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The number of divisors function d(n), is a classic function of number theory, having been
defined centuries ago. In contrast, the Smarandache function S(n), was defined only a few
decades ago. The purpose of this paper is to find all solutions to a simple equation
involving both functions.
Theorem: The only solutions to the equation
S(n)+d(n)=n, n > 0

are 1, 8 and 9.
Proof: Since S(1) =0 and d(1) = 1 we have verified the special case of n = 1.
Furthermore, with S(p) = p for p a prime, it follows that any solution must be composite.
The following results are well-known.
a) d(p...p¥F)=@l+1)...(ak+1)
b) S(p*) < kp
¢) S(p?' ... p¢*) = max { S(p) ... S(p) }
Examining the first few powers of 2.

S(2%)=4, d(22)=3

S(23)=4and d(2®)=4 which is a solution.

SR*)=6.dR2*)=5
and in general

S(2F) < 2k and dQ2*)=k+1.
It is an easy matter to verify that

2k+k+1=3k+1 < 2F

fork > 4.



Examining the first few powers of 3

S(3%) =6 and d(3%) = 3, which is a solution.
S(3%)=9,d(3%) = 4

and in general, S(3*) < 3kandd(3F)=k + 1.
It is again an easy matter to verify that
3k+k+1 < 3%
fork > 3.
Consider n = p* where p > 3 isprime and k > 1. The expression becomes
S(p*)+d(p*) < kp+k+1=k(p+rl)+1.
Once again, it is easy to verify that this is less than p* forp > 5.
Now, assume that n = p$* . .. p* k > 1 is the unique prime factorization of n.

Case 1: n=p;ps, where p, > p;. Then S(n) =p; and d(n) =2 * 2 =4. Forming the
sum,

p2+ 4

we then examine the subcases.
Subcase 1: p; = 2. The first few cases are

n=2%*3, S(n)+d(n)=7

n=2*35 S(n)+dn)=9

n=2%*7 S(n)+dn)=11

n=2%*11,S(n)+d(n)= 15
and it is easy to verify that S(n) + d(n) < n, for p; a prime greater than 11.
Subcase 2: p; = 3. The first few cases are

3%5, S(n)+dn)=5+4
3*7. S(m)+d(n)=7+4
3% 11, S()+dm)=11+4

n
n
n
and it is easy to verify that S(n) + d(n) < n for p, a prime greater than 11.
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Subcase 3: It 'is easy tq verifyv that
p2 + 4 < pip2
forpy > 3,p2 > p1.
Therefore, there are no solutions forn =p;ps, p1 < po.
Case 2: n=p;p3’, wherea, > landp; < po. Then S(n) < asps and d(n) = 2(ay + 1).
S(n) +d(n) < azpz ~2(az + 1) = appy + 22, + 2
We now induct on as to prove the general inequality
apy 22, =2 < pipy’

Basis step: a; = 2. The formula becomes

2pp 4 +2=2py+6 ontheleftand

p1p2p2 on the right. Since py > 3,2 + < 4and p;p; > 6. Therefore,

5
P2
2+ % < P1p2
and if we multiply everything by ps, we have
2pp 76 < pipape.
Inductive step: Assume that the inequality is true fork > 2
kpy + 2k +2 < pips.
and examine the case where the exponent is k + 1.
(k+ Dpa+2(k+ 1)+ 2 =kpy +pa + 2k + 2+ 2= (kpy + 2k = 2) = py *+ 2
< pipf+pr+2 by the inductive hypothesis.

Since p;p5 whenk > 2 is greater than p; + 2 is follows that

P1ps ~P2+2 < pipsT .

v

Therefore, S(n) ~d(n) < n, wheren=p;p§ .k

v
N
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Case 3:n=p;'py. wherea; > 1.

We have two subcases for the value of S(n), depending on the circumstances
Subcase 1: S(n) < ajp;.

Subcase 2: S(n) = ps.

In all cases, d(n) = 2(a; + 1).

Subcase 1: S(n) +d(n) < ajp; +2(a; +1)=a;p; +2a; + 2.

Using an induction argument very similar to that applied in case 2, it is easy to prove that
the inequality

aip1+2a; +2 < pi'pa
is true for all a; > 2.
Subcase 2: S(n) + d(n) =pa +2(a; + 1) =ps +2a; +2
It is again a simple matter to verify that the inequality
p2 *2a;+2 < pi'pa

is true for alla; > 2.
Case 4: n=p{'ps?, wherep; < pranda;,a; > 2.
dn) = (a1 + 1)@z + 1)
Subcase 1: S(n) < ajp;

S(n) +d(n) < ajpr+ (a1 + 1)@+ 1) < pi' +pfi(@+1)=p'(a+2) <

pY'py’

Subcase 2: S(n) < aspo

S+ d(n) < apy+ (@ + D@+ 1) < pf+pf(a+ 1) =pa+2) <

ay,.ad2
P1 P2

Case 5:n=p;' ...p;*, wherek > 2.
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The proof is by induction on k.
Basis step: Completed in the first four cases.

Tk

Inductive step: Assume that forn; =pj* ... pi*. k >2
ap;t(art1l)...(a+1) < m
where S(n;) < a;p;. Which means that
S(ny) +d(ny) < ny.

Consider n, = p‘f‘ S PZkPkﬂ-l-

Subcase 1: S(ng) = S(n;). Since pe~; 2 3, it follows that (ac+; + 1) < D, and we can
this in combination with the inductive hypothesis to conclude

api T(ar+ 1) (2 + D(aesr + 1) < mippsy,
which implies that S(n;) + d(ny) < ns.
Subcase 2: S(np) > S(n;), which implies that S(ny) < ax.ipg-:. Starting with the
inductive hypotheses
apit(@+1)... (a+1) <pf.. pg
and multply both sides by ax-;px-; to obtain the inequality
,Pi8k~iPk~1 + &k+1Pk-1(a1 + 1) .. (ag +1) < pf' ... prfag—1pe-1
Since px~; > 3, it follows that
P! - .. Prrak+iPk+1 < DI .. PYPL
and with ag1px+; > (ags; + 1), we have
1P T(@ T D (@ T (@ D) <
&Pik+1Pk+1 T A-1Pk-1(a1 + 1) ... (2 = D).
Combining the inequalities, we have

Q-1

deiPerr @+ D) (@ T D 1) < pl e
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which implies

S(ny) +d(ny) < n.

Therefore, the only solutions to the equation
S(n) +d(n) =n

are 1, 8 and 9.
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