r}$ which is not possible.

REMARK 10. The function \tilde{g} has fixed points only in the case $m=2 k, k \in N^{*}$. These points are $x=p_{i_{1}}^{k} \cdot p_{i_{2}}^{k} \cdots \cdots p_{i_{1}}^{k}$, where $p_{i_{1}}, j=\overline{1, r}$ are prime numbers.

PROPERTY 10. If $\left(\frac{x}{(x, y)}, y\right)=1$ and $\left(\frac{y}{(x, y)}, x\right)=1$ then we have $\mathrm{g}((\mathrm{x}, \mathrm{y}))=(\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y}))$, where we denote by (x, y) the greatest common divisor of x and y.

Proof. Because $\left(\frac{x}{(x, y)}, y\right)=1$ and $\left(\frac{y}{(x, y)}, x\right)=1$, we have $\left(\frac{x}{(x, y)},(x, y)\right)=1$ and $\left(\frac{y}{(x, y)},(x, y)\right)=1$, then x and y have the following prime factorization: $\mathrm{x}=\prod_{\mathrm{h}=1}^{\mathrm{T}} \mathrm{p}_{\mathrm{i}_{\mathrm{k}}}^{\alpha_{\mathrm{t}}} \cdot \prod_{\mathrm{l}=1}^{\mathrm{n}} \mathrm{d}_{1}^{\alpha_{1}}$
 $(x, y)=\prod_{t=1}^{n} d_{1}^{a_{1}}$, therefore $g((x, y))=\prod_{t=1}^{n} d_{1_{t}}^{\overline{3-\overline{a_{i}}}}$. On the other hand
 follows.

REMARK 11. In the same conditions, $\tilde{\mathrm{g}}((\mathrm{x}, \mathrm{y}))=(\tilde{\mathrm{g}}(\mathrm{x}), \tilde{\mathrm{g}}(\mathrm{y})), \forall \mathrm{x}, \mathrm{y} \in \mathrm{N}^{*}$.
PROPERTY 11. If $\left(\frac{x}{(x, y)}, y\right)=1$ and $\left(\frac{y}{(x, y)}, x\right)=1$ then we have: $\mathrm{g}([\mathrm{x}, \mathrm{y}])=[\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})]$, where (x, y) has the above significance and $[\mathrm{x}, \mathrm{y}]$ is the least common multiple of x and y.

Proof. We have the prime factorization of x and y used in the proof of the above property, therefore:

$$
\begin{aligned}
& {[g(x), g(y)]=\left[\prod_{h=1}^{r} p_{i_{k}}^{3-\overline{\alpha_{i k}}} \cdot \prod_{t=1}^{n} d_{1_{t}}^{\overline{3-\overline{a_{i}}}}, \prod_{k=1}^{s} q_{j_{k}}^{\overline{3-\overline{\beta_{i k}}}} \cdot \prod_{t=1}^{n} d_{1}^{3-\overline{a_{i_{t}}}}\right]=} \\
& =\prod_{h=1}^{r} \overline{i_{i_{k}}} \overline{3-\overline{\alpha_{i_{k}}}} \cdot \prod_{k=1}^{s} \overline{q_{j_{k}}-\overline{\beta_{k}}} \cdot \prod_{t=1}^{n} \overline{d_{t}} \overline{1_{i} \overline{\alpha_{i}}},
\end{aligned}
$$

so we have $g([x, y])=[g(x), g(y)]$.
REMARK 12. In the same conditions, $\tilde{\mathrm{g}}(\mathrm{x}, \mathrm{y}])=[\tilde{\mathrm{g}}(\mathrm{x}), \tilde{\mathrm{g}}(\mathrm{y})] \forall \mathrm{x}, \mathrm{y} \in \mathrm{N}^{*}$.
CONSEQUENCE 4. If $\left(\frac{x}{(x, y)}, y\right)=1$ and $\left(\frac{y}{(x, y)}, x\right)=1$, then $g(x) \cdot g(y)=$ $=g((x, y)) \cdot g\left(\left[x, y D\right.\right.$ for every $x, y \in N^{*}$.

