All Solutions of the Equation $S(n)+d(n)=n$

Charles Ashbacher
Charles Ashbacher Technologies
Box 294
Hiawatha, IA 52233 USA
e-mail71603.522@compuserve.com

The number of divisors function $\mathrm{d}(\mathrm{n})$, is a classic function of number theory, having been defined centuries ago. In contrast, the Smarandache function $\mathrm{S}(\mathrm{n})$, was defined only a few decades ago. The purpose of this paper is to find all solutions to a simple equation involving both functions.

Theorem: The only solutions to the equation

$$
\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=\mathrm{n}, \quad \mathrm{n}>0
$$

are 1,8 and 9 .
Proof: Since $S(1)=0$ and $d(1)=1$ we have verified the special case of $n=1$.
Furthermore, with $S(p)=p$ for p a prime, it follows that any solution must be composite.
The following results are well-known.
a) $\mathrm{d}\left(\mathrm{p}_{1}^{a 1} \ldots \mathrm{p}_{k}^{a k}\right)=(\mathrm{al}+1) \ldots(\mathrm{ak}+1)$
b) $S\left(\mathrm{p}^{k}\right) \leq \mathrm{kp}$
c) $\mathrm{S}\left(\mathrm{p}_{1}^{a 1} \ldots \mathrm{p}_{k}^{a k}\right)=\max \left\{\mathrm{S}\left(\mathrm{p}_{1}^{a 1}\right) \ldots \mathrm{S}\left(\mathrm{p}_{k}^{a k}\right)\right\}$

Examining the first few powers of 2 .

$$
\begin{aligned}
& S\left(2^{2}\right)=4, d\left(2^{2}\right)=3 \\
& S\left(2^{3}\right)=4 \text { and } d\left(2^{3}\right)=4 \text { which is a solution. } \\
& S\left(2^{4}\right)=6, d\left(2^{4}\right)=5
\end{aligned}
$$

and in general

$$
\mathrm{S}\left(2^{k}\right) \leq 2 \mathrm{k} \text { and } \mathrm{d}\left(2^{k}\right)=\mathrm{k}+1
$$

It is an easy matter to verify that

$$
2 \mathrm{k}+\mathrm{k}+1=3 \mathrm{k}+1<2^{k}
$$

for $k>4$.

Examining the first few powers of 3

$$
\begin{aligned}
& S\left(3^{2}\right)=6 \text { and } d\left(3^{2}\right)=3, \text { which is a solution. } \\
& S\left(3^{3}\right)=9, \mathrm{~d}\left(3^{3}\right)=4
\end{aligned}
$$

and in general, $\mathrm{S}\left(3^{k}\right) \leq 3 \mathrm{k}$ and $\mathrm{d}\left(3^{k}\right)=\mathrm{k}-1$.
It is again an easy matter to verify that

$$
3 k+k+1<3^{k}
$$

for $k>3$.
Consider $\mathrm{n}=\mathrm{p}^{k}$ where $\mathrm{p}>3$ is prime and $\mathrm{k}>1$. The expression becomes
$\mathrm{S}\left(\mathrm{p}^{k}\right)+\mathrm{d}\left(\mathrm{p}^{k}\right) \leq \mathrm{kp}+\mathrm{k}+1=\mathrm{k}(\mathrm{p}+1)+1$.
Once again, it is easy to verify that this is less than p^{k} for $\mathrm{p} \geq 5$.
Now, assume that $\mathrm{n}=\mathrm{p}_{1}^{a 1} \ldots \mathrm{p}_{k}^{a k}, \mathrm{k}>1$ is the unique prime factorization of n .
Case $1: n=p_{1} p_{2}$, where $p_{2}>p_{1}$. Then $S(n)=p_{2}$ and $d(n)=2 * 2=4$. Forming the sum,

$$
\mathrm{p}_{2} \div 4
$$

we then examine the subcases.

Subcase 1: $p_{1}=2$. The first few cases are

$$
\begin{aligned}
& \mathrm{n}=2 * 3, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=7 \\
& \mathrm{n}=2 * 5, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=9 \\
& \mathrm{n}=2 * 7, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=11 \\
& \mathrm{n}=2 * 11, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=15
\end{aligned}
$$

and it is easy to verify that $\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n})<\mathrm{n}$, for p_{2} a prime greater than 11 .
Subcase 2: $p_{1}=3$. The first few cases are

$$
\begin{aligned}
& \mathrm{n}=3 * 5, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=5+4 \\
& \mathrm{n}=3 * 7, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=7+4 \\
& \mathrm{n}=3 * 11, \mathrm{~S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=11+4
\end{aligned}
$$

and it is easy to verify that $\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n})<\mathrm{n}$ for p_{2} a prime greater than 11 .

