An inequality between prime powers dividing n!
Florian Luca

For any positive integer n > 1 and for any prime number p let e;(n) be the
exponent at which the prime p appears in the prime factor decomposition of n!. In
this note we prove the following;:

Theorem.
Let p < g be two prime numbers, and let n > 1 be a positive integer such that
pq | n. Then,
peP(n) > qeq(n). (1)

Inequality (1) was suggested by Balacenoiu at the First International Confer-
ence on Smarandache Notions in Number Theory (see [1]). In fact, in [1], Balacenoiu
showed that (1) holds for p = 2. In what follows we assume that p > 3.

Ve begin with the following lemmas:

Lemma 1.

(i) The function
z-1

= 2
Ha) = e @
s increasing for x > e.
(it) Let p > 3 be a real number. Then,
z > (p-1)log,(z) for z > p. (3)
(iit) Let p > 3 be a real number. The function
z-2
gplz) = 4
P = - Diog®) @
is positive and decreasing for z > p(p + 2).
(iv)
2 log(p+4
pt:, loglpt ) for p > €% (3)
p logp
(v) L log(na 2
Pl og(p+2) for p>e. (6)
p logp
Proof. (i) Notice that
df 1 z 1
e logzz . (log(;) + (;)) >0 for z > e.
(ii) Suppose that z > p > 3. From (i) it follows that
-1_p-1
z z 5P ™

logz = logz = logp’
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Inequality (7) is clearly equivalent to
logz

z>(p- l)iog_p = (p—1)log,(z).

(i#i) The fact that g,(z) > 0 for z > p > 3 follows from (4i). Suppose that
z > p(p + 2), and that p > 3. Then,

dgp _ —log(p)((p—1)zlogz — (2logp +p ~ 1)z + 2(p — 1))
dz z{(p~-1)logz — zlogp)’ .

(8)

From (8), it follows that in order to check that dg,/dz < 0 it suffices to show that
(p—1)zlogz — (2logp+p—1)z > 0,

or that ) 5
ogp
1 2—=—+1)=({—=+1). 9
ogz)(p_1+> (f(p)+) (9)
The left hand side of (9) is increasing in z. By (i), the right hand side of (9) is
decreasing in p. Thus, since p > 3, and z > p(p + 2) > 13, it suffices to show that
inequality (9) holds for z = 15 and p = 3. But this is straightforward.
(iv) Inequality (3) is equivalent to

pp+2>(p+4)p’
or 4 4 Y
2 4He 4\?
p >(1+p) _[(1+p) ] (10)
Since
e>(1+2)Y7  forall z >0, (11)

it follows, from inequality (11) with z = 4/p, that

e> (1+s)p/4. (12)

From inequality (12) one can immediately see that (10) holds whenever p > e2.
(v) Follows from arguments similar to the ones used at (iv).

For every prime number p and every positive integer n let 7,(n) be the sum of
the digits of n written in the base p.

Lemma 2.

Lect p < q be two prime numbers and let n be a positive integer. Assume that
pq | n. Then,

(i) 7o(n) > 2.
(i) 7p(n) < (p — 1) logy(n).

Proof. (i) Since n > 0 it follows that 74(n) > 1. If 7,(n) = 1, it follows that
n is a power of ¢ which contradicts the fact that p | n. Hence, 7,(n) > 2.

(ii) Let n = pql for some integer { > 1. Let

g =ap+a1p+..+a,p’,
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where0 < a; <p—1for1<i<s,and a, # 0, be the representation of gl in the
base p. Clearly,
s= [logp(ql)] < log,(gl)-
Since
n=pql = agp+a1p* + ... + a,p"*1,

it follows that

Tp(n) = Za.— Sp-1(s+l)<(p—-1) (logp(ql) +1) = (p—1)logy(n).

