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For any positive integer n, let Sen) be the Slnarandache function. 

For any positive integer k, let L(k) be the least COlnlTIOn mUltiple of 

1,2;'· ,k. Further, let SL(n) denote the least positive integer k such that 

L(k)=O (ITIod n). Then SL(n) is called the Smarandache LCM function. 

In [2], Murthy t showed that if 11 is a prilne, the SL(n)=S(n)=n. 

SilTIultaneously, he proposed the following problelTI. 

SL(n)=S(n), Sen) n? (1) 
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In this paper we cOlnpletely solve the above lnentioned problelTI as 
follows: 

Theorem. Every positive integer n satisfying (1) can be expressed as 

n=12 or a n = PI I (2) 
where P[,P2"··,P", P are distinct prin1es and a 1,a2,",ar are positive 
integers satisfying P 1,2,'" ,r). 

The above theoren1 111eanS that (1) has infinitely many positive 
integer solutions n. The proof of our theoreln depends on the following 
lelTIlTIas. 

Lemma 1 ([1]). Let 
a l a, a . n = PI P2"" p, I (3) 

be the factorization of n. Then 'vve have 

S( n) ~ lnax (S(p~l ; S(p~l ; ... , S(p~1 ) .. 
Lemma 2 ([ 1 D. If pQ is a power of prin1e, then S(pa) == 0 (mop p). 
Lemma 3 ([ 1 D. If pa is a power· of pril11e such that a> 1 and 

pa *4, then S(pa }<pa . 

Lemrna 4 ([2]). If (3) is the factorization of n, then SL(n)=max 
(p~1 ,p~2 ," .,p~1 ). 

Proof of Theorem. Let n be a positive integer solution of (1). 
Further, let (3) be the factorization of n, and let 

pa = Inax (p~1 ,p~2 ,. . " p~1 ). (4) 
By Lel11111as 1 and 4, we get frol11 (1), (3) and (4) that 

pa == SL(n) Sen) == S(p;'), 1 ~ j ~ t. (5) 
By Leml11a 2, we have S(p.~i) == 0 (luod Pj)' I-Ience, by (5), we get 
P=PJ and 

pa = s(pa). (6) 
If pa =:' 4, then fro111 (4) we get n=4 or 12. 

Since S(4)=S(12)=4 and Sen) n, we obtin n=12. 

If a=l, then frol11 (4) we getj=t. Since Sen) n, \ve see frOITI (3) 
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that t 1. Let r=t-l. Then, by (3), we obtain (2). Thus, the theorelTI is 

proved. 
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