All Solutions of the Equation S(n) + d(n) = n

Charles Ashbacher Charles Ashbacher Technologies Box 294 Hiawatha, IA 52233 USA e-mail 71603.522@compuserve.com

The number of divisors function d(n), is a classic function of number theory, having been defined centuries ago. In contrast, the Smarandache function S(n), was defined only a few decades ago. The purpose of this paper is to find all solutions to a simple equation involving both functions.

Theorem: The only solutions to the equation

$$S(n) + d(n) = n, n > 0$$

are 1, 8 and 9.

Proof: Since S(1) = 0 and d(1) = 1 we have verified the special case of n = 1.

Furthermore, with S(p) = p for p a prime, it follows that any solution must be composite.

The following results are well-known.

a) $d(p_1^{a1} \dots p_k^{ak}) = (a1 + 1) \dots (ak + 1)$ b) $S(p^k) \le kp$ c) $S(p_1^{a1} \dots p_k^{ak}) = \max \{ S(p_1^{a1}) \dots S(p_k^{ak}) \}$

Examining the first few powers of 2.

 $S(2^2) = 4$, $d(2^2) = 3$ $S(2^3) = 4$ and $d(2^3) = 4$ which is a solution. $S(2^4) = 6$, $d(2^4) = 5$

and in general

 $S(2^k) \le 2k$ and $d(2^k) = k+1$.

It is an easy matter to verify that

$$2k + k + 1 = 3k + 1 < 2^{k}$$

for k > 4.

Examining the first few powers of 3

$$S(3^2) = 6$$
 and $d(3^2) = 3$, which is a solution.
 $S(3^3) = 9$, $d(3^3) = 4$

and in general, $S(3^k) \leq 3k$ and $d(3^k) = k + 1$.

It is again an easy matter to verify that

 $3k + k + 1 < 3^k$

for k > 3.

Consider $n = p^k$ where p > 3 is prime and k > 1. The expression becomes

 $S(p^k) + d(p^k) \le kp + k + 1 = k(p+1) + 1.$

Once again, it is easy to verify that this is less than p^k for $p \ge 5$.

Now, assume that $n = p_1^{a1} \dots p_k^{ak}$, k > 1 is the unique prime factorization of n.

Case 1: $n = p_1p_2$, where $p_2 > p_1$. Then $S(n) = p_2$ and d(n) = 2 * 2 = 4. Forming the sum,

 $p_2 + 4$

we then examine the subcases.

Subcase 1: $p_1 = 2$. The first few cases are

n = 2 * 3, S(n) + d(n) = 7 n = 2 * 5, S(n) + d(n) = 9 n = 2 * 7, S(n) + d(n) = 11n = 2 * 11, S(n) + d(n) = 15

and it is easy to verify that S(n) + d(n) < n, for p_2 a prime greater than 11.

Subcase 2: $p_1 = 3$. The first few cases are

n = 3 * 5, S(n) + d(n) = 5 + 4 n = 3 * 7, S(n) + d(n) = 7 + 4n = 3 * 11, S(n) + d(n) = 11 + 4

and it is easy to verify that S(n) + d(n) < n for p_2 a prime greater than 11.

Subcase 3: It is easy to verify that

$$p_2 + 4 < p_1 p_2$$

for $p_1 \geq 5, p_2 > p_1$.

Therefore, there are no solutions for $n = p_1 p_2$, $p_1 < p_2$.

Case 2:
$$n = p_1 p_2^{a_2}$$
, where $a_2 > 1$ and $p_1 < p_2$. Then $S(n) \le a_2 p_2$ and $d(n) = 2(a_2 + 1)$.

$$S(n) + d(n) \le a_2p_2 + 2(a_2 + 1) = a_2p_2 + 2a_2 + 2$$

We now induct on a_2 to prove the general inequality

 $a_2p_2 + 2a_2 + 2 < p_1p_2^{a_2}$

Basis step: $a_2 = 2$. The formula becomes

 $2p_2 + 4 + 2 = 2p_2 + 6$ on the left and

 $p_1p_2p_2$ on the right. Since $p_2\geq 3,\,2+\frac{6}{p_2}~\leq~4$ and $p_1p_2~\geq 6.$ Therefore,

$$2 + \frac{6}{p_2} < p_1 p_2$$

and if we multiply everything by p_2 , we have

$$2p_2 + 6 < p_1p_2p_2$$
.

Inductive step: Assume that the inequality is true for $k\ \geq\ 2$

$$kp_2 + 2k + 2 < p_1p_2^k$$
.

and examine the case where the exponent is k + 1.

$$(k+1)p_2 + 2(k+1) + 2 = kp_2 + p_2 + 2k + 2 + 2 = (kp_2 + 2k + 2) + p_2 + 2$$

 $< p_1 p_2^k + p_2 + 2$ by the inductive hypothesis.

