New Prime Numbers

Sebastián Martín Ruiz

I have found some new prime numbers using the PROTH program of Yves Gallot. This program in based on the following theorem:

Proth Theorem (1878):

Let $N=k \cdot 2^{n}+1$ where $k<2^{n}$. If there is an integer number a so that $a^{\frac{N-1}{2}} \equiv-1(\bmod N)$ therefore N is prime.

The Proth progam is a test for primality of greater numbers defined as $k \cdot b^{n}+1$ or $k \cdot b^{n}-1$. The program is made to look for numbers of less than 5.000000 digits and it is optimized for numbers of more than 1000 digits..

Using this Program, I have found the following prime numbers:

$3239 \cdot 2^{12345}+1$	with 3720 digits	$a=3, a=7$
$7551 \cdot 2^{12345}+1$	with 3721 digits	$a=5, a=7$
$7595 \cdot 2^{12345}+1$	with 3721 digits	$a=3, a=11$
$9363 \cdot 2^{12321}+1$	with 3713 digits	$a=5, a=7$

Since the exponents of the first three numbers are Smarandache number $\operatorname{Sm}(5)=12345$ we can call this type of prime numbers, prime numbers of Smarandache .

Helped by the MATHEMATICA progam, I have also found new prime numbers which are a variant of prime numbers of Fermat. They are the following:

$$
2^{2^{n}} \cdot 3^{2^{n}}-2^{2^{n}}-3^{2^{n}} \text { for } n=1,4,5,7
$$

It is important to mention that for $\mathrm{n}=7$ the number which is obtained has 100 digits.
Chris Nash has verified the values $\mathrm{n}=8$ to $\mathrm{n}=20$, this last one being a number of 815.951 digits, obtaining that they are all composite. All of them have a tiny factor except $\mathrm{n}=13$.

References:

Smarandache Factors and Reverse Factors. Micha Fleuren. Smarandache Notions Journal Vol. 10.

www. gallup.unm.edu/ \sim Smarandache.
The Prime Pages. www. utm.edu/rescarch/primes

Avda. de Regla 43. Chipiona 11550 Spain Smaranda@teleline.es.

