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ABSTRACT: 

DEFINITION of SMARANDACHE TERM 

Consider the expansion of xn as follows 

xn = b(n,1) X + b(n,2) x(x-1) + b(n,3) x(x-1 )(x-2) + •.• + b(n,n) xPn ---(9.1) 

We define b(n,r) x(x-1 )(x-2) ... (x-r+1 )(x-r) as the rth 

SMARANDACHE TERM in the above expansion of xn . 

In the present note we study the coefficients b{n,r).of the the rth 

SMARANDACHE TERM in such an expansion. We are 

encountered with fascinating coincidences. 

DISCUSSION: 

Let us examine the coefficients b(n.r).of the the rth 

SMARANDACHE TERM in such an expansion. 

Taking x = 1 gives b(n.1) = 1 

Taking x = 2 gives b(n.2) = (2n - 2 )/2 

Taking x = 3 gives b(".3) = {3" - 3 - 6(2n - 2)/2}/6 

= {1/3!} {(1).3 n 
- (3). 2 n + (3). (1)" -(1) (O)"} 

Taking x = 4 gives 

b(".4) = (1/4!) [(1) 4" - (4) 3" + (6) 2" - (4) 1n + 1(0)"] 
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This suggests the possibility of 

r 
b(n,r) = (1/rl) L (-1 r-k .rC k .kn = a{n,r) 

k=1 

THEOREM (9.1) 

r 
b (11 ') "(_1)r-k .rCk .kn (n,r) = r. £... = a(n,r) 

k=1 
First Proof: 

This will be proved in two parts. First we shall prove the following 

proposition. 
b(n+1,r) = b(n,r-1) + r. b(n,r) 

we have 

xn = b(n,1) X + b(n.2) x(x-1) + b(n,3) x(x-1 )(x-2) + ... + b(n,n) XP n 

x = r , gives, 

rn = b(n,1) r + b(n,2) r(r-1) + b(n,3) r(r-1 )(r-2) + ... + b(n,n) rPn 

multiplying both the sides by r , 

rn+
1 = b(n,1) r.r + b(n,2) r(r-1) 4- b(n,3) r.r(r-1)(r-2) + ... + b(n,r) r. rPr + 

terms equal to zero. 

n+1 - b rp b rp b rp b rp r - (n,1)r. 1 + (n,2)r. 2 + (n,3)r. 3+"'+ (n,r)r. r 

Using the identity r. rp k = rp k+1 + k. rp k we can write 

n+1 b { rp 1 rp} b {rp 2 rp } b { rp r = (n,1) . 2 + 1 + (n,2) 3 + . 2 + ... + (n,r) r + r. 

rp r-1 } 

rn+
1 = b(n,1) rp1 + { b(n,1) + 2. b(n,2)} rp2 + { b(n,2) + 3. b(n,3}} rp3 + ... + 
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{ b(n.r-1) + r. b(n.r)} rPr ---------- (9.2) 

Otherwise also we have 

The coefficients of rp t (t < r) are independent of r hence 

these can seperately be equated giving us 

b(n+1.r) = b cn•r -1) + r.b(n.r) 

Now we shall proceed by induction. Let 
r 

b(n,r) = (1/r!) L (_1y-k .rCk .kn 
k=O 

r-1 
b(n,r-1) = (1/(r-1)!) L (_1)r-1-k .r-1Ck .k" 

k=O 
be true. Then the sum b(",r-1) + r.b(",r) equals 

r-1 r 
(1/(r-1)!) L (_1)r-1-k .r-1Ck .kn + r. (1/r!) L (_1)r-k .rCk .kn 

k=O k=O 

r-1 
= «-1 )r-1/r!) [ L(-1 rk r {r-1Ck - rCk}k"] + r"+1/r! 

k=O 

r-1 
= «-1 y- 1/r!) [ I(-1 rk 

{ -k. rCk}k"] + r"+1/r! 
k=O 

r-1 
=(1/r!) L (-1 )r-k rC k k

n+ 1 

k=O 

which gives us 

r-1 
b(n+1,r) = (1/rt) L (-1 )r-k rC k k"+1 

k=O 

b(n+1,r) also takes the same form. Hence by induction the proof is 

complete. 
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Second Proof: This proof is totally based on a combinatorial 

approach . This method also provides us with a proof of the 

Conecture (6.3) of ref. [3] as a by product. 

If n objects no two alike are to be distributed in x boxes, no 

two alike, the number of ways this can be done is x" since there 

are k alternatives for disposals of the first object, k alternatives for 

the disposal of the second, and so on. 

