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For any positive integer n 2: 1 and for any prime number p let ep(n) be the 
exponent at which the prime p appears in the prime factor decomposition of nL In 
this note we prove the following; 

Theorem. 

Let p < q be two prime numbers, and let n > 1 be a positive integer such that 
pq I n. Then, 

(1) 

Inequality (1) was suggested by Balacenoiu at the First International Confer­
ence on Smarandache ::\otions in Number Theory (see [1]). In fact, in [1], Balacenoiu 
showed that (1) holds for p = 2. In what follows we assume that p 2: 3. 

\Ve begin with the following lemmas: 

Lemma 1. 

(i) The function 

is increasing for x 2: e. 

x-I 
j(x) =­

log x 

(ii) Let p 2: 3 be a real number. Then, 

for x 2: p. 

(iii) Let p 2: 3 be a real number. The function 

x-2 
gp (x) = -x -_--:(-p ---1-:-) l-o-gp-:"( x-""') 

is positive and decreasing for x 2: p(p + 2). 
(iv) 

p+2 log(p+4) -- > ---:::~--'-
p logp 

(v) 
p + 1 > log(p + 2) 

p logp 
for p > e. 

Proof. (i) ::\otice that 

df = _1_. (log(=-) + (~)) > 0 
dx log2 x e x 

for x > e. 

(ii) Suppose that x 2: p 2: 3. From (i) it follows that 

_x_ > x-I > P - 1. 
log x log x - logp 
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(2) 

(3) 

(4) 

(.5) 

(6) 

(7) 



Inequality (7) is clearly equivalent to 

log x 
x > (p - 1) -1 - = (p - 1) logp (x). 

ogp 

(iii) The fact that gp(x) > 0 for x ~ p ~ 3 follows from (ii). Suppose that 
x ~ pcp + 2), and that p ~ 3. Then, 

dgp -log(p)((p - 1)x logx - (21ogp + p -1)x + 2(P - 1)) 

d;= x((P-l)logx-xlogp)2 
(8) 

From (8), it follows that in order to check that dgp/dx < 0 it suffices to show that 

(P-l)xlogx - (21ogp+p-l)x > 0, 

or that 

logx > (2~O~~ + 1) = (f~) + 1). (9) 

The left hand side of (9) is increasing in x. By (i), the right hand side of (9) is 
decreasing in p. Thus, since p ~ 3, and x ~ pCP + 2) ~ 15, it suffices to show that 
inequality (9) holds for x = 15 and p = 3. But this is straightforward. 

( i v) Inequality (5) is equivalent to 

or 

( 4)P [( 4)P/4]4 
p2 > 1 + P = 1 + P . (10) 

Since 
e> (1 +X)l/Z for all x > 0, (11) 

it follows, from inequality (11) with x = 4/p, that 

e> (1 + ~r/4. (12) 

From inequality (12) one can immediately see that (10) holds whenever p > e2 . 

(v) Follows from arguments similar to the ones used at (iv). 

For every prime number p and every positive integer n let Tp(n) be the sum of 
the digits of n written in the base p. 

Lemma 2. 
Let p < q be two prime numbers and let n be a positive integer. Assume that 

pq I n. Then, 

(i) Tq(n) ~ 2. 

(ii) Tp(n) < (p - 1) logp(n). 

Proof. (i) Since n > 0 it follows that Tq(n) ~ 1. If Tq(n) = 1, it follows that 
n is a power of q which contradicts the fact that pin. Hence, Tq(n) ~ 2. 

(ii) Let n = pql for some integer I ~ 1. Let 

120 



where -0 ::; OJ ::; -p - 1 for 1 ::; i ::; s ,and 0 6 i= 0, be the representation of ql in the 
base p_ Clearly, 

Since 

it follows that 

6 

ip(n) = L OJ ::; (P - 1)(8 + 1) < (P - 1) (logp(ql) + 1) = (p - 1) logp(n). 
j=O 

The Proof of the Theorem. Suppose that q > p ~ 3 are prime numbers, 
and that n > 1 is such that pq I n. By applying logarithms in (1) it suffices to prove 
that 

ep(n) logp > eq(n) logq. (13) 

Since 

( )
_n-Tp(n) d 

ep n - an 
p-1 

( )
_q-Tq(n) 

eq n - , 
q-1 

it follows that (13) can be rewritten as 

n-r(n) n-T(n) 
---,-p~ ·logp > q ·logq, 

p-1 q-1 

or 
(q - 1) logp n - iq(n) 

(p - 1) logq > n - Tp(n)' 
(14) 

