Formula to Obtain the Next Prime Number in Any Increasing Sequence of Positive Integer Numbers

Sebastián Martín Ruiz
Avda. de Regla 43, Chipiona 11550 Spain
smaranda@teleline.es
www.telefonica.net/c/smruiz

Abstract

: In this article I give a generalization of the previous formulas [1],[2],[3] to obtain the following prime number, valid for any increasing sequence of positive integer numbers in the one that we know the algebraic expression of its nth term.

THEOREM: Let $\left\{a_{n}\right\}_{n \geq 1}$ an increasing sequence of positive integers of which we know the algebraic expression of its nth term; that is to say:
It exists $f: N \rightarrow N$ such that $f(n)=a_{n}$
As f it is increasing also:
It exists $f^{-1}: N \rightarrow R$ inverse function of f
Let $p \in\left\{a_{n}\right\}_{n \geq 1}$ a term of the sequence, (It doesn't have to be prime)
Let us consider the expression obtained by me [1],[2],[3],[4] of the Smarandache prime function:
$G(k)=-\left\lfloor\frac{2-\left(\sum_{s=1}^{k}\left\lfloor\frac{k}{s}\right\rfloor-\left\lfloor\frac{k-1}{s}\right\rfloor\right.}{k}\right\rfloor= \begin{cases}1 & \text { if } k \\ 0 & \text { is composite }\end{cases}$
$\lfloor x\rfloor=$ is the greatest integer less than or equal to x .
And their improved expression [3]:
$G(k)=-\left[\left(2+2 \sum_{s=1}^{\sqrt{k}}((k-1) / s-k / s)\right) / k\right]$ where all the divisions of this last expression are integer divisions.
Then the next prime number in the sequence is:

$$
N X T_{f}(p)=f\left[f^{-1}(p)+1+\sum_{k \geq f^{-1}(p)+1} \prod_{j=f^{-1}(p)+1}^{k} G(f(j))\right]
$$

REMARKS:

1: It is necessary that $p \in\left\{a_{n}\right\}$ so that $f^{-1}(p)$ it is an integer number.
2: Although the sum in the expression $N X T_{f}$ is not enclosed, we can calculate the sum until a given M , to obtain a computable algorithm that then will see .(Examples).
The only inconvenience is, that when making this truncation, the last value obtained in the algorithm is not correct in general, but all the other values are correct. (Examples). 3: With the improved expression of $G(\mathrm{k})$ the calculation is much quicker.
4:The function is increasing in strict sense. i.e.:

$$
j<k \Rightarrow a_{j}<a_{k} \text { and } a_{j} \neq a_{k}
$$

Many sequences of integers numbers are increasing in strict sense.
5: The algorithm that is obtained is of polynomial complexity if f is of polynomial complexity (Examples).

PROOF:

Let $p \in\left\{a_{n}\right\}_{n \geq 1}=\{f(n)\}_{n \geq 1}$ as we already said, It doesn't have to be prime. $p=f\left(j_{0}\right)$ with $j_{0} \geq 1$.

$$
\begin{aligned}
& N X T_{f}(p)=f\left[j_{0}+1+\sum_{k \geq j_{0}+1} \prod_{j=j_{0}+3}^{k} G(f(j))\right] \\
& \sum_{k \geq j_{0}+1} \prod_{j=j_{0}+1}^{k} G(f(j))=\sum_{k=j_{0}+1}^{j_{1}-1} \prod_{j=j_{0}+1}^{k} G(f(j))+\sum_{k \geqslant j_{j}} \prod_{j=j_{0}+1}^{k} G(f(j))=\left({ }^{* *}\right)
\end{aligned}
$$

Where $f\left(j_{1}\right)=q$ is the next prime number to $f\left(j_{0}\right)=p$ in the sequence $\{f(n)\}_{n \geq 1}$.
$j_{0}+1 \leq j \leq j_{1}-1$ and $f(n)$ increasing, it implies that
$p<f(j)<q \quad j: j_{0}+1 \leq j \leq j_{1}-1$.
Therefore $f(j)$ is composite for all $j: j_{0}+1 \leq j \leq j_{1}-1$, for which:
$G(f(j))=1 \quad j: j_{0}+1 \leq j \leq j_{1}-1$.
On the other hand $G\left(f\left(j_{1}\right)\right)=0=G(q)$ since q is prime.
Returning to the previous expression has that:

$$
(* *)=j_{1}-1-\left(j_{0}+1\right)+1+\sum_{k \geq j_{1}} 0=j_{1}-j_{0}-1
$$

Lastly we have that:
$N X T_{f}(p)=f\left(j_{0}+1+j_{1}-j_{0}-1\right)=f\left(j_{1}\right)=q$ and the theorem is already proved.