Alternately let us proceed with a different approach. Let 

us consider the number of distributions in which exactly a given 

set of r boxes is filled (rest are_empty.). Let it be called f(n,r). 

We derive a formula for f(n,r) by using the inclusion 

exclusion principle. The method is illustrated by the computation of 

f(n,5). Consider the total number of arrangements, 5" of n different 

objects in 5 different boxes. Say that such an arrangement has 

property 'a'. In case the first box is empty, property 'b' incase the 

second box is empty, and similar property 'c', 'd', and 'e'. for the 

other three boxes respectively. To find the number of distributions 

with no box empty, we simply count the number of distributions 

having none of the properties 'a', 'b' IC' , ,. .. etc. We can apply the 

following formula. 

N - rC 1.N(a) + rC 2.N(a,b) - rC 3.N(a,b,c) + ... ------(9.3) 

293 



Here N = Sn is the total number of distributions. By N(a) we mean 

the number of distributions with the first box empty.and so N(a) = 

4n. Similarly N(a,b) is the number of distributions with the first two 

boxes empty. But this is the same as the number of distributions 

into 3 boxes and N(a,b) = 3n
. Thus we can write 

N = 5n 
, N(a) = 4n 

, N(a,b) = 3n etc. N(a,b,c,d,e) = O. 

Applying formula (9.3) we get 

by the direct generalization of this with rin place of 5 , we see 
that 

f(n,r) = rn - rC 1 .(r-1)n + rC 2 .(r-2)n - rC 3 .(r-3)n + ... 
r 

f(n,r) = L (_1)k rC k (r-k).n 
k=O 

f(n,r) = rl . a(n.r) ,from theorem (3.1). of ref. [1] 

Now these r boxes out of the given x boxes can be chosen in xCr 

ways. Hence the total number of ways in which n distinct objects 

distributed in x distinct boxes occupying exactly r of them ( with 

the rest x-r boxes empty) , defined as d(n,r/x) ,is given by 

d(n,r/x) = rl . a(n.r) xC r 

d(n,r/x) = a(n.r)' xPr 

Summing up all the cases for r =0 to r = x, the total number of 

ways in which n distinct objects can be distributed in x distinct 

boxes is given by 
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x x 

L d(n,r/x» = L xPr a(n,r) -------(9.4) 
rcO r=O 

equating the two results obtained by two different approaches we 

get n 

xn = L XP r a(n,r) 
raO 

REMARKS: 
If n distinct objects are to be distributed in x 

distinct boxes with no box empty I then n < x IS mandetory for a 

possible distribution.e.g. 5 objects can not be placed in 7 boxes 

with no empty boxes ( a sort of converse of peigon hole principle) 

Hence we get the following result 

f(n,r) = 0, for n < k. 

r 

f(n,r) = L (_1)k rC k (r-k)n = 0 if n < r. 
k=O 

Further Generalisation: 

(1) One can go ahead with the following generalisation of 

expansion of xn as follows 

xn = 9.(n/k,1) X + 9(n/k,2) x(x-k) + 9(n/k,3) x(x-k)(x-2k) + ... + 

9(n/k,n) x(x-k)(x- 2k) ... (x-(n-1 )k)(x -nk+ k) 

9(n/k,r) = b(n,r) = 8(n,r) for k = 1 has been dealt with in this 

note. One can explore for beautiful patterns for k = 2 I 3 etc. 

We can call (define) 9(n/k,r) x(x-k)(x-2k) ... (x-(n-1 )k)(x-rk+ k) 

as the rth Smarandache Term of the kth kind in such an 
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expansion. 

(2) Another generalisation could be 

xn
! = C(n/k,1) (x-k) + C(n/k,2) (X_k)(X2_k) + C(n/k,3) (X-k)(x2-k)(x 3

-

k) + ... + ... + C(n/k,n) (x-k) (x2-k)(x 3-k) ... ( Xn - k) 

For k = 1 if we denote C(n/k,r) = c(n,r) for simplicity we get 

xnl = C(n,1) (x-1) + C(n,2) (x-1 )(x2-1) + C(n,3) (x-1 )(x2-1 )(x3-1) 

+ ... + ... + c(n,n) (x-1) (x2-1 )(x3-1 ) ... ( xn - 1) 

We can define 

rth Smarandache Factorial Term of the kth kind in the 

expansion of xrd. One ca'n again explore for patterns for the 

coefficient C(n/k,r). 
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