DECOMPOSITION OF THE DIVISORS OF A NATURAL NUMBER INTO PAIRWISE CO-PRIME SETS

(Amarnath Murthy, S.E. (E\&T), Well Logging Services, Oil and Natural Gas corporation Ltd.,Sabarmati, Ahmedabad, 380005 , INDIA.)

Given n a natural number. Let $d_{1}, d_{2}, d_{3}, d_{4}, d_{5}, \ldots$ be the divisors of N. A querry coms to my mind, as to, in how many ways, we could choose a divisor pair which are co-prime to each other? Similarly in how many ways one could choose a triplet, or a set of four divisors etc. such that, in each chosen set, the divisors are pairwise co-prime.?

We start with an example Let $\mathrm{N}=48=2^{4} \times 3$. The ten divisors are

$$
1,2,3,4,6,8,12,16,24,48
$$

We denote set of co-prime pairs by $\mathrm{D}_{2}(48)$, co-prime triplets by $\mathrm{D}_{3}(48)$ etc.
We get $D_{2}(48)=\{(1,2),(1,3),(1,4),(1,6),(1,8),(1,12),(1,16),(1,24),(1,48)$,
$(2,3),(4,3),(8,3),(16,3)\}$
Order of $D_{2}(48)=13$.
$D_{3}(48)=\{(1,2,3),(1,3,4),(1,3,8),(1,3,16)\}$, Order of $D_{3}(48)=4$.
$D_{4}(48)=\{ \}=D_{5}(48)=\ldots .=D_{9}(48)=D_{10}(48)$.
Another example $N=30=2 \times 3 \times 5$ (a square free number). The 8 divisors are
$1,2,3,5,6,10,15,30$
$D_{2}(30)=\{(1,2),(1,3),(1,5),(1,6),(1,10),(1,15),(1,30),(2,3),(2,5),(2,15)$,
$(3,5),(3,10),(5,6)\}$.
Order of $D_{2}(\mathbf{3 0})=13 .=O\left[D_{2}\left(p_{1} p_{2} p_{3}\right)\right]$
$D_{3}(30)=\{(1,2,3),(1,2,5),(1,3,5),(2,3,5),(1,3,10),(1,5,6),(1,2,15)\}$
Order of $D_{\mathbf{3}}(\mathbf{3 0})=7$.
$D_{4}(30)=\{(1,2,3,5)\}$, Order of $D_{4}(\mathbf{3 0})=1$.

OPEN PROBLEM: To determine the order of $\mathrm{D}_{\mathrm{r}}(\mathrm{N})$.

In this note we consider the simple case of n being a square-free number for $r=2,3$ etc.
(A) $r=2$

We rather derive a reduction formula for $\mathrm{r}=2$. And finally a direct formula.
Let $N=p_{1} p_{2} p_{3} \ldots p_{n}$ where p_{k} is a prime for $k=1$ to n
We denote $D_{2}(N)=D_{2}$ ($1 \# n$) for convnience. We shall derive a reductio formula for
$\mathrm{D}_{2}(1 \#(\mathrm{n}+1))$.
Let q be a prime such that $(\mathrm{q}, \mathrm{N})=1,(\mathrm{HCF}=1)$
Then $D_{2}(N q)=D_{2}(1 \#(n+1))$

1. We have by definition $D_{2}(1 \# n) \subset D_{2}(1 \#(n+1))$

This provides us with $O\left[D_{2}(1 \# n)\right]$ elements of $D_{2}(1 \#(n+1))$.
(2) Consider an arbitrarily chosen element ($\mathrm{d}_{\mathrm{k}}, \mathrm{d}_{\mathrm{s}}$) of $\mathrm{D}_{2}(1 \# n)$. This element when combined with q yields exactly two elements of $D_{2}(1 \#(n+1))$.i.e. $\left(q d_{k}, d_{s}\right)$ and $\left(d_{k}, q d_{s}\right.$).

Hence the set $D_{2}(1 \# n)$, contributes two times the order of itself.
2. The element $(1, q)$ has ot been considered in the above mentioned cases hence the the total number of elements of $D_{2}(1 \#(n+1))$ are 3 times the order of $D_{2}(1 \# n)+1$.
$O\left[D_{2}(1 \#(n+1))\right]=3 \times O\left[D_{2}(1 \# n)\right]+1$ (B)
Applying Reduction Formula (B) for evaluating $\mathrm{O}\left[\mathrm{D}_{\mathbf{2}}(1 \# 4)\right]$
From (A) we have $O\left[D_{2}\left(p_{1} p_{2} p_{3}\right)\right]=O\left[D_{2}(1 \# 3)\right]=13$ hence
$\mathrm{O}\left[\mathrm{D}_{\mathbf{2}}(1 \# 4)\right]=\mathbf{3 \times 1 3}+\mathbf{1}=\mathbf{4 0}$.
This can be verified by considering $N=2 \times 3 \times 5 \times 7=210$. The divisors are

$$
\begin{aligned}
& 1,2,3,5,6,7,10,14,15,21,30,35,42,70,105,210 \\
& D_{2}(210)=\{(1,2),(1,3),(1,5),(1,6),(1,7),(1,10),(1,14),(1,15),(1,21),(1,30), \\
& (1,35),(1,42),(1,70),(1,105),(1,210),(2,3),(2,5),(2,7),(2,15),(2,21), \\
& (2,35),(2,105),(3,5),(3,7),(3,10),(3,14),(3,35),(3,70),(5,6),(5,7), \\
& (5,14),(5,21),(5,42),(7,6),(7,10),(7,15),(7,30),(6,35),(10,21),(14,15)\} \\
& O\left[D_{2}(210)\right]=40 .
\end{aligned}
$$

The reduction formula (B) can be reduced to a direct formula by applying simple induction and we get
$O\left[D_{2}(1 \# n)\right]=\left(3^{n}-1\right) / 2 \quad$ (C)
(B) $r=3$.

