MORE RESULTS AND APPLICATIONS OF THE GENERALIZED SMARANDACHE STAR FUNCTION

(Amarnath Murthy ,S.E. (E \&T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRCT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION, as follows:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ is defined as the number of ways in which the number
$N=\quad \begin{array}{llll}\alpha_{1} & p_{2}^{\alpha 2} & p_{3}^{\alpha 3}\end{array} \ldots{ }^{\alpha r} \quad$ could be expressed as the product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$
. $\left.\alpha_{r}\right)=F^{\prime}(N)$, where

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
Also for the case

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots=\alpha_{r}=\ldots=\alpha_{n}=1
$$

Let us denote

$$
\begin{aligned}
& F(1,1,1,1,1 \ldots)=F(1 \# n) \\
& \leftarrow n \text {-ones } \rightarrow
\end{aligned}
$$

In [2] we define The Generalized Smarandache Star

Function as follows:

Smarandache Star Function

(1) $\quad F^{\prime *}(N)=\sum_{d / N} F^{\prime}\left(d_{r}\right) \quad$ where $d_{r} \mid N$
(2) $F^{\prime * *}(N)=\sum_{d_{r} / N} F^{\prime *}\left(d_{r}\right)$
d_{r} ranges over all the divisors of N.
If N is a square free number with n prime factors, let us denote

$$
F^{\prime * *}(N)=F^{* *}(1 \# n)
$$

Smarandache Generalised Star Function

$$
\begin{equation*}
F^{n_{*}}(N)=\sum_{d_{r} / N} F^{\prime(n-1) *}\left(\dot{d}_{r}\right) \quad n>1 \tag{3}
\end{equation*}
$$

and d_{r} ranges over all the divisors of N.
For simplicity we denote

$$
F^{\prime}\left(N p_{1} p_{2} \ldots p_{n}\right)=F^{\prime}(N @ 1 \# n), \text { where }
$$

$$
\left(N, p_{i}\right)=1 \text { for } i=1 \text { to } n \text { and each } p_{i} \text { is a prime. }
$$

$F^{\prime}(N @ 1 \# n)$ is nothing but the Smarandache factor partition of (a number N multiplied by n primes which are coprime to N).

In [3] I had derived a general result on the Smarandache Generalised Star Function. In the present note some more results and applications of Smarandache Generalised Star Function are explored and derived.

DISCUSSION:

THEOREM(4.1) :

$$
\begin{equation*}
F^{, n *}\left(P^{\alpha}\right)=\sum_{k=0}^{\alpha}{ }^{n+k-1} C_{n-1} P(\alpha-k) \tag{4.1}
\end{equation*}
$$

Following proposition shall be applied in the proof of this

$$
\begin{equation*}
\sum_{k=0}^{\alpha}{ }^{r+k-1} C_{r-1}={ }^{\alpha+r} C_{r} \tag{4.2}
\end{equation*}
$$

Let the proposition (4.1) be true for $n=r$ to $n=1$.

$$
\begin{align*}
& F^{, r \star}\left(p^{\alpha}\right)=\sum_{k=0}^{\alpha}{ }^{r+k-1} C_{r-1} P(\alpha-k) \tag{4.3}\\
& F^{\prime(r+1) \star}\left(p^{\alpha}\right)=\sum_{t=0}^{\alpha} F^{r \star}\left(p^{t}\right)
\end{align*}
$$

(p ranges over all the divisors of p^{α} for $t=0$ to α)
$R H S=F^{\prime r *}\left(p^{\alpha}\right)+F^{\prime r *}\left(p^{\alpha-1}\right)+F^{\prime r *}\left(p^{\alpha-2}\right)+\ldots+F^{\prime r *}(p)+F^{\prime r *}(1)$
from the proposition (4.3) we have

$$
F^{\prime r *}\left(P^{\alpha}\right)=\sum_{k=0}^{\alpha}{ }^{r+k-1} C_{r-1} P(\alpha-k)
$$

expanding RHS from $k=0$ to α

$$
F^{r *}\left(P^{\alpha}\right)={ }^{r+\alpha-1} C_{r-1} P(0)+{ }^{r+\alpha-2} C_{r-1} P(1)+\ldots+{ }^{r-1} C_{r-1} P(\alpha)
$$