EXAMPLES: I give three examples of the algorithm in MATHEMATICA language.:
Example 1:
$\mathrm{M}=40$
40
$\mathrm{f}[\mathrm{n}]:=\mathbf{n}^{\wedge} \mathbf{2}+\mathbf{3}$
f1[p] := Sqrt[p-3]
G[x] :=-Quotient[(2
2^{*} Sum[Quotient[(x-1), s]-Quotient[x, s], \{s, 1, Sqrt[x]\}]), $\left.x\right]$
NXT[p_]:=
$\mathrm{f}[\mathrm{f} 1[\mathrm{p}]+1+\operatorname{Sum}[\operatorname{Product}[\mathrm{G}[\mathrm{ff}[\mathrm{j}],\{\mathrm{j}, \mathrm{f} 1[\mathrm{p}]+1, \mathrm{k}\}],\{\mathrm{k}, \mathrm{f} 1[\mathrm{p}]+1, \mathrm{M}\}]]$
$\mathrm{p}=\mathrm{f}[1]$
4
While[p < f[M], (Print[NXT[p], " ' $\operatorname{PrimeQ[NXT[p]]];~p=NXT[p])]~}$
7 True
19 True
67 True
103 True
199 True
487 True
787 True
1447 True
1684 False
It is observed that the last value is not correct due to the truncation.

Example 2:

$\mathrm{M}=40$
40
$\mathrm{f} \mid \mathrm{n}]=\mathrm{n}^{\wedge} \mathbf{3}+4$
$f 1\left[p_{x}\right]:=(p-4)^{\wedge}(1 / 3)$
$\mathrm{G}[\mathrm{x}]$]: -Quotient[$(2+$
2*Sum[Quotient $[(x-1), s]$ - Quotient $[x, s],\{s, 1$, Sqrt $[x]\}]), x]$
NXT[p]]:=
$\mathrm{f}[\mathrm{f} 1[\mathrm{p}]+1+\operatorname{Sum}[\operatorname{Product}[\mathrm{G}[\mathrm{fj}] \mathrm{j}],\{\mathrm{j}, \mathrm{f}[\mathrm{p}]+1, \mathrm{k}\}],\{\mathrm{k}, \mathrm{f}[\mathrm{p}]+1, \mathrm{M}\}]]$
$\mathrm{p}=\mathrm{f}[1]$
5
While[p<f[M],(Print[NXT[pl, " ", PrimeQ[NXT[p]I]; $=\mathbf{N X T}[p])]$
31 True
347 True
733 True
6863 True
15629 True
19687 True
68925 False

It happens the same thing with the last value.

Example 3:
$\mathrm{M}=125$
125
$\mathrm{f}[\mathrm{n}]$] $:=\mathrm{n}^{\wedge} \mathbf{2}+\mathbf{1}$
f1[p] := Sqrt[p-1]
G[x_]:=-Quotient[(2 +
2*Sum[Quotient[(x-1), s]-Quotient[x, s], \{s, 1, Sqrt[x]\}]), x]
NXT[p_]:=
$\mathrm{f}[\mathbf{f} 1[\mathrm{p}]+1+\operatorname{Sum}[\operatorname{Product}[\mathrm{G}[\mathrm{f}[\mathrm{j}]],\{\mathrm{j}, \mathrm{f}[\mathrm{p}]+1, \mathrm{k}\}],\{\mathrm{k}, \mathrm{f}[\mathrm{p}]+1, \mathrm{M}\}]]$
$p=f\lceil 1]$
2
While[p < f[M], (Print[NXT[p], " ", PrimeQ[NXT[p]I]; $p=\operatorname{NXT[p])]}$
5 True
17 True
37 True
101 True
197 True
257 True
401 True
577 True
677 True
1297 True
1601 True
2917 True
3137 True
4357 True
5477 True
7057 True
8101 True
8837 True
12101 True
13457 True
14401 True
15377 True
15877 True

Except at most the last one, all the values obtained by the algorithm are correct.

REFERENCES:

[1] Sebastián Martín Ruiz, A functional recurrence to obtain the prime numbers using the Smarandache prime function. Smarandache Notions Journal Vol. 11 page 56 (2000) [2] Sebastián Martín Ruiz, Formula to obtain the next prime in an arithmetic progression. http://www.gallup. unm.edu/-Smarandache/SMRuiz-nextprime.pdf
[3] Carlos Rivera The prime Puzzles \& Problems Connection. Problem 38.
www.primepuzzles.net
[4] E. Burton. Smarandache Prime and Coprime functions. www.gallup.unm.edu/~smarandache/primfnct.txt