Proof. Because $[\mathrm{x}, \mathrm{y}]=\frac{\mathrm{xy}}{(\mathrm{x}, \mathrm{y})}$ we have $[\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y})]=\frac{\mathrm{g}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{y})}{(\mathrm{g}(\mathrm{x}), \mathrm{g}(\mathrm{y}))}$ and using the last two properties we have:

$$
g(x) \cdot g(y)=(g(x), g(y)) \cdot[g(x), g(y)]=g((x, y)) \cdot g([x, y]) .
$$

REMARK 13. In the same conditions. we also have $\tilde{\mathrm{g}}(\mathrm{x}) \cdot \tilde{\mathrm{g}}(\mathrm{y})=\tilde{\mathrm{g}}((\mathrm{x}, \mathrm{y})) \cdot \tilde{\mathrm{g}}([\mathrm{x}, \mathrm{y}]$ for every $\mathbf{x}, \mathbf{y} \in \mathbb{N}^{*}$.

PROPERTY 13. The sumatory numerical function of the function g is

$$
F(n)=\prod_{j=1}^{k}\left(\frac{\alpha_{i,}+\overline{3-\overline{\alpha_{i j}}}}{3}\left(1+p_{i,}+p_{i, j}^{2}\right)+h_{p_{i j}}\left(\alpha_{i_{j}}\right)\right)
$$

where $n=p_{i_{1}}^{\alpha_{1}} \cdot p_{i_{2}}^{\alpha_{1}} \cdots \cdots p_{i_{k}}^{\alpha_{i_{k}}}$ is the prime factorization of n, and $h_{p}: N \rightarrow N$ is the numerical function defined by $h_{p}(\alpha)=\left\{\begin{array}{l}1 \text { for } \alpha=3 k \\ -\mathrm{p} \text { for } \alpha=3 k+1, \text { where } p \text { is a given number. } \text {. } \text { for } \alpha=3 k+2\end{array}\right.$.

Proof. Because the sumatory function of g is defined as $F(n)=\sum_{d / n} g(d)$ and because $\left(p_{i_{1}}^{\alpha_{1}}, \prod_{t=2}^{k} p_{i_{i}}^{\alpha_{i_{t}}}\right)=1$ and g is a multiplicative function, we have:
$F(n)=\left(\sum_{d_{1} / p_{11}^{\alpha_{1}}} g\left(d_{1}\right)\right) \cdot\left(\sum_{d_{2} / p_{12}^{\alpha_{2}} \cdots p_{i_{k}}^{\alpha_{i k}}} g\left(d_{2}\right)\right)$ and so on, making a finite number of steps we obtain: $F(n)=\prod_{j=1}^{k} F\left(p_{i_{j}}^{a_{j}}\right)$.

But it is easy to prove that:

$$
\mathrm{F}\left(\mathrm{p}^{\alpha}\right)=\left\{\begin{array}{l}
\frac{\alpha}{3}\left(1+\mathrm{p}+\mathrm{p}^{2}\right)+1 \text { for } \alpha=3 \mathrm{k} \\
\frac{\alpha+2}{3}\left(1+\mathrm{p}+\mathrm{p}^{2}\right)-\mathrm{p} \text { for } \alpha=3 \mathrm{k}+1 ; \\
\frac{\alpha+1}{3}\left(1+\mathrm{p}+\mathrm{p}^{2}\right) \text { for } \alpha=3 \mathrm{k}, \mathrm{k} \in \mathbf{N}, \text { for every prime } \mathrm{p}
\end{array}\right.
$$

Using the function h_{p}, we can write $F\left(p^{\alpha}\right)=\frac{\overline{3-\bar{\alpha}}}{3}\left(1+p+p^{2}\right)+h_{p}(\alpha)$, therefore we have the demanded expresion of $F(n)$.

REMARK 14. The expresion of $F(n)$, where F is the sumatory function of $\tilde{\mathrm{g}}$, is similary, but it is necessary to replace
$\frac{\alpha_{i_{j}}-\overline{3-\overline{\alpha_{i}}}}{3}$ by $\frac{\alpha_{i_{j}}+\overline{m-\overline{\alpha_{i}}}}{m}$ (where $\overline{\alpha_{i,}}$ is now the remainder of the division of $\alpha_{i_{j}}$ by m and the sum $1+p_{i_{i}}+p_{i,}^{2}$ by $\sum_{k=0}^{m-1} p_{i,}^{k}$) and to define an adapted function h_{p}.

