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Abstraot: In Riemannian (differential) geometry, the differences between 
Euclidean geometry, elliptic geometry, and hyperbolic geometry are understood in 
terms of curvature. I think Gauss and Riemann captured the essence of geometry 
in their studies of surfaces and manifolds, and their point of view is 
spectacularly illuminating. Unfortunately, curvature is highly non-trivial to 
work with. I will talk about a more accessible version of curvature that dates 
back to Descartes. 

Curvature 
The Gauss curvature K is a generalization to surfaces of the curvature K for 
curves that is covered in calculus. The curvature for the graph of a function f 
is closely related to the concavity, and since fl' is the derivative of the 

of the tangent line, the concavity tells us how fast the slope is 
changing. In other words, it is a measure of how much the curve is curving. The 
concavity, however, tells us the rate of curvature relative to distances along 
the x-axis. Therefore, the relationship between concavity and the shape of the 
curve is distorted. This distortion is eliminated in the curvature by 
considering the rate at which the unit tangent vector changes direction relative 
to distances along the curve. Of course, with curvature comes the usually messy 
arclength parameter ds. 

Somewhat surprising is the fact that curvature has a nice geometric 
interpretation. The curvature of a circle of radius r is K = I/r, and if the 
curvature at some point of a curve is K[ then a circle of radius r = 11K will be 
the best fit circle at that point. For example, at the point (0,0) on the graph 
of f(x) = x2

, the curvature is K = 2, which is the same as the curvature for a 
circle of radius r = 1~2 (see Figure 1). 

Figure 1. The curva~ure at (0,0) is K = 2 for both the circle and the parabola. 

The Gauss curvature at a point on a surface (in R3
) is the product of the 

maximum and minimum curvatures relative to a vector normal to the surface. Here, 
curvature "towards" the normal vector is positive, and curvature "awayd is 
negative. For example, at the point (0,0,0) on the surface f(x,y) = x2 

- j?, 
there are both positive and negative curvatures relative to the normal vector K 
= (0,0,1] (see Figure 2). Above the x-axis, we have a parabola with curvature 
Kmax = +2 at (0,0,0), and below the y-axis, we have a parabola with curvature K~n 
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= -2 at (0,0,0). The Gauss curvature at (0,0,0) is K = (+2) (-2) = -4. This 
surface would have a (non-homogeneous) hyperbolic geometry because of its 
negative curvature. 

Figure 2. Saddle-shaped surfaces have negative Gauss curvature. 

On the other hand, at the point (0,0,0) on the surface f(x,y) = X2 + y2$, the 
curvatures are Kmin = K~x = +2 in all directions. Therefore, the Gauss curvature 
is K = (+2) (+2) = +4 (see Figure 3). This surface would have a (non-homogeneous) 

geometry because of its positive curvature. Note that if the normal 
vector points downward, then K = (-2) (-2) = +4, so the choice of normal vector 
does not affect the value of K. 

Figure 3. Bowl-shaped surfaces have positive Gauss curvature. 

Elliptic and nyperbolic qeometry 
The Euclidean, hyperbolic, and elliptic plane geometries obtained from 
variations of Hilbert's axioms (see [4] and [3]) would correspond to surfaces 
(Riemannian 2-manifolds) with constant Gauss curvature. The xy-plane has 
constant Gauss curvature K = O. The unit sphere has constant Gauss curvature K 
+1 (see Figure 4), and a model for the elliptic geometry axioms in Appendix A of 
[3] can be obtained by identifying antipodal points on the unit sphere. This is 
sometimes called the projective plane. 
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4. The sphere has constant Gauss curvature. 

Surfaces with constant negative Gauss curvature are more difficult to construct. 
The pseudosphere is a surface with constant Gauss curvature K = -1 (see Figure 
5, which is a graph of the parametric equations x = cos u sin v, y = sin u sin 
v, z = In tan (vI2) + cos v). 