similarly

$$
\begin{aligned}
& F^{\prime r *}\left(P^{\alpha-1}\right)={ }^{r+\alpha-2} C_{r-1} P(0)+{ }^{r+\alpha-3} C_{r-1} P(1)+\ldots+{ }^{r-1} C_{r-1} P(\alpha-1) \\
& F^{\prime r *}\left(p^{\alpha-2}\right)={ }^{r+\alpha-3} C_{r-1} P(0)+{ }^{r+\alpha-4} C_{r-1} P(1)+\ldots+{ }^{r-1} C_{r-1} P(\alpha-2)
\end{aligned}
$$

$$
\begin{aligned}
& F^{\prime r \star}(p)={ }^{r} C_{r-1} P(0)+{ }^{r-1} C_{r-1} P(1) \\
& F^{\prime r *}(1)={ }^{r-1} C_{r-1} P(0)
\end{aligned}
$$

summing up left and right sides separately we find that the

$$
\text { LHS }=F^{\prime(r+1) \star}\left(p^{\alpha}\right)
$$

The RHS contains $\alpha+1$ terms in which $P(0)$ occurs, α terms in which $P(1)$ occurs etc.

$$
\begin{aligned}
R H S= & {\left[\sum_{k=0}^{\alpha}{ }^{r+k-1} C_{r-1}\right] \cdot P(0)+\sum_{k=0}^{\alpha-1} r+k-1 } \\
& C_{r-1} P(1)+\ldots+\sum_{k=0}^{1}{ }^{r+k-1} C_{r-1} P(\alpha-1) \\
& +\sum_{k=0}^{0}{ }^{r+k-1} C_{r-1} P(\alpha)
\end{aligned}
$$

Applying proposition (4.2) to each of the Σ we get

$$
R H S={ }^{r+\alpha} C_{r} P(0)+{ }^{r+\alpha-1} C_{r} P(1)+{ }^{r+\alpha-2} C_{r} P(2)+\ldots+{ }^{r} C_{r} P(\alpha)
$$

$$
=\quad \sum_{k=0}^{\alpha}{ }^{r+k} C_{r} P(\alpha-k)
$$

$$
\mathrm{F}^{\prime(r+1) \star}\left(p^{\alpha}\right)=\sum_{k=0}^{\alpha}{ }^{r+k} C_{r} P(\alpha-k)
$$

The proposition is true for $n=r+1$, as we have

$$
F^{\prime *}\left(P^{\alpha}\right)=\sum_{k=0}^{\alpha} P(\alpha-k)=\sum_{k=0}^{\alpha}{ }^{k} C_{0} P(\alpha-k)=\sum_{k=0}^{\alpha}{ }^{k+1-1} C_{1-1} P(\alpha-k)
$$

The proposition is true for $n=1$
Hence by induction the proposition is true for all n.
This completes the proof of theorem (4.1).
Following theorem shall be applied in the proof of theorem (4.3)

$$
\sum_{k=0}{ }^{n} C_{r+k}{ }^{r+k} C_{r} m^{k}={ }^{n} C_{r}(1+m)^{(n-r)}
$$

PROOF:

$$
\begin{aligned}
& \text { LHS }=\sum_{k=0}^{n-r}{ }^{n} C_{r+k}{ }^{r+k} C_{r} m^{k} \\
& =\sum_{k=0}^{n-r}(n!) /\{(r+k)!\cdot(n-r-k)!\} \quad(r+k)!/\{(k)!\cdot(r)!\} \cdot m^{k} \\
& =\sum_{k=0}^{n-r}(n!) /\{(r)!\cdot(n-r)!\} \quad .(n-r)!/\{(k)!\cdot(n-r-k)!\} \cdot m^{k} \\
& \quad={ }^{n} C_{r} \sum_{k=0}^{n-r}{ }^{n-r} C_{k} m^{k} \\
& ={ }^{n} C_{r}(1+m)^{(n-r)}
\end{aligned}
$$

This completes the proof of theorem (4.2)
THEOREM(4.3):

$$
F^{m_{\star}}(1 \# n)=\sum_{r=0}^{n}{ }^{n} C_{r} m^{n-r} F(1 \# r)
$$

Proof:

