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Partition function P(n) is defined as the number of ways that 

a positive integer can be expressed as the sum of positive 

integers. Two partitions are not considered to be different if they 

differ only in the order of their summands. A number of results 

concerning the partition function were discovered using analytic 

functions by Euler, Jacobi, Hardy, Ramanujan and others. Also a 

number of congruence properties of the function were derived. In 

the paper Ref.[1] 

"SMARANDACHE RECIPROCAL PARTITION OF UNITY 

SETS AND SEQUENCES" 

while dealing with the idea of Smarandache Reciprocal Partitions 

of unity we are confronted with the problem as to in how many 

ways a number can be expressed as the product of its divisors. 

Exploring this lead to the generalization of the theory of partitions. 

DISCUSSION: 

Definition : SMARANDACHE FACTOR PARTITION FUNCTION: 

Let CX1, CX2 , CX3 , ... CX r be a set of r natural numbers and P1 I P2, 

P3 , ... Pr be arbitrarily chosen distinct primes then 
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F(a1 , a2 , a3 , ... a r ) called the Smarandache Factor Partition of 

(a1 , a2 , a3 , ... a r ) is defined as the number of ways in which the 

number 

a1 a2 a3 ar 

N = Pr could be expressed as the 

product of its' divisors. 

Example: F(1,2) = ?, 

Let P1 = 2 and P2 = 3 , N = P1. p/ = 2.32 =18 

N can be expressed as the product of its divisors in following 4 

ways: 

(1) N = 18, (2) N = 9 X 2 

(3) N = 6 X 3 (4) N = 3 X 3 X 2. As per our definition F (1,2) = 4. 

It is evident from the definition that F(a1 , (2) = F(a2 , (1) or In 

general the order of ai in F(a1 , a2 , a3 , ... ai ... a r ) is 

immaterial. Also the primes P1 , P2, P3 , ... Pr are dummies and can 

be chosen arbitrarily. 

We start with some elementry results to buildup the concept. 

THEOREM(2.1) : F (a) = P(a) 

where pea) is the number of partitions of a. 

PROOF: Let p be any prime and N = pa . 

Let a = X1 + X2 + ... + Xm be a partition of a. 
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Then N = ( pX1 ) ( pX2) (pX3) ... (pxn) is a SFP of N .i.e. each 

partition of a contributes one SFP. ---------(2.1) 

Also let one of the SFP of N be 

N = (N1 ).(N2 .)(N3 ) ... (Nk ) . Each Ni has to be such that Ni = pai 

N = (pa1)( pa2 ) ... ( pak ) 

N = p (a 1 +a2+a3+ ... +an) 

cx = a 1 + a2 + ... + ak 

which gives a partition of cx. Obviously each SFP of N gives one 

unique partition of a. --------(2.2). 

from (2.1) and (2.2) we get 

F (a) = P(a) 

a 
THEOREM (2.2) F(u,1) = L P(k) 

k=O 

PROOF: Let N Ct = P1 P2, where P1, P2 are arbitrarily chosen 

primes. 

Case(1) Writing N = (P2 ) P1 Ct keeping P2 as a separate entity 

( one of the factors in the factor partition of N) ,would yield pea) 

Smarandache factor partitions .( from theorem (2.1» . 

Case(2) Writing N = (P1.P2 ). P1 Ct
-
1 keeping (p1p2) as a separate 

entity ( one of the factors in the SFP of N) ,would yield P(a-1) 

SFPs. 
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Case (r) In general writing N = (p/ .P2 ). P1a.-r and keeping (p/ 

.P2) as a separate entity would yield P(u-r) SFPs. 

Contributions towards F(N) in each case (1), (2), (r) are 

mutually disjoint as p/ .P2 is unique for a gIven r. which 

ranges from zero to u. These are exhaustive also. 

Hence 

F(a,1) - L P(a-r) 
r=O 

Let a - r = k r=O=> k= a 
r=a=> k=O 

o 
F(a, 1) - I P{k) 

k=a 

a 
F{a, 1) - I P(k) 

k=O 

This completes the proof of the theorem (2.2) 

Some examples: 
(1) F(3) = P(3) = 3, Let p = 2 , N = 23 = 8 

(I) N = 8, (2) N = 4 X 2, (3) N = 2 X 2 X 2 . 

(2) 4 

F(4,1) = L P(k) = P(O) + P(1) + P(2) +P(3) + P(4) 
k=O 

= 1 + 1 + 2 + 3 + 5 = 12 
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Let N = 24 X 3 = 48 here P1 =2 ,P2 =3 . 