For $\mathrm{r}=3$ we derive a reduction formula.
(1) We have $D_{3}(1 \# n) \subset D_{3}(1 \#(n+1))$ hence this contributes $O\left[D_{3}(1 \# n)\right]$ elements to D_{3} ($1 \#(n+1)$).
(2) Let us Choose an arbitrary element of $\mathrm{D}_{3}(1 \mathrm{\# n})$ say ($\mathrm{a}, \mathrm{b}, \mathrm{c}$). The additional prime q yields ($q a, b, c$),
$(\mathrm{a}, \mathrm{qb}, \mathrm{c}),(\mathrm{a}, \mathrm{b}, \mathrm{qc})$ i.e. three elements. In this way we get $3 \times \mathrm{O}\left[\mathrm{D}_{3}(1 \# \mathrm{n})\right]$ elements.
3. Let the product of the n primes $=N$. Let $\left(d_{1}, d_{2}, d_{3}, \ldots d_{d \mathbb{N}}\right)$ be all the divisors of N. Consider $\mathrm{D}_{2}(1 \# \mathrm{n})$ which contains $\mathrm{d}(\mathrm{N})-1$ elements in which one member is unity $=d_{1}$. i.e. $,\left(1, d_{2}\right),\left(1, d_{3}\right), \ldots,\left(1, d_{d(N)}\right)$.

If q is placed as the third element with these as the third element we get $d(N)-1$ elements of D_{3} ($1 \#(\mathrm{n}+1))$. The remaining eleents of $\mathrm{D}_{2}(1 \# \mathrm{n})$ yield elements repetitive elements already covered under (2).

Considering the exhaustive contributions from all the three above we get
$\mathrm{O}\left[\mathrm{D}_{3}(1 \#(\mathrm{n}+1))\right]=4 * \mathrm{O}\left[\mathrm{D}_{3}(1 \# \mathrm{n})\right]+\mathrm{d}(\mathrm{N})-1$
$\mathrm{O}\left[\mathrm{D}_{3}(1 \#(\mathrm{n}+1))\right]=4 * O\left[\mathrm{D}_{3}(1 \# \mathrm{n})\right]+\mathbf{2}^{\mathrm{n}}-1$
$\mathrm{O}\left[\mathrm{D}_{3}(210)\right]=4^{*} \mathrm{O}\left[\mathrm{D}_{3}(30)\right] 8-1$
$O\left[D_{3}(210)\right]=4 * 7+8-1=35$
To verify the elements are listed below.

$$
\begin{aligned}
& \mathrm{D}_{3}(210)=\{(1,2,3),(1,2,5),(1,3,5),(1,2,7),(1,3,7),(1,5,7),(1,2,15),(1,2,21 \\
&) \\
& (1,2,35),(1,2,105),(1,3,10),(1,3,14),(1,3,35),(1,3,70),(1,5,6),(1,5,14),(\\
& 1,5,21), \\
& (1,5,42),(1,7,6),(1,7,10),(1,7,15),(1,7,30),(2,3,5),(2,3,7),(2,5,7),(2,3, \\
& 35),(2,5,21), \\
& (2,7,15),(3,5,7),(3,5,14),(3,7,10),(5,7,6),(1,6,35),(1,10,21),(1,14,15)\}
\end{aligned}
$$

Open Problem : To obtain a direct formula from the reduction formula (D).

Regarding the general case i.e. $O\left[D_{r}(1 \# n)\right]$ we derive an inequality.
Let $\left(d_{1}, d_{2}, d_{3}, \ldots d_{r}\right)$ be an element of $O\left[D_{r}(1 \# n)\right]$.

Introducing a new prime q other than the prime factors of N we see that this element in conjunction with q gives r elements of $D_{r}(1 \#(n+1))$ i.e. $\left(q d_{1}, d_{2}, d_{3}, \ldots d_{r}\right),\left(d_{1}, q d_{2}, d_{3}, \ldots\right.$ $\left.\mathrm{d}_{\mathrm{r}}\right), \ldots$
$\left(d_{1}, d_{2}, d_{3}, \ldots q d_{r}\right)$.also $D_{r}(1 \# n) \subset D_{r}(1 \#(n+1))$. Hence we get
$O\left[D_{r}(1 \#(n+1))\right]>(r+1) . O\left[D_{r}(1 \# n)\right]$
To find an accurate formula is a tough task ahead for the readers.
Considering the general case is a further challenging job.