From theorem (2.4) (ref.[1] ne have

$$
F^{*}(1 \# n)=F(1 \#(n+1))=\sum_{r=0}^{n}{ }^{n} C_{r} F(1 \# r)=\sum_{r=0}^{n}{ }^{n} C_{r}(1)^{n-r} F(1 \# r)
$$

hence the proposition is true for $m=1$.
Let the proposition be true for $m=s$. Then we have

$$
F^{s_{*}}(1 \# n)=\sum_{r=0}^{n} C_{r} s^{n-r} F(1 \# r)
$$

or

$$
\begin{array}{ll}
F^{s_{*}}(1 \# 0)=\sum_{r=0}^{0}{ }^{n} C_{0} s^{0-r} F(1 \# 0) & F^{s_{*}}(1 \# 1)=\sum_{r=0}^{1}{ }^{n} C_{1} s^{1-r} F(1 \# 1) \\
F^{s_{*}}(1 \# 2)=\sum_{r=0}^{2}{ }^{n} C_{2} s^{2-r} F(1 \# 1) & F^{s_{*}}(1 \# 3)=\sum_{r=0}^{3}{ }^{n} C_{1} s^{3-r} F(1 \# 3)
\end{array}
$$

$$
\begin{align*}
& F^{s_{*}}(1 \# 0)={ }^{0} C_{0} F(1 \# 0) \tag{0}\\
& F^{s_{*}}(1 \# 1)={ }^{1} C_{0} s^{1} F(1 \# 0)+{ }^{1} C_{1} s^{0} F(1 \# 1) \tag{1}\\
& F^{s_{*}}(1 \# 2)={ }^{2} C_{0} s^{2} F(1 \# 0)+{ }^{2} C_{1} s^{1} F(1 \# 1)+{ }^{2} C_{2} s^{0} F(1 \# 2) \tag{2}\\
& \cdot \tag{r}\\
& \cdot \\
& F^{s_{*}}(1 \# r)={ }^{r} C_{0} s^{r} F(1 \# 0)+{ }^{r} C_{1} s^{1} F(1 \# 1)+\ldots+{ }^{r} C_{r} s^{0} F(1 \# r) \\
& \cdot \\
& \cdot \\
& F^{s_{*}}(1 \# n)={ }^{n} C_{0} s^{r} F(1 \# 0)+{ }^{n} C_{1} s^{1} F(1 \# 1)+\ldots+{ }^{n} C_{n} s^{0} F(1 \# r)
\end{align*}
$$ multiplying the $r^{\text {th }}$ equation with ${ }^{n} C_{r}$ and then summing up we get the RHS as

$=\left[{ }^{n} C_{0}{ }^{0} C_{0} s^{0}+{ }^{n} C_{1}{ }^{1} C_{0} s^{1}+{ }^{n} C_{2}{ }^{2} C_{0} s^{2}+\ldots+{ }^{n} C_{k}{ }^{k} C_{0} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{0} s^{n}\right] F(1 \# 0)$ $\left[{ }^{n} C_{1}{ }^{1} C_{1} s^{0}+{ }^{n} C_{2}{ }^{2} C_{1} s^{1}+{ }^{n} C_{3}{ }^{3} C_{1} s^{2}+\ldots+{ }^{n} C_{k}{ }^{k} C_{1} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{1} s^{n}\right] F(1 \# 1)$
$\left[{ }^{n} C_{r}^{r} C_{r} s^{0}+{ }^{n} C_{r+1}{ }^{r+1} C_{r} s^{1}+\ldots+{ }^{n} C_{r+k}{ }^{r+k} C_{r} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{r} s^{n}\right] F(1 \# r)$ $\left.+{ }^{n} C_{n}{ }^{n} C_{n} S^{0}\right] F(1 \# n)$

$$
=\quad \sum_{r=0}^{n}\left\{\sum_{k=0}^{n-r}{ }^{n} C_{r+k}{ }^{r+k} C_{r} s^{k}\right\} F(1 \# r)
$$

$$
=\sum_{r=0}^{n} C_{r}(1+s)^{n-r} F(1 \# n) \quad \text {, by theorem (4.2) }
$$

LHS $=\sum_{r=0}^{n}{ }^{n} C_{r} F^{s_{x}}(1 \# r)$
Let $N=p_{1} p_{2} p_{3} \ldots p_{n}$. Then there are ${ }^{n} C_{r}$ divisors of N containing exactly r primes. Then LHS $=$ the sum of the $s^{\text {th }}$ Smarandache star functions of all the divisors of $N=F^{\prime(s+1) \star}(N)=F^{(s+1) *}(1 \# n)$.