The Smarandache factor partitions of 48 are 

(1) N = 48 
(2) N = 24 X 2 
(3) N = 16 X 3 
(4) N = 12X4 
(5) N = 12 X 2 X 2 
(6) N = 8 X 6 
(7) N = 8 X 3 X 2 
(8) N = 6 X 4 X 2 
(9) N = 6 X 2 X 2 X 2 
(10)N=4X4X3 
(11)N=4X3X2X2 
(12) N = 3 X 2 X 2 X 2 X 2 

DEFINITIONS: 
In what follows in the coming pages let us denote (for simplicity) 

where 

N = Pr Pn 

and Pr is the rth prime. P1 =2, P2 = 3 etc. 

(2) Also for the case (N is a square free number) 

= a r = ... = an = 1 

Let us denote 

F ( 1 , 1, 1, '1, 1 ... ) = F ( 1 #n) 
~ n - ones -+ 

Examples: F (1#2) = F(1, 1) = F'(6) = 2, 6 = 2 X 3 = P1 X P2. 

F (1#3) = F (1 , 1, 1 ) = F' ( 2 X 3 X 5 ) = F' (30) = 5. 

(3) Smarandache Star Function 
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F'·( N} = I, F'(d r } where d r IN 
dIN 

F'·( N) = sum of F'(d r ) over all the divisors of N. 

e.g. N = 12, divisors are 1,2,3,4,6,12 

= 1 +1 +1 +2+2+4 =11 
THEOREM (2.3) 

F'·( N) = F'(Np) , (p,N) = 1, p is a prime. 

PROOF: We have by definition 

F'·( N} = L F'(d r } where dr IN 
dIN 

consider d r a divisor of N . 

then 

for any divisor dr of N ,g(d r } is unique 

Considering g(d r) as a single term (an entity, not further split 

into factors) in the SFP of N.p one gets F'(d r ) SFPs. 

Each g(d r ) contributes F'(d r ) factor partitions. 

The condition p does not divide N, takes care that g(d j ) 7= dj for 

any divisor. because p divides g(d j ) and p does not divide dj . 

This ensures that contribution towards F'(Np) from each g(d r ) IS 

distinct and there is no repetition. Summing over all g(d r ) 's we get 

F'(Np) = L F'(d r ) 

dIN 
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or 

This completes the proof of the theorem (3) . 

An application of theorem (2.3) 

Theorem (2.2) follows from theorem (2.3) 
To prove 

a 

F(a, 1) = L P(k) 
k=O 

from theorem (2.3) 

d/pll 

The divisor of pU are pO, P 1, p2, ... pU 

hence 

=P(O)+P(1) +P(2)+ ... +P(a-1)+P(a) 

or 
CL 

F(a, 1) - I P(k) 
k=O 

THEOREM (2.4): n 

F ( 1# (n+1)) = L nCr F(1#r) 
r=O 

PROOF: From theorem (2.3) we have F'(Np) = F'* (N) , p does not 

divide N. Consider the case N = P1P2P3· .. Pn . We have , F'(N) 
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= F (1#n) and F'( Np) = F (1#(n+1)) as p does not divide N. 

Finally we get 

F (1#(n+1)) = F'* (N) -------- (2.3) 

The number of divisors of N of the type P1P2P3 ... Pro ( containing 

exactly r primes is nCr. Each of the nCr divisors of the type P1P2P3 . 

. . Pr has the same number of SFPs F(1#r). Hence 

n 

F'* (N) = L nCr F(1#r) 
r=O 

From (2.3) and (2.4) we get. 

n 
F ( 1# (n+1)) = L nCr F(1#r) 

r=O 

-------------(2.4) 

NOTE: It is to be noted that F(1#n) is the nth Bell number. 

Example: F(1#O) =F'(1) = 1. 

F(1#1) = F'(pd = 1. 

F(1#2) = F'(Pi pz) = 2. 

F(1#2) = F'(Pi pz P3) = 5. 

(i) Pi P2 P3 
(ii) (P1 pz) X P3 
(iii) (P1 P3) X pz 
(iv) (P2P3) X Pi 
(v) Pi X pz X P3 

Let Theorem (4) be applied to obtain F (1#4) 

3 
F (1 #4) = L nCr F (1 #r) 
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r=O 

F(1#4) = 3CO F(1#O) + 3C1F(1#1) +3 C2 F(1#2) + 3C3 F(1#3) 

= 1X1+ 3X1 + 3X2 + 1X5 = 15 

F ( 1 #4) = F' ( 2 X 3 X 5 X 7) = F' ( 2 1 0) = 1 5 . 