Subcase 3: It is easy to verify that

$$
p_{2}+4<p_{1} p_{2}
$$

for $p_{1} \geq 5, p_{2}>p_{1}$.
Therefore, there are no solutions for $\mathrm{n}=\mathrm{p}_{1} \mathrm{p}_{2}, \mathrm{p}_{1}<\mathrm{p}_{2}$.
Case 2: $\mathrm{n}=\mathrm{p}_{1} \mathrm{p}_{2}^{\mathrm{a}_{2}}$, where $\mathrm{a}_{2}>1$ and $\mathrm{p}_{1}<\mathrm{p}_{2}$. Then $\mathrm{S}(\mathrm{n}) \leq \mathrm{a}_{2} \mathrm{p}_{2}$ and $\mathrm{d}(\mathrm{n})=2\left(\mathrm{a}_{2} \div 1\right)$.
$\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n}) \leq \mathrm{a}_{2} \mathrm{p}_{2}+2\left(\mathrm{a}_{2}+1\right)=\mathrm{a}_{2} \mathrm{p}_{2}+2 \mathrm{a}_{2}-2$
We now induct on a_{2} to prove the general inequality

$$
\mathrm{a}_{2} \mathrm{p}_{2}-2 \mathrm{a}_{2}-2<\mathrm{p}_{1} \mathrm{p}_{2}^{\mathrm{a}_{2}}
$$

Basis step: $\mathrm{a}_{2}=2$. The formula becomes

$$
2 p_{2}+4+2=2 p_{2}+6 \text { on the left and }
$$

$p_{1} p_{2} p_{2}$ on the right. Since $p_{2} \geq 3,2+\frac{6}{p_{2}} \leq 4$ and $p_{1} p_{2} \geq 6$. Therefore,

$$
2+\frac{6}{p_{2}}<\mathrm{p}_{1} \mathrm{p}_{2}
$$

and if we multiply everything by p_{2}, we have

$$
2 \mathrm{p}_{2}+6<\mathrm{p}_{1} \mathrm{p}_{2} \mathrm{p}_{2}
$$

Inductive step: Assume that the inequality is true for $k \geq 2$

$$
\mathrm{kp}_{2}+2 \mathrm{k}+2<\mathrm{p}_{1} \mathrm{p}_{2}^{k}
$$

and examine the case where the exponent is $\mathrm{k}+1$.

$$
\begin{aligned}
& (\mathrm{k}-1) \mathrm{p}_{2}+2(\mathrm{k}+1)+2=\mathrm{k} p_{2}+\mathrm{p}_{2}+2 \mathrm{k}+2+2=\left(\mathrm{k} \mathrm{p}_{2}+2 \mathrm{k}+2\right)+\mathrm{p}_{2}+2 \\
& <\mathrm{p}_{1} \mathrm{p}_{2}^{k}+\mathrm{p}_{2}+2 \quad \text { by the inductive hypothesis. }
\end{aligned}
$$

Since $\mathrm{p}_{1} \mathrm{p}_{2}^{k}$ when $\mathrm{k} \geq 2$ is greater than $\mathrm{p}_{2}-2$ is follows that

$$
\mathrm{p}_{1} \mathrm{p}_{2}^{k}+\mathrm{p}_{2} \div 2<\mathrm{p}_{1} \mathrm{p}_{2}^{k+1}
$$

Therefore, $S(n)+d(n)<n$, where $n=p: p_{2}^{k}, k \geq 2$.

Case $3: \mathrm{n}=\mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}$, where $\mathrm{a}_{1}>1$.
We have two subcases for the value of $S(n)$, depending on the circumstances
Subcase $1: S(n) \leq a_{1} p_{1}$.
Subcase 2: $\mathrm{S}(\mathrm{n})=\mathrm{p}_{2}$.
In all cases, $d(n)=2\left(a_{1}+1\right)$.
Subcase 1:S(n)+d(n) $\leq a_{1} p_{1}+2\left(a_{1}+1\right)=a_{1} p_{1}+2 a_{1}+2$.
Using an induction argument very similar to that applied in case 2 , it is easy to prove that the inequality

$$
a_{1} p_{1}+2 a_{1}+2<p_{1}^{a_{1}} p_{2}
$$

is true for all $a_{1} \geq 2$.
Subcase 2: $S(n)+d(n)=p_{2}+2\left(a_{1}+1\right)=p_{2}+2 a_{1}+2$
It is again a simple matter to verify that the inequality

$$
\mathrm{p}_{2}+2 \mathrm{a}_{1}+2<\mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}
$$

is true for all $a_{1} \geq 2$.
Case 4: $\mathrm{n}=\mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}^{a_{2}}$, where $\mathrm{p}_{1}<\mathrm{p}_{2}$ and $\mathrm{a}_{1}, \mathrm{a}_{2} \geq 2$.
$d(n)=\left(a_{1}+1\right)\left(a_{2}+1\right)$
Subcase l: $\mathrm{S}(\mathrm{n}) \leq \mathrm{a}_{1} \mathrm{p}_{1}$

$$
\begin{aligned}
\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n}) & \leq \mathrm{a}_{1} \mathrm{p}_{1}+\left(\mathrm{a}_{1}+1\right)\left(\mathrm{a}_{2}+1\right)<\mathrm{p}_{1}^{a_{1}}+\mathrm{p}_{1}^{a_{1}}\left(\mathrm{a}_{2}+1\right)=\mathrm{p}_{1}^{a_{1}}\left(\mathrm{a}_{2}+2\right)< \\
& \mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}^{a_{2}}
\end{aligned}
$$