Figure 5. The pseudosphere,has constant negative Gauss curvature. 

The pseudosphere has the same local geometry as the hyperbolic plane, but the 
global geometry is very different (e.g., the pseudosphere has tiny circles with 
no centers). The hyperbolic plane is generally visualized through a projection 
like the Poincare disk (see Figure 6). 

Figure 6. The Poincare disk is a projection of the hyperbolic plane. 
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Geometric formulas in the different geometries 
One characteristic difference between the three geometries is reflected in the 

sum of a . In Euclidean geometrYI the angle sum is 180°. It is 
smaller than this in hyperbolic geometry and larger in elliptic geometry. In 
particular for a triangle with area A and a, ~, and y, on the unit sphere 

( 1) a + ~ + y = n + A, 

and in the hyperbolic plane 

(2) a + P + y = n - A. 

Similarly, the formula for the circumference of a circle with radius R differs 
among the geometries. On a surface with K = -1, 

(3) Ch = 27t sinh (R) I 

and with K = +1 

(4 ) Ce = 2'1t sin(R). 

We can see the relationships in the graphs of Figure 7. In the Euclidean plane, 
the circumference of a circle is directly proportional to the radius. The 
circumference grows more quickly in the hyperbolic plane, and on the sphere, the 
circumference grows more slowly, and in fact, decreases for radii than 
n/2. We can interpret this as saying that the hyperbolic plane spreads out more 
quickly than the Euclidean , and the sphere spreads out more slowly. I 
think this interpretation is as important as the saddle/bowl characterization of 
curvature. 
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Figure 7. The circumferences of circles of radius R. 

Comparisons throuqh projections 
The projection of the hyperbolic plane onto the Poincare disk is such that the 
deformation of distances is symmetric about the origin. In particular, if a 
point is a distance r from the origin in the Poincare disk, then its distance 
from the origin in the hyperbolic plane R is a function of r. The derivative of 
R, therefore, describes the relationship between distances in the Poincare disk 
and distances in the hyperbolic . In , the circumference of a 
circle with radius r centered at the origin will be 2nr in the Poincare disk and 
2~r dR/dr} = 2~ sinh(R) in the hyperbolic plane. This function R must therefore 
satisfy the separable differential equation 
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(5) r dR/dr = sinh(R), 

and modulo a constant multiple, we must have 

( 6) R ::::: 2tanh-1r "'" In ((l+r) / (l-r)) 

or 

(7 ) r = tanh (R/2) _ 

It seems, therefore, that the Poincare disk is the only Euclidean model that has 
a rotationally symmetric metric. 

Since the circumference formula for a circle in geometry is similar to 
the formula in hyperbolic geometry, we can look for a rotationally symmetric 
metric for elliptic geometry_ On a surface with constant curvature K = +1, the 

circumference of a circle of radius R is Ce = 2n sin(R). The differential 
equation resembles equation (5), 

(8 ) r dR/dr = sin(R), 

and so 

( 9} 

or 

( 10) r = tan(R/2). 

This corresponds essentially to stereographic projection, so we see that 
stereographic projection and projection onto the Poincare disk are comparable 
objects. In fact, stereographic projection restricted to the projective plane 
maps onto the unit dis~ (see Figure 8). Note that under this projection, 
antipodal points on the boundary of the unit disk are identified, so the lines 
shown ar.e actually closed Curves. 

Figure 8. The image of the projective plane under stereographic projection. 

Under these two projections, we can see the characteristic incidence properties 
of hyperbolic and elliptic geometry_ The metric are represented 

303 



as well, but not in a linear fashion. Therefore, it is difficult to 
metric properties of the non-Euclidean geometries from the properties 

projection. 

Impulse curvatures 
Probably the most important aspect of non-Euclidean geometry that is not obvious 
from the projections is that lines are straight in both hyperbolic and elliptic 
geometry_ One of studying "lines" ( ) on curved surfaces is 
that the curvature is zero, and it is the space that curves rather than 
the lines. The big drawback, of course, is that the only curved surface that we 
can reasonably get our hands on is the sphere, and a Lenart Sphere [7] costs 
$70. 

