EXPANSION OF x^{n} IN SMARANDACHE TERMS OF PERMUTATIONS

(Amarnath Murthy , S.E. (E \& T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India-380005.)

ABSTRACT:

DEFINITION of SMARANDACHE TERM

Consider the expansion of x^{n} as follows
$x^{n}=b_{(n, 1)} x+b_{(n, 2)} x(x-1)+b_{(n, 3)} x(x-1)(x-2)+\ldots+b_{(n, n)} x_{n} \ldots(9.1)$
We define $b_{(n, r)} x(x-1)(x-2) \ldots(x-r+1)(x-r)$ as the $r^{\text {th }}$
SMARANDACHE TERM in the above expansion of x^{n}.
In the present note we study the coefficients $b_{(n, r)}$. of the the $r^{\text {th }}$
SMARANDACHE TERM in such an expansion. We are encountered with fascinating coincidences.

DISCUSSION:

Let us examine the coefficients $b_{(n, r)}$. of the the $r^{\text {th }}$
SMARANDACHE TERM in such an expansion.
Taking $x=1$ gives $b_{(n, 1)}=1$
Taking $x=2$ gives $b_{(n, 2)}=\left(2^{n}-2\right) / 2$
Taking $x=3$ gives $b_{(n, 3)}=\left\{3^{n}-3-6\left(2^{n}-2\right) / 2\right\} / 6$

$$
=\{1 / 3!\}\left\{(1) \cdot 3^{n}-(3) \cdot 2^{n}+(3) \cdot(1)^{n}-(1)(0)^{n}\right\}
$$

Taking $x=4$ gives
$b_{(n, 4)}=$
(1/4!)
$\left[(1) 4^{n}\right.$
(4) $3^{n}+$
(6) $\left.2^{n}-(4) 1^{n}+1(0)^{n}\right]$

This suggests the possibility of

$$
b_{(n, r)}=(1 / r!) \sum_{k=1}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n}=a_{(n, r)}
$$

THEOREM (9.1)

$$
b_{(n, r)}=(1 / r!) \sum_{k=1}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n}=a_{(n, r)}
$$

First Proof:

This will be proved in two parts. First we shall prove the following proposition.

$$
\mathbf{b}_{(n+1, r)}=b_{(n, r-1)}+r \cdot b_{(n, r)}
$$

we have
$x^{n}=b_{(n, 1)} x+b_{(n, 2)} x(x-1)+b_{(n, 3)} x(x-1)(x-2)+\ldots+b_{(n, n)} x P_{n}$
$x=r$, gives,
$r^{n}=b_{(n, 1)} r+b_{(n, 2)} r(r-1)+b_{(n, 3)} r(r-1)(r-2)+\ldots+b_{(n, n)}{ }^{r} P_{n}$ multiplying both the sides by r ,
$r^{n+1}=b_{(n, 1)} r . r+b_{(n, 2)} r(r-1)+b_{(n, 3)} r \cdot r(r-1)(r-2)+\ldots+b_{(n, r)} r .{ }^{r} P_{r}+$ terms equal to zero.
$r^{n+1}=b_{(n, 1)} r \cdot{ }^{\top} P_{1}+b_{(n, 2)} r .{ }^{\top} P_{2}+b_{(n, 3)} r .{ }^{r} P_{3}+\ldots+b_{(n, r)} r .{ }^{r} P_{r}$
Using the identity $\mathbf{r} .{ }^{\mathbf{r}} \mathbf{P}_{\mathrm{k}}={ }^{\mathbf{r}} \mathbf{P}_{\mathrm{k}+1}+\mathbf{k} .{ }^{\mathbf{r}} \mathbf{P}_{\mathrm{k}}$ we can write $r^{n+1}=b_{(n, 1)}\left\{. .^{r} P_{2}+1^{r} P_{1}\right\}+b_{(n, 2)}\left\{P_{3}+2 . .^{r} P_{2}\right\}+\ldots+b_{(n, r)}\left\{{ }^{r} P_{r}+r\right.$. $\left.{ }^{r} P_{r-1}\right\}$
$r^{n+1}=b_{(n, 1)}{ }^{r} P_{1}+\left\{b_{(n, 1)}+2 . b_{(n, 2)}\right\}^{r} P_{2}+\left\{b_{(n, 2)}+3 . b_{(n, 3)}\right\}^{r} P_{3}+\ldots+$

$$
\begin{equation*}
\left\{b_{(n, r-1)}+r . b_{(n, r)}\right\}^{r} P_{r} \tag{9.2}
\end{equation*}
$$

