Introducing the SMARANDACHE-KUREPA and SMARANDACHE-WAGSTAFF Functions

by
M. R. Mudge

Definition A.

The left-factorial function is defined by D.Kurepa thus:

$$
!n=0!+1!+2!+3!+\ldots+(n-1)!
$$

whilst S.S.Wagstaff prefers:

$$
\mathrm{B}_{\mathrm{n}}=!(\mathrm{n}+1)-1=1!+2!+3!+\ldots+n!
$$

The following properties should be observed:
(i) $!\mathrm{n}$ is only divisible by n when $\mathrm{n}=2$.
(ii) 3 is a factor of B_{n} if n is greater than 1 .
(iii) 9 is a factor of B_{n} if n is greater than 4 .
(iv) 99 is a factor of B_{n} if n is greater than 9 .

There are no other such cases of divisibility ob B_{n} for n less than a thousand.
The tabulated values of these two functions together with their prime factors begin:

TABLE I.

n	ln	B_{n}
1	1	1
2	2	3
3	$4=2 \cdot 2$	$9=3 \cdot 3$
4	$10=2 \cdot 5$	$33=3 \cdot 11$
5	$34=2 \cdot 17$	$153=3 \cdot 3 \cdot 17$
6	$154=2 \cdot 7 \cdot 11$	$873=3 \cdot 3 \cdot 97$
7	$8742 \cdot 19 \cdot 23$	$5913=3 \cdot 3 \cdot 3 \cdot 3 \cdot 73$
8	$5914=2 \cdot 2957$	$46233=3 \cdot 3 \cdot 11 \cdot 467$
9	$46234=2.23117$	$409113=3 \cdot 3 \cdot 131 \cdot 347$
10	$409114=2.204557$	

"Intuitive Thought": There appear to be a disproportionate (unexpectedly high) number of large primes in this table?

Definition B.

For prime p not equal to 3 define the SMARANDACHE-KUREPA Function, $\mathrm{SK}(\mathrm{p})$, as the smallest integer such that ! $\mathrm{SK}(\mathrm{p})$ is divisible by p . For prime p not equal to 2 or 5 define the SMARANDACHE-WAGSTAFF Function, $\mathrm{SW}(\mathrm{p})$, as the smallest integer such that $\mathrm{B}_{\mathrm{sw}(\mathrm{p})}$ is divisible by p .

The tabulation of these two functions begins:
TABLE II.

p	2	3	5	7	11	13	17	19	23	131
$\mathrm{SK}(\mathrm{p})$	2	$*$	4	6	6	$?$	5	7	7	$?$
$\mathrm{SW}(\mathrm{p})$	$*$	2	$*$	$?$	4	$?$	5	$?$	$?$	9

Where the entry * denotes that the value is not defined and the entry ? denotes not avaible from TABLE I above.

Some unanswered questions:

1. Are there other $\left(^{*}\right)$ - entries i.e. undefined values in the above table.
2. What is the distribution function of integers in both $\operatorname{SK}(p), S W(p)$ and their union?
3. When, in general, is $\operatorname{SK}(\mathrm{p})=\mathrm{SW}(\mathrm{p})$?

Current address:

22 Gors Fach, Pwll-Trap,
St. Clears, Carmarthen,
DYFED SA 33 4AQ
United Kingdom