Subcase 2: $S(n) \leq a_{2} p_{2}$

$$
\begin{aligned}
\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n}) & \leq \mathrm{a}_{2} \mathrm{p}_{2}+\left(\mathrm{a}_{1}+1\right)\left(\mathrm{a}_{2}+1\right)<\mathrm{p}_{2}^{a_{2}}+\mathrm{p}_{2}^{a_{2}}\left(\mathrm{a}_{1}+1\right)=\mathrm{p}_{2}^{a_{2}}\left(\mathrm{a}_{1}+2\right)< \\
& \mathrm{p}_{1}^{a_{1}} \mathrm{p}_{2}^{a_{2}}
\end{aligned}
$$

Case $5: \mathrm{n}=\mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}}$, where $\mathrm{k} \geq 2$.

The proof is by induction on k .
Basis step: Completed in the first four cases.
Inductive step: Assume that for $\mathrm{n}_{1}=\mathrm{p}_{1}^{a_{k}} \ldots \mathrm{p}_{k}^{a_{k}}, \mathrm{k} \geq 2$

$$
\mathrm{a}_{i} \mathrm{p}_{i}+\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)<\mathrm{n}_{1}
$$

where $S\left(n_{1}\right) \leq a_{i} p_{i}$. Which means that

$$
\mathrm{S}\left(\mathrm{n}_{1}\right)+\mathrm{d}\left(\mathrm{n}_{1}\right)<\mathrm{n}_{1} .
$$

Consider $\mathrm{n}_{2}=\mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}} \mathrm{p}_{k \rightarrow 1}^{a_{k-1}}$.
Subcase 1: $\mathrm{S}\left(\mathrm{n}_{2}\right)=\mathrm{S}\left(\mathrm{n}_{1}\right)$. Since $\mathrm{p}_{k+1} \geq 5$, it follows that $\left(\mathrm{a}_{k+1}+1\right)<\mathrm{p}_{k+1}^{a_{k-1}}$ and we can this in combination with the inductive hypothesis to conclude

$$
\mathrm{a}_{i} \mathrm{p}_{i}+\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)\left(\mathrm{a}_{k+1}+1\right)<\mathrm{n}_{1} \mathrm{p}_{k+1}^{a_{k-1}}
$$

which implies that $\mathrm{S}\left(\mathrm{n}_{2}\right)+\mathrm{d}\left(\mathrm{n}_{2}\right)<\mathrm{n}_{2}$.
Subcase 2: $S\left(n_{2}\right)>S\left(n_{1}\right)$, which implies that $S\left(n_{2}\right) \leq a_{k+1} p_{k+1}$. Starting with the inductive hypotheses

$$
\mathrm{a}_{i} \mathrm{p}_{i}+\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)<\mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}}
$$

and multply both sides by $\mathrm{a}_{k+1} \mathrm{p}_{k+1}$ to obtain the inequality

$$
\mathrm{a}_{i} \mathrm{p}_{i} \mathrm{a}_{k-1} \mathrm{p}_{k-1}+\mathrm{a}_{k+1} \mathrm{p}_{k+1}\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)<\mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}} \mathrm{a}_{k+1} \mathrm{p}_{k-1}
$$

Since $p_{k+1} \geq 5$, it follows that

$$
\mathrm{p}_{1}^{a_{1}} \cdots \mathrm{p}_{k}^{a_{k}} \mathrm{a}_{k+1} \mathrm{p}_{k+1} \leq \mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}} \mathrm{p}_{k-1}^{a_{k-1}}
$$

and with $\mathrm{a}_{k+1} \mathrm{p}_{k+1}>\left(\mathrm{a}_{k+1}+1\right)$, we have

$$
\begin{aligned}
& \mathrm{a}_{k-1} \mathrm{p}_{k+1}+\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)\left(\mathrm{a}_{k+1}+1\right)< \\
& \qquad a_{\imath} p_{\imath} \mathrm{a}_{k+1} p_{k+1}+\mathrm{a}_{k+1} p_{k+1}\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}-1\right) .
\end{aligned}
$$

Combining the inequalities, we have

$$
\mathrm{a}_{k+1} \mathrm{p}_{k+1}+\left(\mathrm{a}_{1}+1\right) \ldots\left(\mathrm{a}_{k}+1\right)\left(\mathrm{a}_{k+1}+1\right)<\mathrm{p}_{1}^{a_{1}} \ldots \mathrm{p}_{k}^{a_{k}} \mathrm{p}_{k+1}^{a_{k-1}}
$$

which implies

$$
\mathrm{S}\left(\mathrm{n}_{2}\right)+\mathrm{d}\left(\mathrm{n}_{2}\right)<\mathrm{n} .
$$

Therefore, the only solutions to the equation

$$
\mathrm{S}(\mathrm{n})+\mathrm{d}(\mathrm{n})=\mathrm{n}
$$

are 1,8 and 9 .