\Ve distinguish two cases: 

CASE 1. q = P + 2. We distinguish two sub cases: 

CASE 1.1. n = pq. In this case, since q = p + 2, and p ~ 3, it follows that 
Tp( n) = Tp(P2 + 2p) = 3, and Tq(n) = Tq(pq) = p. Therefore inequality (14) becomes 

(p+1)logp p2+2p_p p(p+1) 

(P-1)log(p+2) > p2+2p-3 = p2+2p-3' 
(15) 

Inequality (15) is equivalent to 

p2 + 2p - 3 log(p + 2) 
:..-~..:..-- > .......:::'-'=----'-

p(P - 1) . logp 
(16) 

By lemma 1 (v) we conclude that in order to prove inequality (16) it suffices to 
show that 

p2 + 2p - 3 p + 1 
~..,.--"'--- > --

p(P -1) - P 
(17) 

But (17) is equivalent to 
p2 + 2p - 3 

1 
~p+ 1, 

p-
(18) 

or p2 + 2p - 3 ~ p2 - 1, or p ~ 1 which is certainly true. This disposes of Case 1.1. 
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C~SE 1.2. n == pql where I 2: 2. In this case n 2: 2p(p + 2) > 2p2. By lemma 
2 (i) and (ii), it follows that 

n-2 n-Tq(n) 

n - (p - 1) logp(n) > n - Tp(n)" 
(19) 

Thus, in order to prove (14) it suffices to show that 

(p + 1) logp n - 2 
(p -1) log(p + 2) > n - (p - 1) logp(n) == 9p(n). 

(20) 

Since n > 2p2 > pcp + 2), and since 9p ( n) is decreasing for n > pcp + 2) (thanks to 
lemma 1 (iii)), it follows that in order to prove (20) it suffices to show that 

(p+ l)logp 2 2p2 - 2 
(p - 1) log(p + 2) > 9p(2p ) == 2p2 -logp(2pZ)' 

(21) 

Since p 2: 3 > 23/ 2 , it follows that pZ/3 > 2. Hence, 

\Ye conclude that in order to prove (21) it suffices to show that 

(p + 1) logp 2p2 - 2 3(p - l)(p + 1) 
-"::---'--"':;:":"-> -
(p - 1) log(p + 2) 2p2 - ~ - 3p2 - 4 

(22) 

Inequality (22) is equivalent to 

3p2 - 4 log(p + 2) 
3(p - 1)2 > logp . 

(23) 

Lsing inequality (6), it follows that in order to prove (23) it suffices to show that 

3pZ - 4 p + 1 
-,:..-~> --
3(p-1)2 p' 

(24) 

:\"otice now that (24) is equivalent to 

or 3p2 > p + 3 which is certainly true for p 2: 3. This disposes of Case 1.2. 

CASE 2. q 2: p + 4. Using inequality (19) it follows that in order to prove 
inequality (14) it suffices to show that 

f(q). logp = (q - 1) logp > n - 2 = n 
p-l (P-l)logq n-(p-1)logp(n) 9p()· 

Since f(q) is increasing for q 2: 3 (thanks to lemma 1 (i)), and since 9p(n) is 
decreasing for n 2: pq 2: pCp + 4) > pCp + 2), it follows that in order to prove (25) 
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it suffices to show that inequality (25) holds for q = p + 4, and n = pq = p(p + 4). 
Hence, we have to show that 

(p + 3) logp p2 + 4p - 2 

(p - 1) log(p + 4) > p2 + 4p - (p - 1) logp (p(p + 4) r (26) 

Inequality (26) is equivalent to 

(p+3) p2+4p-2 

(p - 1) log(p + 4) > (P2 + 3p + 1) logp - (p - 1) log(p + 4)' 

or 
(p + 3)(p2 + 3p + 1) log(p + 4) 

(p _1)(P2 + 4p - 2) + (p - 1)(P + 3) > logp , 

or 
p3 + 6p2 + lOp + 3 log(p + 4) 
~--~~--~-- > ~~--~ 
p3 + 4p2 - 4p - 1 log p 

(27) 

One can easily check that (27) is true for p = 3, 5, 7. Suppose now that p ~ 11 > e2
• 

By lemma 1 (iv), it follows that in order to prove (27) it suffices to show that 

p3 + 6p2 + lOp + 3 p + 2 
:........,,--....:......,,-----=--- > --
p3 + 4p2 - 4p - 1 p' 

Notice that (28) is equivalent to 

or 6p2 + IIp + 2 > 0, which is obvious. This disposes of the last case. 
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