MISCELLANEOUS RESULTS AND THEOREMS ON SMARANDACHE TERMS AND FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E \&T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ is defined as the number of ways in which the number
$N=\quad \begin{array}{ccccc}\alpha_{1} & p_{2}^{\alpha 2} & p_{3} & \ldots & p_{r}^{\alpha r}\end{array} \quad$ could be expressed as the product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$
. $\left.\alpha_{r}\right)=F^{\prime}(N)$, where

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
Also for the case

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots=\alpha_{r}=\ldots=\alpha_{n}=1
$$

we denote

$$
\begin{aligned}
& F(1,1,1,1,1 \ldots)=F(1 \# n) \\
& \leftarrow n \text {-ones } \rightarrow
\end{aligned}
$$

In [2] we define $\mathbf{b}_{(n, r)} \mathbf{x}(x-1)(x-2) \ldots(x-r+1)(x-r)$ as the $r^{\text {th }}$
SMARANDACHE TERM in the expansion of
$x^{n}=b_{(n, 1)} x+b_{(n, 2)} x(x-1)+b_{(n, 3)} x(x-1)(x-2)+\ldots+b_{(n, n)} x P_{n}$
In this note some more results depicting how closely the coefficients of the SMARANDACHE TERM and SAPs are related. are derived.

DISCUSSION:

Result on the $\left[i^{j}\right]$ matrix:

Theorem (9.1) in [2] gives us the following result

$$
x^{n}=\sum_{r=0}^{n} x_{r} a_{(n, r)} \quad \text { which leads us to the following }
$$

beautiful result.

$$
\sum_{k=1}^{x} k^{n}=\sum_{k=1}^{x} \sum_{r=1}^{k} \cdot{ }^{k} P_{, r} \mathbf{a}_{(n, r)}
$$

In matrix notation the same can be written as follows for $x=4=n$.

$$
\begin{equation*}
F^{\prime} * A^{\prime}=Q \quad \text { where } P=\left[{ }^{i} P_{j}\right] \tag{10.1}
\end{equation*}
$$

$A=\left[a_{(i, j)}\right]_{n x_{n}}$ and $Q=\left[i^{j}\right]_{n x_{n}}$
(A^{\prime} is the transpose of A)
Consider the expansion of x^{n}, again
$x^{n}=b_{(n, 1)} x+b_{(n, 2)} x(x-1)+b_{(n, 3)} x(x-1)(x-2)+\ldots+b_{(n, n)}{ }^{x} P_{n}$ for $x=3$ we get
$x^{3}=b_{(3,1)} x+b_{(3,2)} x(x-1)+b_{(3,3)} x(x-1)(x-2)$
comparing the coefficient of powers of x on both sides we get

$$
\begin{aligned}
b_{(3,1)}-b_{(3,2)}+2 b_{(3,3)} & =0 \\
b_{(3,2)}-3 b_{(3,3)} & =0 \\
b_{(3,3)} & =1
\end{aligned}
$$

In matrix form

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right] *\left[\begin{array}{l}
b_{(3,1)} \\
b_{(3,2)} \\
\dot{b}_{(3,3)}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]} \\
& C_{3} * A_{3}=B_{3} \\
& A_{3} \quad=\quad C_{3}^{-1} \cdot B_{3} \\
& C_{3}^{-1}=\left[\begin{array}{ccc}
1 & -1 & 2 \\
0 & 1 & -3 \\
0 & 0 & 1
\end{array}\right]^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right] \\
& \left(C_{3}^{-1}\right)^{\prime}=\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 3 & 1
\end{array}\right]
\end{aligned}
$$

similarly it has been observed that
$\left(C_{4}^{-1}\right)^{\prime}=\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 3 & 1 & 0 \\ 1 & 7 & 6 & 1\end{array}\right]$

The above observation leads to the following theorem.

THEOREM (10.1)

In the expansion of x^{n} as
$x^{n}=b_{(n, 1)} x+b_{(n, 2)} x(x-1)+b_{(n, 3)} x(x-1)(x-2)+\ldots+b_{(n, n)}{ }^{x} P_{n}$
If C_{n} be the coefficient matrix of equations obtained by equating the coefficient of powers of x on both sides then

$$
\left.\left(C_{n}{ }^{1}\right)^{\prime}=\oint_{(i, j)}\right]_{n \times n}=\text { star matrix of order } n
$$