=0

The Proof of the Theorem. Suppose that ¢ > p > 3 are prime numbers,
and that n > 1 is such that pq | n. By applying logarithms in (1) it suffices to prove
that

ep(n)logp > eq(n)logg. (13)
Since . ) (n)
=2\ =177\
eP(n) p— 1 and eQ(n) q- 1 )

it follows that (13) can be rewritten as

n—1,(n)
p—1

' n — 1,(n)
.1 — 9" .logg,
ogp > ——1— logg

or
(g—=1)logp _ n—(n)

(p-1)logqg = n—r1y(n)

(14)

We distinguish two cases:

CASE 1. ¢ = p+ 2. We distinguish two subcases:

CASE 1.1. n = pq. In this case, since ¢ = p+ 2, and p > 3, it follows that
7p(n) = 7p(p? +2p) = 3, and 74(n) = 7,(pq) = p. Therefore inequality (14) becomes

(p+1)logp pPP+2p—p  plp+1)

= . 15
(p-1)log(p+2) " p*+2p-3 p*+2p-3 (13)
Inequality (15) is equivalent to
2 -
P +2p-3 log(p+2). (16)

plp—-1) logp

By lemma 1 (v) we conclude that in order to prove inequality (16) it suffices to
show that

249 —
p-+2p 3>p+1'

> 17)
p(p—1) p (
But (17) is equivalent to
2
p°+2p—3
—_— 2 1
-1 2P+l (18)

or p? +2p —3 > p* — 1, or p > 1 which is certainly true. This disposes of Case 1.1.
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CASE 1.2. n = pgl where ! > 2. In this case n > 2p(p + 2) > 2p®. By lemma
2 (i) and (ii), it follows that

n—2 n —7,(n)

> . 19
n—(p-1) log,(n) = n—1p(n) (19)

Thus, in order to prove (14) it suffices to show that
(p+1)logp n-—2 (20)

G-Dlogp+2) ~ n=(p-Diog,(m ~ *™

Since n > 2p® > p(p + 2), and since g,(n) is decreasing for n > p(p + 2) (thanks to
lemma 1 (i#1)), it follows that in order to prove (20) it suffices to show that

2_9
(p El);)-lt)gl;gi 2) > gp(2p%) = 2p? iplongQPZ)' (21)
Since p > 3 > 23/2 it follows that p?/3 > 2. Hence,
log,(2p%) < log,(p*/°p%) = %-
We conclude that in order to prove (21) it suffices to show that
(p+1)logp 2p°-2 _3p-1)(p+1) (22)
(p—1)log(p+2) "~ 2p2-% 3p?—-4
Inequality (22) is equivalent to
3pP -4 _ log(p+ 2). (23)

3(p—-1)2 logp
Using inequality (6), it follows that in order to prove (23) it suffices to show that

3p? -4 >p-\\-l
3p—-1)? p

Notice now that (24) is equivalent to

3p°—4p>3(p—1)2(p+1)=3p° - 3p* - 3p + 3,

or 3p? > p + 3 which is certainly true for p 2 3. This disposes of Case 1.2.

CASE 2. q > p + 4. Using inequality (19) it follows that in order to prove
inequality (14) it suffices to show that

f(q).logp _{g=1)logp n—2

p—1 (p-1llogg  n=(p=-1Dlog,(n) _ 9p(n)- (25)

Since f(q) is increasing for ¢ > 3 (thanks to lemma 1 (), and since g,(n) is
decreasing for n > pg > p(p + 4) > p(p + 2), it follows that in order to prove (25
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it suffices to show that inequality (25) holds for ¢ = p + 4, and n = pq = p(p + 4).
Hence, we have to show that

(p+3)logp S pP+4p—-2 ‘ (26)
(p—1)log(p+4) p2+4p—(p—l)logp(p(p+4))
Inequality (26) is equivalent to
(p+3) S pP+4p-2
(p—-1)loglp+4) " (P®*+3p+1)logp—(p—1)log(p+4)’
or
_ (+3)@*+3p+1) log(p +4)
P-1)E*+4p-2)+(-1)(p+3) logp ’
or
P +6p>+10p+3 _ log(p+4) (27)

pP+4p?—-dp—-1 logp
One can easily check that (27) is true for p = 3, 5, 7. Suppose now that p > 11 > eZ.
By lemma 1 (iv), it follows that in order to prove (27) it suffices to show that
PP +6p?+10p+3  p+2
pP+4p*—4p—1 p

Notice that (28) is equivalent to

(28)

P +6p° +10p2 +3p> (p+2)(P* +4p® —4p—1) =p* + 6p° + 4p> — 9p — 2,

or 6p? + 11p + 2 > 0, which is obvious. This disposes of the last case.
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