Since $p_1 p_2^k$ when $k \ge 2$ is greater than $p_2 + 2$ is follows that

$$p_1 p_2^k + p_2 + 2 < p_1 p_2^{k+1}$$
.

Therefore, S(n) + d(n) < n, where $n = p_1 p_2^k$, $k \ge 2$.

Case 3: $n = p_1^{a_1} p_2$, where $a_1 > 1$.

We have two subcases for the value of S(n), depending on the circumstances

Subcase 1: $S(n) \leq a_1 p_1$

Subcase 2: $S(n) = p_2$.

In all cases, $d(n) = 2(a_1 + 1)$.

Subcase 1: $S(n) + d(n) \le a_1p_1 + 2(a_1 + 1) = a_1p_1 + 2a_1 + 2$.

Using an induction argument very similar to that applied in case 2, it is easy to prove that the inequality

$$a_1p_1 + 2a_1 + 2 < p_1^{a_1}p_2.$$

is true for all $a_1 \ge 2$.

Subcase 2: $S(n) + d(n) = p_2 + 2(a_1 + 1) = p_2 + 2a_1 + 2$

It is again a simple matter to verify that the inequality

$$p_2 + 2a_1 + 2 < p_1^{a_1}p_2$$

is true for all $a_1 \geq 2$.

Case 4:
$$n = p_1^{a_1} p_2^{a_2}$$
, where $p_1 < p_2$ and $a_1, a_2 \ge 2$.

$$d(n) = (a_1 + 1)(a_2 + 1)$$

Subcase 1: $S(n) \leq a_1 p_1$

$$S(n) + d(n) \leq a_1 p_1 + (a_1 + 1)(a_2 + 1) < p_1^{a_1} + p_1^{a_1}(a_2 + 1) = p_1^{a_1}(a_2 + 2) < p_1^{a_1} p_2^{a_2}$$

Subcase 2: S(n)
$$\leq a_2 p_2$$

S(n) + d(n) $\leq a_2 p_2 + (a_1 + 1)(a_2 + 1) < p_2^{a_2} + p_2^{a_2}(a_1 + 1) = p_2^{a_2}(a_1 + 2) < p_1^{a_1} p_2^{a_2}$

Case 5: $n = p_1^{a_1} \dots p_k^{a_k}$, where $k \ge 2$.

The proof is by induction on k.

Basis step: Completed in the first four cases.

Inductive step: Assume that for $n_1 = p_1^{a_k} \dots p_k^{a_k}$, $k \ge 2$

$$a_i p_i + (a_1 + 1) \dots (a_k + 1) < n_1$$

where $S(n_1) \leq a_i p_i$. Which means that

$$S(n_1) + d(n_1) < n_1.$$

Consider $n_2 = p_1^{a_1} \dots p_k^{a_k} p_{k+1}^{a_{k+1}}$.

Subcase 1: $S(n_2) = S(n_1)$. Since $p_{k+1} \ge 5$, it follows that $(a_{k+1} + 1) < p_{k+1}^{a_{k+1}}$ and we can this in combination with the inductive hypothesis to conclude

$$a_i p_i + (a_1 + 1) \dots (a_k + 1)(a_{k+1} + 1) < n_1 p_{k+1}^{a_{k+1}},$$

which implies that $S(n_2) + d(n_2) < n_2$.

Subcase 2: $S(n_2) > S(n_1)$, which implies that $S(n_2) \le a_{k+1}p_{k+1}$. Starting with the inductive hypotheses

$$a_i p_i + (a_1 + 1) \dots (a_k + 1) < p_1^{a_1} \dots p_k^{a_k}$$

and multply both sides by $a_{k+1}p_{k+1}$ to obtain the inequality

$$a_i p_i a_{k+1} p_{k+1} + a_{k+1} p_{k+1} (a_1 + 1) \dots (a_k + 1) < p_1^{a_1} \dots p_k^{a_k} a_{k+1} p_{k+1}$$

Since $p_{k+1} \ge 5$, it follows that

$$p_1^{a_1} \dots p_k^{a_k} a_{k+1} p_{k+1} \leq p_1^{a_1} \dots p_k^{a_k} p_{k+1}^{a_{k+1}}$$

and with $a_{k+1}p_{k+1} > (a_{k+1} + 1)$, we have

 $a_{k+1}p_{k+1} + (a_1 + 1) \dots (a_k + 1)(a_{k+1} + 1) < 0$

$$a_i p_i a_{k+1} p_{k+1} + a_{k+1} p_{k+1} (a_1 + 1) \dots (a_k + 1).$$

Combining the inequalities, we have

 $a_{k+1}p_{k+1} + (a_1 + 1) \dots (a_k + 1)(a_{k+1} + 1) < p_1^{a_1} \dots p_k^{a_k} p_{k+1}^{a_{k+1}}$

which implies

$$S(n_2) + d(n_2) < n.$$

Therefore, the only solutions to the equation

$$S(n) + d(n) = n$$

are 1, 8 and 9.