Otherwise also we have

$$
r^{n+1}=b_{(n+1,1)}{ }^{\prime} P_{1}+b_{(n+1,2)} \cdot{ }^{\prime} P_{2}+b_{(n+1,3)} \cdot{ }^{\prime} P_{3}+\ldots+b_{(n+1, r)} \cdot{ }^{\prime} P_{r}
$$

The coefficients of ${ }^{r} P_{t}(t<r)$ are independent of r hence these can seperately be equated giving us

$$
b_{(n+1, r)}=b_{(n, r-1)}+r \cdot b_{(n, r)}
$$

Now we shall proceed by induction. Let

$$
\begin{aligned}
& b_{(n, r)}=(1 / r!) \quad \sum_{k=0}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n} \\
& b_{(n, r-1)}=(1 /(r-1)!) \sum_{k=0}^{r-1}(-1)^{r-1-k} \cdot{ }^{r-1} C_{k} \cdot k^{n}
\end{aligned}
$$

be true. Then the sum $b_{(n, r-1)}+r . b_{(n, r)}$ equals

$$
\begin{aligned}
& (1 /(r-1)!) \sum_{k=0}^{r-1}(-1)^{r-1-k} \cdot{ }^{r-1} C_{k} \cdot k^{n}+r \cdot(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n} \\
& =\left((-1)^{r-1} / r!\right)\left[\sum_{k=0}^{r-1}(-1)^{-k} r\left\{{ }^{r-1} C_{k}-{ }^{r} C_{k}\right\} k^{n}\right]+r^{n+1} / r! \\
& =\left((-1)^{r-1} / r!\right)\left[\sum_{k=0}^{r-1}(-1)^{-k}\left\{-k \cdot{ }^{r} C_{k}\right\} k^{n}\right]+r^{n+1} / r! \\
& =(1 / r!) \sum_{k=0}^{r-1}(-1)^{r-k}{ }^{r} C_{k} k^{n+1}
\end{aligned}
$$

which gives us

$$
b_{(n+1, r)}=(1 / r!) \sum_{k=0}^{r-1}(-1)^{r-k}{ }^{r} C_{k} k^{n+1}
$$

$b_{(n+1, r)}$ also takes the same form. Hence by induction the proof is complete.

Second Proof: This proof is totally based on a combinatorial approach. This method also provides us with a proof of the Conecture (6.3) of ref. [3] as a by product.

If n objects no two alike are to be distributed in x boxes, no two alike, the number of ways this can be done is x^{n} since there are k alternatives for disposals of the first object, k alternatives for the disposal of the second, and so on.

Alternately let us proceed with a different approach. Let us consider the number of distributions in which exactly a given set of r boxes is filled (rest are empty.). Let it be called $f(n, r)$.

We derive a formula for $f(n, r)$ by using the inclusion exclusion principle. The method is illustrated by the computation of $f(n, 5)$. Consider the total number of arrangements, 5^{n} of n different objects in 5 different boxes. Say that such an arrangement has property ' a '. In case the first box is empty, property ' b ' incase the second box is empty, and similar property ' c ', ' d ', and ' e '. for the other three boxes respectively. To find the number of distributions with no box empty, we simply count the number of distributions having none of the properties ' a ', ' b ', ' c ', . . .etc. We can apply the following formula.

$$
N-{ }^{r} C_{1} . N(a)+{ }^{r} C_{2 .} N(a, b)-{ }^{r} C_{3 .} N(a, b, c)+\ldots---(9.3)
$$

Here $N=5^{n}$ is the total number of distributions. By $N(a)$ we mean the number of distributions with the first box empty. and so $N(a)=$ 4^{n}. Similarly $N(a, b)$ is the number of distributions with the first two boxes empty. But this is the same as the number of distributions into 3 boxes and $N(a, b)=3^{n}$. Thus we can write $N=5^{n}, N(a)=4^{n}, N(a, b)=3^{n}$ etc. $N(a, b, c, d, e)=0$.