I would like to propose another source of examples. Instead of working with 
curved surfaces, consider surfaces with all of its curvature concentrated at 
isolated points. This allows us to construct models out of paper, since the 
curvature will be zero almost everywhere. The lines (geodesics) on these 
surfaces are also very naturally . The simplest example would be a cone. 
Here the geometry is mostly Euclidean, but also elliptic. The basic idea here 

Gaussian curvature, and is due to Descartes (see [2]). It also 
matches amazingly well with the big Gaussian curvature formula from the Gauss­
Bonnet theorem. The standard terminology in this context uses terms like angle 
defect. I prefer the term impulse curvatu~e}. 

Impulse functions 
Impulse functions are used in applications where a phenomena acts over a very 
short of time (see [1]). In such instances, it is more convenient, and 
probably more accurate, to assume that this action is instantaneous. The 
corresponding impulse function must have properties that the usual real-valued 
function does not. For example, an impulse function 8 would have constants to 
and k such that 8(t) = 0 if t*to, and O(t) = 00 if t~tol and the integral of 8 is 
k over any interval containing to. 

A 

Figure 9. Irnp~lse curvature for a curve. 

Impulse curvature f~r curves 
We will start by defining impulse curvature for curves. Consider Figure 9. 
The circle in Figure 9 has radius I, so its curvature is K =l/r. Since the 
curvature is the rate at which the tangent vector if we 
integrate the curvature from point A to point B, we get the total change in 
direction for the tangent vector. Since the curvature is constant, this integral 
is simply the length of the arc times the curvature, and 
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total curvature r B l/r B. 

Therefore, from A to C the tangent vector has turned to the left e radians. 

The polygonal curve ABC is straight everywhere except at B. Since the segment AB 
is tangent to the circle at A and the segment BC is tangent to the circle at C, 
the initial and terminal tangent vectors are the same as for the arc AC. The 
total change in direction along the path ABC, therefore, must be e. ClearlYI all 
of this change occurs at the point B, where the curvature is, in some sense, 
infinite. If there is a curvature function for the path ABC, then it must be an 

function. The curvature is zero everywhere except at B, where the 
curvature is infinite, and the integral of this curvature function is 8. We will 
say that the path ABC has impulse curvature e at B. 

An application of this concept (a.k.a. angle defect) concerns sums of 
polygons, which are different depending on the number of sides. The angle sum of 
a triangle in the is ~ radians. For a quadrilateral, it is 2n, and for a 
pentagon, it is 3n/2. It is easily shown that the total impulse curvature for 
any polygon in the plane is 2n. Here, integrating curvature around a polygon is 

to summing the impulse curvatures at the vertices. 

Figure 10. We can make a cone by removing a wedge. 

Impulse Gauss curvature 
The surface of a cone has zero Gauss curvature everywhere except at the vertex, 
where the curvature is, in some sense, infinite. The Gauss curvature function K 
for a cone must therefore be a 2-dimensional impulse function. All that needs to 
be determined is the value of the integral around the vertex. We can get a 
pretty good idea of what it should be from an example. In Figure 10, we have the 
ingredients for a cone. The cone is formed by removing the 90° wedge in the 
upper right and identifying the two rays bounding the wedge. The fact that the 
Gauss curvature is zero everywhere (except at the vertex) to the 
fact that this cone is constructed out of a flat piece of paper. 

We can compute what the impulse Gauss curvature needs to be from the Gauss­
Bonnet theorem. For a simple closed curve C bounding a simply connected region D 
on a smooth surface, the Gauss-Bonnet theorem states that the Gauss curvature K 

of the surface and the geodesic curvature K (curvature within the surface) of 
the curve are related by the formula 
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(11) ID K ciA :=: 27t - Ie lC ds. 