Hence we have

$$
F^{(s+1) *}(1 \# n)=\sum_{r=0}^{n}{ }^{n} C_{r}(1+s)^{n-r} F(1 \# n)
$$

$$
\begin{align*}
& F^{s *}(1 \# 0)={ }^{0} C_{0} F(1 \# 0) \tag{0}\\
& F^{s *}(1 \# 1)={ }^{1} C_{0} s^{1} F(1 \# 0)+{ }^{1} C_{1} s^{0} F(1 \# 1) \tag{1}\\
& F^{s *}(1 \# 2)={ }^{2} C_{0} s^{2} F(1 \# 0)+{ }^{2} C_{1} s^{1} F(1 \# 1)+{ }^{2} C_{2} s^{0} F(1 \# 2) \tag{2}\\
& \cdot \tag{r}\\
& \cdot \tag{n}\\
& F^{s *}(1 \# r)={ }^{r} C_{0} s^{r} F(1 \# 0)+{ }^{r} C_{1} s^{1} F(1 \# 1)+\ldots+{ }^{r} C_{r} s^{0} F(1 \# r) \\
& \cdot \\
& \cdot \\
& F^{s *}(1 \# n)={ }^{n} C_{0} s^{r} F(1 \# 0)+{ }^{n} C_{1} s^{1} F(1 \# 1)+\ldots+{ }^{n} C_{n} s^{0} F(1 \# r)
\end{align*}
$$

multiplying the $r^{\text {th }}$ equation with ${ }^{n} C_{r}$ and then summing up we get
the RHS as
$=\left[{ }^{n} C_{0}{ }^{0} C_{0} s^{0}+{ }^{n} C_{1}{ }^{1} C_{0} s^{1}+{ }^{n} C_{2}{ }^{2} C_{0} s^{2}+\ldots+{ }^{n} C_{k}{ }^{k} C_{0} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{0} s^{n}\right] F(1 \# 0)$
$\left[{ }^{n} C_{1}{ }^{1} C_{1} s^{0}+{ }^{n} C_{2}{ }^{2} C_{1} s^{1}+{ }^{n} C_{3}{ }^{3} C_{1} s^{2}+\ldots+{ }^{n} C_{k}{ }^{k} C_{1} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{1} s^{n}\right] F(1 \# 1)$
$\left[{ }^{n} C_{r}{ }^{r} C_{r} s^{0}+{ }^{n} C_{r+1}{ }^{r+1} C_{r} s^{1}+\ldots+{ }^{n} C_{r+k}{ }^{r+k} C_{r} s^{k}+\ldots+{ }^{n} C_{n}{ }^{n} C_{r} s^{n}\right] F(1 \# r)$
$\left.+{ }^{n} C_{n}{ }^{n} C_{n} s^{0}\right] F(1 \# n)$

$$
\begin{aligned}
& =\sum_{r=0}^{n}\left\{\sum_{k=0}^{n-r}{ }^{n} C_{r+k}{ }^{r+k} C_{r} s^{k}\right\} F(1 \# r) \\
& \quad=\sum_{r=0}^{n}{ }^{n} C_{r}(1+s)^{n-r} F(1 \# n) \quad \text {, by theorem (4.2) }
\end{aligned}
$$

LHS $=\sum_{r=0}^{n}{ }^{n} C_{r} F^{s_{*}}\left(1 \#{ }^{(1)}\right.$
Let $N=p_{1} p_{2} p_{3} \ldots p_{n}$. Then there are ${ }^{n} C_{r}$ divisors of N containing exactly r primes. Then LHS $=$ the sum of the $s^{\text {th }}$ Smarandache star functions of all the divisors of $N .=F^{\prime(s+1) *}(N)=F^{(s+1) *}(1 \# n)$.