In the sequel we study some equations which involve the function g.

1. Find the solutions of the equations $\mathrm{x} \cdot \mathrm{g}(\mathrm{x})=\mathrm{a}$, where $\mathrm{x}, \mathrm{a} \in \mathrm{N}^{*}$.

If a is not a perfect cube, then the above equation has not solutions.
If a is a perfect cube, $a=b^{3}, b \in N^{*}$, where $b=p_{i_{1}}^{\alpha_{1_{1}}} \cdot p_{i_{2}}^{\alpha_{12}} \cdots \cdots p_{i_{k}}^{\alpha_{i_{k}}}$ is the prime factorization of b, then taking into account of the definition of the function g, we have the solutions $\mathrm{x}=\mathrm{b}^{3} / \mathrm{d}_{\mathrm{i}_{1} \mathrm{i}_{2} \mathrm{i}_{\mathrm{k}}}$ where $\mathrm{d}_{\mathrm{i}_{1} \mathrm{i}_{2}-\mathrm{i}_{\mathrm{k}}}$ can be every product $\mathrm{p}_{\mathrm{i}_{1}}^{\beta_{1}} p_{\mathrm{i}_{2}}^{\beta_{2}} \ldots \mathrm{p}_{\mathrm{i}_{k}} \beta_{\mathrm{k}}$ where $\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{k}}$ take an arbitrary value which belongs of the set $\{0,1,2\}$.

In the case when $\beta_{1}=\beta_{2}=\cdots=\beta_{\mathrm{k}}=0$ we find the special solution $\mathrm{x}=\mathrm{b}^{3}$, when $\beta_{1}=\beta_{2}=\cdots=\beta_{\mathrm{k}}=1$, the solution $\mathrm{p}_{\mathrm{i}_{1}}^{3 \beta_{1}-1} \mathrm{p}_{\mathrm{i}_{2}}^{3 \beta_{2}-1} \cdots \mathrm{p}_{\mathrm{i}_{\mathrm{k}}}^{3 \beta_{k}-1}$ and when $\beta_{1}=\beta_{2}=\cdots=\beta_{\mathrm{k}}=2$, the solution $\mathrm{p}_{\mathrm{i}_{1}}^{3 \beta_{1}-2} \mathrm{p}_{\mathrm{i}_{2}}^{3 \beta_{2}-2} \cdots \mathrm{p}_{\mathrm{i}_{4}}^{3 \beta_{k}-2}$.

We find in this way $1+2 C_{k}^{1}+2^{2} C_{k}^{1}+\cdots+2^{k} C_{k}^{k}=3^{k}$ different solutions, where k is the number of the prime divisors of b.
2. Prove that the following equations have not natural solutions:
$\mathrm{xg}(\mathrm{x})+\mathrm{yg}(\mathrm{y})+\mathrm{zg}(\mathrm{z})=4$ or $\mathrm{xg}(\mathrm{x})+\mathrm{yg}(\mathrm{y})+\mathrm{zg}(\mathrm{z})=5$. Give a generalization.
Because $\mathrm{xg}(\mathrm{x})=\mathrm{a}^{3}, \mathrm{yg}(\mathrm{y})=\mathrm{b}^{3}, \mathrm{zg}(\mathrm{z})=\mathrm{c}^{3}$ and the equations $\mathrm{a}^{3}+\mathrm{b}^{3}+\mathrm{c}^{3}=4$ or $a^{3}+b^{3}+c^{3}=5$ have not natural solutions, then the assertion holds.

We can also say thet the equations $(x g(x))^{n}+(y g(y))^{n}+(z g(z))^{n}=4 \quad$ or $(\mathrm{xg}(\mathrm{x}))^{\mathrm{n}}+(\mathrm{yg}(\mathrm{y}))^{\mathrm{n}}+(\mathrm{zg}(\mathrm{z}))^{\mathrm{n}}=5$ have not natural solutions, because the equations $a^{3 n}+b^{3 n}+c^{3 n}=4$ or $a^{3 n}+b^{3 n}+c^{3 n}=5$ have not.
3. Find all solutions of the equation $\mathrm{xg}(\mathrm{x})-\mathrm{yg}(\mathrm{y})=999$.