The circle of radius r in Figure 10 has geodesic curvature K = l/r. Its 
circumference is 27tr, and on the cone, after removing a quarter of it, the 
circumference is 37tr/4. Therefore, 

(12) ID K dA == 21t - 31tr/4 . 1/r = 1t12 radians = 90°. 

We will say that the impulse Gauss curvature at the vertex of this cone is 7t/2 
radians or 90°. The derivative formulas for the trig functions assume radian 
measure, but other than that, there is no essential difficulty in switching back 
and forth between degrees and radians. The Gauss-Bonnet theorem is simpler in 
radians, of course, but it seems to be more convenient to work in degrees 
otherwise. 

It should be clear that there is nothing special about 90°. So if we remove a 9-
wedge, then the impulse Gauss curvature should be 8. This all indicates several 
important insights into the concept of Gauss curvature. One is that the natural 
units for Gauss curvature should be units of angle measure, although the 
definition suggests radians squared. Another is that a positive Gauss curvature 
can be thought of in terms of a.sector of space missing (relative to Euclidean 
geometry). Of course on a smooth surface, the sectors are infinitesimal, and 
they C!:.:r:e'not all removed from a single point. 

Also in Figure 10 are several lines. On the cone, these become two geodesics. 
Note that they are both locally straight, and they exhibit elliptic behavior. 
Here we see that having "less space" around the vertex has a fundamental effect 
on the relationship between lines. 

Lines near an elliptic cone point 
Forming a cone by removing a wedge leaves a vertex with positive impulse Gauss 
curvature. We will call the vertex an elliptic cone point. The behavior of lines 
near an elliptic cone point will exhibit behavior associated with lines in an 
elliptic geometry. 

Figure 11. A cone 

In Figure 11, we have a cone with a 60° wedge removed, so the vertex will have 
positive impulse Gauss curvature +60 0 = +~/3 radians. Cutting along the heavy 
dotted lines will allow us to draw the geodesics easily. Since this surface is 
flat everywhere (except at the cone point), geodesics are straight in the 
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Euclidean sense. We can draw them with a ruler. To extend a geodesic across a 
cut, line up the and draw the straight across with a ruler. 

At the point P in Figure 11 is the start of a ruler, continue 
it across the cut marked B and extend it as as . This geodesic 
should intersect the other geodesic drawn near the letter Q. This forms a 2-gon 
PQ. 

With a protractor, measure the impulse curvatures at P and Q. These should be 
around 145° and 155°. Since the 2-gon PQ encloses the elliptic vertex with 
impulse Gauss curvature 60°, we can check the Gauss-Bonnet theorem. 

On the curve, the curvature is zero everywhere except for the two 
curvatures. Therefore, integrating around the 2-gon is equivalent to summing the 
impulse curvatures, fpQ 1( ds 145° + 155°. Similarly, if D is the disk bounded 
by the 2-gon PQ, then ~ K dA = 60°. We have then, 60° = 360 0 (145 0 + 155°). 

Draw segments QR and PR. Note that there are two PQR, since there are 
two segments QR. Note also that these two triangles are not congruent, but they 
satis the SAS criterion. Furthermore, since one of the triangles contains the 
elliptic cone point and the other does not, their angle sums and total impulse 
curvatures are different. 

Lines around a hyperbolic cone point 
Adding a creates a "cone" with a kind of saddle . The result is an 

Gauss curvature that is negative, and we will call the vertex a 
hyperbolic cone point. The behavior of lines near a hyperbolic cone point is 
similar to that of lines in a hyperbolic 

In Figures 12 and 13, we have the ingredients 
curvature -60 0

• 

a cone with 

~"--:::::-~6°'-7-:::'--'" 
• B • 

B 

"V'I 
12 and 13. Adding a 60 0 wedge creates a cone point with 

curvature -60 0
• 

Gauss 

Gauss 

Cut along the heavy dotted lines and continue the ics indicated at P and 
Q. These should be parallel (i.e., they do not intersect). 