PROOF: It is evident that $C_{p q}$ the element of the $p^{\text {th }}$ row and $q^{\text {th }}$ column of C_{n} is the coefficient of x^{p} in ${ }^{x} P_{q}$. And also $C_{p q}$ is independent of n. The coefficient of x^{p} on the RHS is coefficient of $x^{p}=\sum_{q=1}^{n} b_{(n, q)} C_{p q}$, also
coefficient of $x^{p}=1$ if $p=n$
coefficient of $x^{p}=0$ if $p \neq n$.
in matrix notation
coefficient of $x^{p}=\left[\begin{array}{lll}\sum_{q=1}^{n} & b_{(n, q)} & C_{p q} \\ - & & \end{array}\right]$

$$
\begin{aligned}
& \left.=\sum_{q=1}^{n} b_{(n, q)} C_{q p}^{\prime}\right] \\
& =i_{n p} \text { where } i_{n p}=1, \text { if } n=p \text { and } i_{n p}=0, \text { if } n \neq p . \\
& \left.=I_{n} \text { (identity matrix of order } n .\right) \\
& {\left[b_{(n, q)}\right]\left[C_{p, q}\right]^{\prime}=I_{n}} \\
& {\left[a_{(n, q)}\right]\left[C_{p, q}\right]^{\cdot}=I_{n} \quad \text { as } b_{(n, q)}=a_{(n, q)}} \\
& A_{n}, C_{n}^{\prime}=I_{n} \\
& A_{n}=I_{n}\left[C_{n}^{\prime}\right]^{-1} \\
& A_{n}=\left[C_{n}^{\prime}\right]^{-1}
\end{aligned}
$$

This completes the proof of theorem (10.1).

THEOREM (10.2)

If $C_{k, n}$ is the coefficient of x^{k} in the expansion of ${ }^{x} P_{n}$, then

$$
\sum_{k=1}^{n} F(1 \# k) C_{k, n}=1
$$

PROOF: In property (3) of the STAR TRIANGLE following proposition has been established.
$F^{\prime}(1 \# n)=\sum_{m=1}^{n} a_{(n, m)}=B_{n}$, in matrix notation the same can be expressed as follows for $n=4$

$$
\left[\begin{array}{llll}
1 & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{llll}
1 & 1 & 1 & 1 \\
0 & 1 & 3 & 7
\end{array}\right]=\left[\begin{array}{llll}
B_{1} & B_{2} & B_{3} & B_{4}
\end{array}\right]
$$

In general

$$
\begin{aligned}
& [1]_{1 \times n} * \underbrace{}_{\left(c_{n}{ }^{-1}\right)^{\prime}} a_{(i, j)}]_{n \times n}^{\prime}=\left[\begin{array}{l}
\left.B_{i}\right]_{1 \times n} \\
\\
\\
\end{array}\right. \\
& \left.\left[\mathrm{B}_{\mathrm{i}}\right]_{1 \times n}{ }_{\left(c_{n}\right)}\right]_{n \times n} \\
& =[1]_{1 \times n}
\end{aligned}
$$

In $C_{n, n}, C_{p, q}$ the $p^{\text {th }}$ row and $q^{\text {th }}$ column is the coefficient of x^{p} in ${ }^{x} P_{q}$. Hence we have
$\sum_{k=1}^{n} F(1 \# k) C_{k, n}=1=\sum_{k=1}^{n} B_{k} C_{k, n}$

THEOREM(10.3)

$$
\sum_{k=1}^{n} F(1 \#(k+1)) C_{k, n}=n+1=\sum_{k=1}^{n} B_{k+1} C_{k, n}
$$

PROOF:

It has already been established that

$$
B_{n+1}=\sum_{m=1}^{n}(m+1) a_{(n, m)}
$$

In matrix notation

$$
\begin{aligned}
& {[j+1]_{1 \times n} *\left[a_{\left(c_{n}^{-1}\right)}\right]_{n \times n}^{\prime}=} \\
& \left.\left.[j+1]_{1 \times n}=\left[B_{j+1} B_{1 \times n}\right]_{\left(c_{n}\right)}\right]_{n \times n}\right]_{1 \times n} \\
& \sum_{k=1}^{n} B_{k+1} C_{k, n}=n+1
\end{aligned}
$$

There exist ample scope for more such results.

REFERENCES:

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3,
2000.
[2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
[3] "Amarnath Murthy", 'More Results And Applications Of The Generalized Smarandache Star Function' SNJ, Vol. 11, No. 1-2-3, 2000.
[4] "Amarnath Murthy", 'Expansion Of X^{n} In Smarandache Terms Of Permutations' SNJ, Vol. 11, No. 1-2-3, 2000.
[5] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.

