DECOMPOSITION OF THE DIVISORS OF A NATURAL NUMBER INTO PAIRWISE CO-PRIME SETS

(Amarnath Murthy, S.E. (E&T), Well Logging Services, Oil and Natural Gas corporation Ltd., Sabarmati, Ahmedabad, 380 005, INDIA.)

Given n a natural number. Let d_1 , d_2 , d_3 , d_4 , d_5 , ... be the divisors of N. A querry coms to my mind, as to, in how many ways, we could choose a divisor pair which are co-prime to each other? Similarly in how many ways one could choose a triplet, or a set of four divisors etc. such that, in each chosen set, the divisors are pairwise co-prime.?

We start with an example Let $N = 48 = 2^4 \times 3$. The ten divisors are

1, 2, 3, 4, 6, 8, 12, 16, 24, 48

We denote set of co-prime pairs by $D_2(48)$, co-prime triplets by $D_3(48)$ etc.

We get $D_2(48) = \{ (1,2), (1,3), (1,4), (1,6), (1,8), (1,12), (1,16), (1,24), (1,48), (1,48), (1,12), (1,16), (1,24), (1,48), (1,12), (1,16), (1,24), (1,16), (1,24), (1,48), (1,12), (1,16)$

 $(2, 3), (4,3), (8, 3), (16, 3) \}$

Order of $D_2(48) = 13$.

 $D_3(48) = \{ (1,2,3), (1,3,4), (1,3,8), (1,3,16) \}$, Order of $D_3(48) = 4$.

 $D_4(48) = \{ \} = D_5(48) = \ldots = D_9(48) = D_{10}(48)$.

Another example N = 30 = 2x3x5 (a square free number). The 8 divisors are

1, 2, 3, 5, 6, 10, 15, 30 $D_{2}(30) = \{ (1,2), (1,3), (1,5), (1,6), (1,10), (1,15), (1,30), (2,3), (2,5), (2,15), (3,5), (3,10), (5,6) \}.$ Order of D₂(30) = 13. = O[D₂(p₁p₂p₃)] (A) $D_{3}(30) = \{ (1,2,3), (1,2,5), (1,3,5), (2,3,5), (1,3,10), (1,5,6), (1,2,15) \}$ Order of D₃(30) = 7.

 $D_4(30) = \{ (1,2, 3, 5) \}, \text{ Order of } D_4(30) = 1.$

OPEN PROBLEM: To determine the order of $D_r(N)$.

In this note we consider the simple case of n being a square-free number for r = 2, 3 etc.

(A) r = 2

We rather derive a reduction formula for r = 2. And finally a direct formula.

Let $N = p_1 p_2 p_3 \dots p_n$ where p_k is a prime for k = 1 to n

We denote $D_2(N) = D_2(1\#n)$ for convnience. We shall derive a reductio formula for

 $D_2(1 \# (n+1)).$

Let q be a prime such that (q, N) = 1, (HCF = 1)

Then $D_2(Nq) = D_2(1\#(n+1))$

1. We have by definition $D_2(1\#n) \subset D_2(1\#(n+1))$

This provides us with O $[D_2(1\#n)]$ elements of $D_2(1\#(n+1))$.

(2) Consider an arbitrarily chosen element (d_k , d_s) of $D_2(1\#n)$. This element when combined with q yields exactly two elements of $D_2(1\#(n+1))$. i.e. (qd_k , d_s) and (d_k , qd_s).

Hence the set $D_2(1#n)$. contributes two times the order of itself.

2. The element (1, q) has ot been considered in the above mentioned cases hence the the total number of elements of $D_2(1\#(n+1))$ are 3 times the order of $D_2(1\#n) + 1$.

 $O[D_2(1\#(n+1))] = 3 \times O[D_2(1\#n)] + 1.$ (B)

Applying Reduction Formula (B) for evaluating O[D₂(1#4)]

From (A) we have $O[D_2(p_1p_2p_3)] = O[D_2(1\#3)] = 13$ hence

 $O[D_2(1#4)] = 3x13 + 1 = 40$.