Check the Gauss-Bonnet theorem by considering a 
hyperbolic cone point. 

An example with multiple cone points 
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There are any restrictions on surfaces with cone 
points (I don't think you can construct one with total Gauss curvature greater 
than 2n), and I think it would be helpful for students to be able construct 
counter-examples to theorems in Euclidean geometry_ 

My interest in flat surfaces with cone points began with a search for examples 
of Smarandache _ My book [5], which can be downloaded for free, 
contains some explorations in this context similar to the ones presented here. 
One example that I thought was had something that I called a 
hyperbolic point. 
A Smarandache Geometry is a geometry which has at least one 
denied axiom (1969). 
An axiom is said smarandachely denied if the axiom behaves in at least two 
different ways within the same space (i.e., 'validated and invalided, or only 
invalidated but in ways) . 
Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian 
geometries may be united altogether, in the same space, by some Smarandache 
geometries. These last geometries can be Euclidean and 
Non-Euclidean. 

One of the first things proved in hyperbolic geometry is that through a point P 
not on a line 1, there are infinitely many lines to 1. Hilbert's 
hyperbolic axiom requires only two (see [4]), but it is easily shown that all 
of the lines between these two parallels are also . Smarandache wondered 
if there were any manifolds where there were only finitely many parallels (see 
[9]). My has two r but uses cone . A variation of this 
example follows. I was later able to extend this to smooth surfaces (see [6]). 

Since the cone points are parts of the space, we need to define how a geodesic 
passes through one. We use the straightest geodesic concept of [8], which says 
that the ic should make two equal angles at the cone point. For example, 
around a cone with curvature -60°, there is an "extra" 60° for a 
total of 420°. A geodesic passing through this cone point would make two 210° 
(straight) angles. 

Figures 14 and 15. 
parallel to 1. 

• ••• _._._ ••••••• _._ •••• _ _ •• ···_._ ••• _ ............. j[._ •••• " ..... ~._.'".h_ .. _ .. . 

n m 
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In Figures 14 and 15, the endpoints of the segment marked B are hyperbolic cone 
points with Gauss curvature -30°, and the endpoints of the rays marked D 
and E are cone points with Gauss curvature +30°. The line n 
passes through one hyperbolic cone point two 195° and one 
cone point making two 165 0 angles. This line n should look straight after the 
edges have been identified. 

Also after 
and n are 
intersect 

have been identified, it should be clear that both lines m 
to 1. It is also true that every other line through P will 

before up the surface to verify this. 

After identifying the edges, note that the lines 1 and m and the boundaries of 
the diagram form a quadrilateral with four right angles. Is it a ? Is 
it a parallelogram? 

References 
1. W.E. Boyce and R.C. DiPrima, Differential Equations and Boundary 

Value Problems, John Wiley and Sons, New York, 1992. 
2. H. Gottlieb, All the way with Gauss-Bonnet and the of mathematics, 

The American Mathematical Monthly 103 (6), 457-469, 1996. 
3. M.J. Greenberg, Euclidean and Non-Euclidean Geometries, W.H. Freeman and 

Company, New York, 1974. 
4. D. Hilbert, Foundations of Geometry, Open Court, La Salle, IL, 1971. 
5. H. Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM, USA, 

2002. (available at www.gallup.unm.edu/-smarandache/lseri-book. ) 
6. H. Iseri, A finitely hyperbolic point on a smooth manifold ( 

available) . 
7. Lenart Sphere, Key Curriculum Press, www.keypress.com 
8. K. Polthier and M. Schmies, on polyhedral surfaces, 

Mathematical Visualizations, 1998. 
9. F. Smarandache, Paradoxist Mathematics, Collected (Vol. II, 5-28), 

University of Kishinev Press, 1997. 

309 