(I) 210 
(ii) 105 X 2 
(iii) 70 X 3 
(iv) 42 X 5 
(v) 35 X 6 
(vi) 35 X 3 X 2 
(vii) 30 X 7 
(viii) 21 X 10 
(ix) 21X5X2 
(x) 15 X 14 
(xi) 15 X 7 X 2 
(xii) 14 X 5 X 3 
(xiii) 10 X 7 X 3 
(ixv) 7 X 6 X 5 
(xv) 7 X 5 X 3 X2 

On similar lines one can obtain 

F(1#5) = 52, F(1#6) = 203, F(1#7) = 877, F(1#8) == 4140. 

F(1#9) = 21,147. 

DEFINITION: 

F'** ( N) = L Fl* (d r ) 

dr/N 

dr ranges over all the divisors of N. 

If N is a square free number with n prime factors, let us denote 

F'*'*' ( N ) = F** ( 1#n) 
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Example: 
F'**(P1P2P3) = F** (1#3) = L F' (d r ) 

dr/N 

F**( 1#3) = 1 + 6 + 15 + 15 = 37. 

An interesting observation is 

(1) F**(1#O) + F(1#1) = F(1#2) 
or 

F**(1#O) + F*(1#O) = F(1#2) 

(2) F**(1#1) + F(1#2) = F(1#3) 
or 

F**(1#1) +F*(1#1) = F (1 #3) 

(3) F**(1#5) + F(1 #6) = F (1 #7) 
or 

F**(1#5) + F*(1#5) = F(1#7) 

which suggests the possibility of 

F**(1#n) + F*(1#n) = F(1#(n+2» 

A stronger proposition 

F'(Np1P2) = F'*(N) + F'**(N) 

is established in theorem (2.5). 

DEFINITION: 

F,n*(N) _. L F'(n-1)* (d r) 

dr/N 

where F'*(N) = 

n > 1 
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and d r ranges over all the divisors of N. 

THEOREM(2.5) : 

F'(Np1P2) = F'*(N) + F'**(N) 

from theorem (3) we have 

F'(Np1P2) = F'*(Np1) 

Let d 1, d2 , ... , d n be all the divisors of N. The divisors of Np1 

would be 

••• J 

d 1P1 , d 2 P1 , ... , d nP1 

F'*(Np1) = [ F'(dd + F'(d2) + ... + F'(d n) ] + [F'(d 1P1)+ F'( d2 P1) + 

... + F'(d nP1)] 

= F'*(N) + [F'*(d 1) + F'*(d 2 ) + ... + F'*(d n ) ] 

F'*(Np1) = F'*(N) + F'**(N) ( by definition) 

= F'*(N) + F'2*(N) 

This completes the proof of theorem (2.5). 

THEOREM(2.6): 

PROOF: 

Also If 

the 

F'(Np1P2P3) = F'*(N) +3F,2*(N) + F,3*(N) 

From theorem (2.3) we have 

F'(Np1P2P3) = F'*(Np1P2). 

... , be all the divisors of N. Then 

237 



divisors of Np1P2 would be 

d 1, d 2 , ... , d n 

... , 

... , 

Hence 

= [F'(d 1) +F'(d2) + ... + F'(d n )] + 

[F'{d 1P1) + F'(d 2P1) + .,. F'(d nP1)] -: 

[F'(d 1P2) + F'(d2P2) + ... + F'(d nP2)] + 

[F'(d 1P1P2) + F'(d2P1P2) + ... + F'(d nP1P2)] 

= F'*(N) + 2[F'*(d 1) + F'*(d2) + ... + F'*(d n)] + S ----(2.5) 

where 

Now from theorem (2.5) we get, 

F'(d 1p1p2) = F'*(d 1) + F'**(d 1) 

F'(d2P1P2) = F'*(d2) + F'**(d 2 ) 

F'(d np1p2) = F'*(d n ) + F'**(d n ) 

on summing up (1), (2) ... upto (n) we get 

S = 

substituting the value of S in (A) and also taking 

F'*(d 1) + F'*(d 2 ) + ... + F'*(d n ) = F,2*(N) 

we get., 
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F'(Np1P2P3)"= F'*(N) + 2F,2*(N) + F,2*(N) + F,3*(N) 

F'(Np1P2P3) = F'*(N) + 3F,2*(N) + F'3*(N) 

This completes the proof of theorem (2.6).The above result which 

has been observed to follow a beautiful pattern can further be 

generalized. 
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