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Abstract: In this paper we completely solve an open problem
concerning the Smarandache LCM function,
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diophantine equation

For any positive integer n, let S(n) be the Smarandache function.
For any positive integer £, let L(k) be the least common multiple of
1,2,-- k. Further, let SL(n) denote the least positive integer k such that
L(k)=0 (mod #). Then SL(n) is called the Smarandache LCM function.
In [2], Murthy "showed that if 5 is a prime, the SL(n)=S(n)=n.
Simultaneously, he proposed the following problem.

SL(n)y=S(n), S(r)# n? (1)
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In this paper we completely solve the above mentioned problem as
follows:

Theorem. Every positive integer » satisfying (1) can be expressed as

n=12 or n=plippfip, @)
where p\,pa,-*,p,, p are distinct primes and ay,Qy, -, @, are positive
integers satisfying p>p™ (=12, ).

The above theorem means that (1) has infinitely many positive
integer solutions 7. The proof of our theorem depends on the following
lemmas.

Lemma 1 ([1]). Let

n=plipytepl (3)
be the factorization of 7. Then we have
S(n) _ max(S(pf" ),S(pzal )S(p,a ) .

Lemma 2 ([1]). If p®is a power of prime, then S(pa)z 0 (mop p).

Lemma 3 ([1]). If p%is a power of prime such that a>1 and
pY ¥4, then S(pa )<pa.

Lemma 4 ([2]). If (3) is the factorization of », then SL(n)=max

(pf“,péz%--upf")-

Proof of Theorem. Let n be a positive integer solution of (1).
Further, let (3) be the factorization of n, and let
p” :max(pfz',pgz,---,p,a’). (4)
By Lemmas 1 and 4, we get from (1), (3) and (4) that
p* =SLn)=S(n)=S(pT"), <)<t (5)

By Lemma 2, we have S(pj-r”)s() (mod p;). Hence, by (5), we get
p=p; and
| P =5(p). (6)

If p® =4, then from (4) we get n=4 or 12.
Since S(4)=S(12)=4 and S(n)#n, we obtin n=12.
It a=I, then from (4) we get /=¢. Since S(n)#n, we see from (3)
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that r> 1. Let »=t-1. Then, by (3), we obtain (2). Thus, the theorem is

proved.
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