Hence we have

$$
F^{(s+1) *}(1 \# n)=\sum_{r=0}^{n}{ }^{n} C_{r}(1+s)^{n-r} F(1 \# n)
$$

which takes the same format

$$
P(s) \Rightarrow P(s+1)
$$

and it has been verified that the proposition is true for $m=1$
hence by induction the proposition is true for all m .

$$
F^{m *}(1 \# n)=\sum_{r=0}^{n} C_{r} m^{n-r} F(1 \# r)
$$

This completes the proof of theorem (4.3)
NOTE:
From theorem (3.1) we have

$$
F^{\prime}(N @ 1 \# n)=F^{\prime}\left(N p_{1} p_{2} \ldots p_{n}\right)=\sum_{m=0}^{n} a_{(n, m)} F^{, m_{\star}}(N)
$$

where

$$
a_{(n, m)}=(1 / m!) \sum_{k=1}^{m}(-1)^{m-k} \cdot m C_{k} \cdot k^{n}
$$

If $N=p_{1} p_{2} \ldots p_{k}$ Then we get
$F\left(1 \#(k+n)=\sum_{m=0}^{n}\left[a_{(n, m)} \quad \sum_{t=0}^{k} C_{t} m^{k-t} F(1 \# t)\right]\right.$
The above result provides us with a formula to express B_{n} in terms of smaller Bell numbers. It is in a way generalisation of theorem (2.4) in Ref [5].

THEOREM(4.4):

$$
F(\alpha, 1 \#(n+1))=\sum_{k=0}^{\alpha} \sum_{r=0}^{n}{ }^{n} C_{r} F(k, 1 \# r)
$$

PROOF: LHS $=F(\alpha, 1 \#(n+1))=F^{\prime}\left(p^{\alpha} p_{1} p_{2} p_{3} . . p_{n+1}\right)=F^{\prime *}\left(p^{\alpha} p_{1} p_{2} p_{3}\right.$.
. $\left.p_{n}\right)+\sum F^{\prime}\left(\right.$ all the divisors containing only $\left.p^{0}\right)+\sum F^{\prime}($ all the
divisors containing only $\left.\mathrm{p}^{1}\right)+\sum \mathrm{F}^{\prime}($ all the divisors containing only $\left.p^{2}\right)+\ldots+\sum F^{\prime}\left(\right.$ all the divisors containing only $\left.p^{r}\right)+\ldots+\sum F^{\prime}($ all the divisors containing only p^{α})

$$
\begin{aligned}
& =\sum_{r=0}^{n}{ }^{n} C_{r} F(0,1 \# r)+\sum_{r=0}^{n}{ }^{n} C_{r} F(1,1 \# r)+\sum_{r=0}^{n}{ }^{n} C_{r} F(2,1 \# r)+\sum_{r=0}^{n}{ }^{n} C_{r} F(3,1 \# r) \\
& +\ldots+\sum_{r=0}^{n}{ }^{n} C_{r} F(k, 1 \# r)+\ldots+\sum_{r=0}^{n}{ }^{n} C_{r} F(\alpha, 1 \# r) \\
& =\sum_{k=0}^{\alpha} \sum_{r=0}^{n}{ }^{n} C_{r} F(k, 1 \# r)
\end{aligned}
$$

This is a reduction formula for $F(\alpha, 1 \#(n+1))$

A Result of significance

From theorem (3.1) of Ref.: [2], we have

$$
F^{\prime}\left(p^{\alpha} @ 1 \#(n+1)\right)=F(\alpha, 1 \#(n+1))=\sum_{m=0}^{n} a_{(n+1, m)} F^{\prime m_{\star}(N)}
$$

where

$$
a_{(n+1, m)}=(1 / m!) \sum_{k=1}^{m}(-1)^{m-k} \cdot{ }^{m} C_{k} \cdot k^{n+1}
$$

and

$$
F^{\prime m_{*}}\left(p^{\alpha}\right)=\sum_{k=0}^{\alpha} m+k-1 C_{m-1} P(\alpha-k)
$$

This is the first result of some substance, giving a formula for evaluating the number of Smarandache Factor Partitions of numbers representable in a (one of the most simple) particular canonical form. The complexity is evident. The challenging task ahead for the readers is to derive similar expressions for other canonical forms.

REFERENCE

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
[3] " The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.
[4] 'Smarandache Notion Journal' Vol. 10 , No. 1-2-3, Spring 1999. Number Theory Association of the UNIVERSITY OF CRAIOVA.