This can be verified by considering N = 2x3x5x7 = 210. The divisors are

1, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210, $D_2(210) = \{ (1,2), (1,3), (1,5), (1,6), (1,7), (1,10), (1,14), (1,15), (1,21), (1,30), (1,35), (1,42), (1,70), (1,105), (1,210), (2,3), (2,5), (2,7), (2,15), (2,21), (2,35), (2,105), (3,5), (3,7), (3,10), (3,14), (3,35), (3,70), (5,6), (5,7), (5,14), (5,21), (5,42), (7,6), (7,10), (7,15), (7,30), (6,35), (10,21), (14,15) \}$ $O [D_2(210)] = 40.$

The reduction formula (B) can be reduced to a direct formula by applying simple induction and we get

O[$D_2(1\#n)$] = $(3^n - 1)/2$ (C)

(B) r = 3.

For r = 3 we derive a reduction formula.

(1) We have $D_3(1#n) \subset D_3(1#(n+1))$ hence this contributes $O[D_3(1#n)]$ elements to $D_3(1#(n+1))$.

(2) Let us Choose an arbitrary element of $D_3(1#n)$ say (a , b , c). The additional prime q yields (qa , b , c) ,

(a, qb, c), (a, b, qc) i.e. three elements. In this way we get $3 \ge O[D_3(1#n)]$ elements.

Let the product of the n primes = N. Let (d₁, d₂, d₃,... d_{d(N)}) be all the divisors of N. Consider D₂ (1#n) which contains d(N) - 1 elements in which one member is unity = d₁. i.e., (1, d₂), (1, d₃), ..., (1, d_{d(N)}).

If q is placed as the third element with these as the third element we get d(N) - 1 elements of D_3 (1#(n+1)). The remaining eleents of D_2 (1#n) yield elements repetitive elements already covered under (2).

Considering the exhaustive contributions from all the three above we get

 $O[D_3 (1#(n+1))] = 4 * O[D_3(1#n)] + d(N) - 1$

 $O[D_3 (1#(n+1))] = 4 * O[D_3(1#n)] + 2^n - 1$ (D)

 $O[D_3(210)] = 4 * O[D_3(30)] 8 - 1$

 $O[D_3(210)] = 4 * 7 + 8 - 1 = 35$

To verify the elements are listed below.

 $\mathbf{D_3(210)} = \{ (1,2,3), (1,2,5), (1,3,5), (1,2,7), (1,3,7), (1,5,7), (1,2,15), (1,2,21), (1,2,15), (1,2,21), (1,2,15), (1,2,21), (1,2$

(1, 2, 35), (1, 2, 105), (1, 3, 10), (1, 3, 14), (1, 3, 35), (1, 3, 70), (1, 5, 6), (1, 5, 14), (1, 5, 21),

(1, 5, 42), (1,7, 6), (1,7, 10), (1,7, 15), (1,7, 30), (2,3, 5), (2,3,7), (2,5,7), (2,3,7),

(2,7,15), (3,5,7), (3,5,14), (3,7,10), (5,7,6), (1,6,35), (1,10,21), (1,14,15) }

Open Problem : To obtain a direct formula from the reduction formula (D).

Regarding the general case i.e. $O[D_r(1#n)]$ we derive an inequality.

Let $(d_1, d_2, d_3, \ldots, d_r)$ be an element of O $[D_r (1 \# n)]$.

Introducing a new prime q other than the prime factors of N we see that this element in conjunction with q gives r elements of D_r (1#(n+1)) i.e. ($\mathbf{qd_1}, \mathbf{d_2}, \mathbf{d_3}, \ldots, \mathbf{d_r}$), ($\mathbf{d_1}, \mathbf{qd_2}, \mathbf{d_3}, \ldots, \mathbf{d_r}$), ...

 $(d_1, d_2, d_3, \dots, \mathbf{qd_r})$ also $D_r (1\#n) \subset D_r (1\#(n+1))$. Hence we get

 $O[D_r (1#(n+1))] > (r+1). O[D_r (1#n)]$

To find an accurate formula is a tough task ahead for the readers.

Considering the general case is a further challenging job.