Because $\mathrm{xg}(\mathrm{x})=\mathrm{a}^{3}$ and $\operatorname{yg}(\mathrm{y})=\mathrm{b}^{3}$ we must give the solutions of the equation $a^{3}-b^{3}=999$, which are $(a=10, b=1)$ and $(a=12, b=9)$.

In the first case: $\mathrm{a}=10, \mathrm{~b}=1$ we have $\mathrm{xa}(\mathrm{x})=10^{3}=2^{3} \cdot 5^{3}$

$$
\Rightarrow x_{0} \in\left\{10^{3}, 2^{2} \cdot 5^{3}, 2^{3} \cdot 5^{2}, 2 \cdot 5^{3}, 2^{3} \cdot 5,2^{2} \cdot 5^{2}, 2^{2} \cdot 5,2 \cdot 5^{2}, 2 \cdot 5\right\}
$$

and $\mathbf{v b}(\mathrm{y})=1 \Rightarrow \mathrm{y}_{0}=1$ so we have 9 different solutions ($\mathrm{x}_{0}, \mathrm{y}_{0}$).
In the second case: $\mathrm{a}=12, \mathrm{~b}=9$ we have $\mathrm{xa}(\mathrm{x})=12^{3}=2^{6} \cdot 3^{3}$

$$
\Rightarrow x_{0} \in\left\{2^{6} \cdot 3^{3}, 2^{5} \cdot 3^{3}, 2^{6} \cdot 3^{2}, 2^{4} \cdot 3^{3}, 2^{6} \cdot 3,2^{5} \cdot 3^{2}, 2^{4} \cdot 3^{2}, 2^{5} \cdot 3,2^{4} \cdot 3\right\}
$$

and $\mathrm{yb}(\mathrm{y})=9^{3}=3^{9} \Rightarrow \mathrm{y}_{0} \in\left\{3^{9}, 3^{8}, 3^{7}\right\}$ so we have another $9 \cdot 3=27$ different solutions ($\mathrm{x}_{0}, \mathrm{y}_{0}$).
4. It is easy to observe that the equation $g(x)=I$ has an infinite number of solutions: all perfect cube numbers.
5. Find the solutions of the of the equation $g(x)+g(y)+g(z)=g(x) g(y) g(z)$.

The same problem when the function is $\tilde{\mathbf{g}}$.
It is easy to prove that the solutions are, in the first case, the permutations of the sets $\left\{u^{3}, 4 v^{3}, 9 t^{3}\right\}$, where $u, v, t \in N^{-}$, and in the second case $\left\{u^{m}, 2^{m-1} v^{m}, 3^{m-1} t^{m}\right\}, u, v, t \in N^{*}$.

Using the same ideea of [1], it is easy to find the solutions of the following equations which involve the function g :
a) $g(x)=k g(y), k \in N^{*}, k>1$
b) $\mathrm{Ag}(\mathrm{x})+\mathrm{Bg}(\mathrm{y})+\mathrm{Cg}(\mathrm{z})=0$, $\mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{Z}^{*}$
c) $\mathrm{Ag}(\mathrm{x})+\mathrm{Bg}(\mathrm{y})=\mathrm{C}, \mathrm{A}, \mathrm{B}, \mathrm{C} \in \mathrm{Z}^{-}$, and to find also the solutions of the above equations when we replace the function g by \tilde{g}.

REFERENCES

[1] Ion Bäläcenoiu, Marcela Popescu, Vasile Seleacu, About the Smarandache square's complementary function, Smarandache Function Journal, Vol.6, No.1, June 1995.
[2] F. Smarandache, Only problems, not solutions!, Xiquan Publishing House, Phoenix-Chicago, 1990,1991,1993.

Current Address: University of Craiova, Department of Mathematics, 13, "A.I.Cuza" street, Craiova-1100, ROMANIA

