EXAMPLES OF SMARANDACHE MAGIC SQUARES

by

M.R. Mudge

For $n \ge 2$, let A be a set of n^2 elements, and 1 a n-ary law defined on A.

As a generalization of the XVI-th - XVII-th centuries magic squares, we present the *Smarandache magic square of order n*, which is: 2 square array of rows of elements of A arranged so that the law l applied to each horizontal and vertical row and diagonal give the same result.

If A is an arithmetical progression and l the addition of n numbers, then many magic squares have been found. Look at Durer's 1514 engraving "Melancholia" 's one:

16	3	2	13
5	10	11	8
9	6	7	12
4	15	14	1

- 1. Can you find a such magic square of order at least 3 or 4, when A is a set of prime numbers and 1 the addition?
- 2. Same question when A is a set of square numbers, or cube numbers, or special numbers [for example: Fibonacci or Lucas numbers, triangular numbers, Smarandache quotients (i.e. q(m) is the smallest k such that mk is a factorial), etc.].

A similar definition for the Smarandache magic cube of order n, where the elements of A are arranged in the form of a cube of lenth n:

- a. either each element inside of a unitary cube (that the initial cube is divided in)
- b. either each element on a surface of a unitary cube
- c. either each element on a vertex of a unitary cube.
- 3. Study similar questions for this case, which is much more complex.

An interesting law may be $l(a_1, a_2, ..., a_n) = a_1 + a_2 - a_3 + a_4 - a_5 + ...$

Now some examples of Smarandache Magic Squares: if A is a set of PRIME NUMBERS and 1 is the operation of addition, for orders at least 3 or 4.

Some examples, with the constant in brackets, elements drawn from the first hundred PRIME NUMBERS are :

83 29 101	89 71 53 (213)	41 113 59		101 431 311	491 281 71 (843)	251 131 461		71 521 251	461 281 101 (843)	311 41 491	113 317 89	149 173 197 (519)	257 29 233	
97 367 997 107 587	90 16 64 15 27	7 7 2 7 9	557 67 337 967 227	397 877 137 617 127	197 677 37 307 937		(2	155)						

Now recall the year A.D. 1987 and consider the following .. all elements are primes congruent to seven modulo ten

967 2707 1297	<u>1987</u> 1657 1327	2017 607 2347	(4971)		<u>1987</u> 4877 10627 11317	9907 12037 2707 4157 (28808)	11677 9547 4517 3067	5237 2347 10957 10267	
1				0.4 7	1	(20000)			

7 4157 1307 2347	2707 1297 1447 3797	5237 227 <u>1987</u> 1657	937 1087 4517 1667	947 3067 577 367	(9835)
2347	3797	1657	1667	367	
2017	587	727	1627	4877	

What about the years 1993, 1997, & 1999?

In Personal Computer World, May 1991, page 288, I examine: A multiplication magic square such as:

18	1	12
4	6	9
3	36	2

with constant 216 obtained by multiplication of the elements in any row/column/principal diagonal.

A geometric magic square is obtained using elements which are a given base raised to the powers of the corresponding elements of a magic square .. it is clearly a multiplication magic square.

e.g. from

8	1	6	
3	5	7	C=15
4	9	2	

and base 2 obtain

	64	2	256
where $M = 2^{15} = 32768$	128	32	8
	4	512	16

Note that Henry Nelson of California has found an order three magic square consisting of *consecutive ten-digit prime numbers*. But "How did he do that" ???

A particular case: TALISMAN MAGIC SQUARES are a relatively new concept, contain the integers from 1 to n^2 in such a way that the difference between any integer and its neighbours (either row-, column- or diagonal-wise) is greater than some given constant, D say. e.g.

	12	9	15	5
	3	6	1	10
illustrates D=2.	14	11	16	13
	7	4	8	2

References

1. Smarandache, Florentin, "Properties of Numbers", University of Craiova Archives, 1975;

(see also Arizona State University, Special Collections, Tempe, AZ, USA)

2. Mudge, Mike, England, Letter to R. Muller, Arizona, August 8, 1995.

Current address:

22 Gors Fach, Pwll-Trap, St. Clears, Carmarthen, DYFED SA 33 4AQ United Kingdom