Applying formula (9.3) we get
$f(n, 5)=5^{n}-{ }^{5} C_{1} \cdot 4^{n}+{ }^{5} C_{2} \cdot 3^{n}-{ }^{5} C_{3} \cdot 2^{n}+{ }^{5} C_{4} \cdot 1^{n}-{ }^{5} C_{5} \cdot 0^{n}$
by the direct generalization of this with r in place of 5 , we see that
$f(n, r)=r^{n}-{ }^{r} C_{1} \cdot(r-1)^{n}+{ }^{r} C_{2} \cdot(r-2)^{n}-{ }^{r} C_{3} \cdot(r-3)^{n}+\ldots$
$f(n, r)=\sum_{k=0}^{r}(-1)^{k r} C_{k}(r-k)^{n}$
$f(n, r)=r!\cdot a_{(n, r)} \quad$, from theorem (3.1). of ref. [1]
Now these r boxes out of the given x boxes can be chosen in ${ }^{x} C_{r}$ ways. Hence the total number of ways in which n distinct objects distributed in x distinct boxes occupying exactly r of them (with the rest x-r boxes empty), defined as $d(n, r / x)$, is given by $d(n, r / x)=r!\cdot a_{(n, r)}{ }^{x} C_{r}$ $d(n, r / x)=a_{(n, r)} \cdot{ }^{x} P_{r}$

Summing up all the cases for $r=0$ to $r=x$, the total number of ways in which n distinct objects can be distributed in x distinct boxes is given by

$$
\left.\sum_{r=0}^{x} d(n, r / x)\right)=\sum_{r=0}^{x} P_{r} a_{(n, r)}
$$

equating the two results obtained by two different approaches we get

$$
x^{n}=\sum_{r=0}^{n} x_{r} a_{(n, r)}
$$

REMARKS:

If n distinct objects are to be distributed in x distinct boxes with no box empty, then $n<x$ is mandetory for a possible distribution.e.g. 5 objects can not be placed in 7 boxes with no empty boxes (a sort of converse of peigon hole principle) Hence we get the following result
$\mathbf{f}(\mathbf{n}, \mathrm{r})=\mathbf{0}, \quad$ for $\mathbf{n}<k$.
$f(n, r)=\sum_{k=0}^{r}(-1)^{k r} C_{k}(r-k)^{n}=0$ if $n<r$.

Further Generalisation:
(1) One can go ahead with the following generalisation of expansion of x^{n} as follows
$x^{n}=g_{(n / k, 1)} x+g_{(n / k, 2)} x(x-k)+g_{(n / k, 3)} x(x-k)(x-2 k)+\ldots+$
$g_{(n / k, n)} x(x-k)(x-2 k) \ldots(x-(n-1) k)(x-n k+k)$
$g_{(n / k, r)}=b_{(n, r)}=a_{(n, r)}$ for $k=1$ has been dealt with in this note. One can explore for beautiful patterns for $k=2,3$ etc.

We can call (define) $g_{(n / k, r)} x(x-k)(x-2 k) \ldots(x-(n-1) k)(x-r k+k)$ as the $r^{\text {th }}$ Smarandache Term of the $k^{\text {th }}$ kind in such an
expansion.
(2) Another generalisation could be
$x^{n!}=c_{(n / k, 1)}(x-k)+c_{(n / k, 2)}(x-k)\left(x^{2}-k\right)+c_{(n / k, 3)}(x-k)\left(x^{2}-k\right)\left(x^{3}-\right.$
$k)+\ldots+\ldots+c_{(n / k, n)}(x-k)\left(x^{2}-k\right)\left(x^{3}-k\right) \ldots\left(x^{n}-k\right)$
For $k=1$ if we denote $c_{(n / k, r)}=c_{(n, r)}$ for simplicity we get
$x^{n!}=c_{(n, 1)}(x-1)+c_{(n, 2)}(x-1)\left(x^{2}-1\right)+c_{(n, 3)}(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right)$
$+\ldots+\ldots+c_{(n, n)}(x-1)\left(x^{2}-1\right)\left(x^{3}-1\right) \ldots\left(x^{n}-1\right)$

We can define $c_{(n / k, r)} \cdot(x-k)\left(x^{2}-k\right)\left(x^{3}-k\right) \ldots\left(x^{r}-k\right)$ as the $r^{\text {th }}$ Smarandache Factorial Term of the $k^{\text {th }}$ kind in the expansion of $x^{r i}$. One can again explore for patterns for the coefficient $\quad C_{(n / k, r)}$.

REFERENCES:
[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
[3] "Amarnath Murthy", 'More Results And Applications Of The Generalized Smarandache Star Function' SNJ, Vol. 11, No. 1-2-3, 2000.
[4] "Amarnath Murthy", 'Length / Extent of Smarandache Factor Partitions., SNJ, Vol. 11, No. 1-2-3, 2000.
[5] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.

