NEW SMARANDACHE ALGEBRAIC STRUCTURES

*G.L. WAGHMARE & S.V. MORE

ABSTRACT

Generally in R³ any plane with equation x + y + z = a, where a is nonzero number, is not a linear space under the usual vector addition and scalar multiplication. If we define new algebraic operations on the plane x + y + z = a it will become a linear space in R³. The additive identity of this linear space has nonzero components.

1.

The plane x + y + z = a touches the x-axis at point A (a.0,0), y-axis at point B (0,a,0) and z-axis at point C (0,0,a). Take triangle ABC as a fixed equilateral triangle known as "triangle of reference."

From any point P in its plane draw perpendiculars PM, PN and PL to AC, AB and BC respectively. Let $\lambda(P,M) = p_1$, $\hat{\lambda}(P,N) = p_2$ and $\hat{\lambda}(PL) = p_3$. These p_1 , p_2 and p_3 are called the trilinear coordinater of point P [Loney 1, Smith 2, Sen 3].

The coordinate p, is positive if P and the vertex B of the triangle are on the same side of

AC and p_1 is negative if P and B are on the opposite sides of AC. So for the other coordinates p_2 and p_3 .

2. Length of each side of the triangle is $\sqrt{2}$ |a| = b (say). 1/2. b .p₁ + 1/2 b .p₂ + 1/2 . b p₃ = 1/2 b . $\sqrt{3}$ / 2. b

 $p_1 + p_2 + p_3 = \sqrt{3} / 2. b = k$ (say).

The trilinear coordinates p_1 , p_2 , p_3 of any point P in the plane whether it is within the triangle or outside the triangle ABC satisfy the relation

$$p_1 + p_2 + p_3 = k \tag{2.1}$$

Thus trilinear coordinates of points A, B and C are (0,0,k), (k,0,0) and (0,k,0) respectively. Trilinear coordinates of the centroid of triangle are (k/3, k/3, k/3).

Now the plane x + y + z = a is a set T of all points p whose trilinear coordinates p_1, p_2, p_3 satisfy the relation $p_1 + p_2 + p_3 = k$. Let $p = (p_1, p_2, p_3)$ and $q = (q_1, q_2, q_3)$ be in T. By usual addition $p + q = (p_1 + q_1, p_2 + q_2, p_3 + q_3) \notin$ T, (3.1) since $(p_1 + q_1) + (p_2 + q_2) + (p_3 + q_3) = (p_1 + p_2 + p_3) + (q_1 + q_2 + q_3) = 2k$ (3.2) By usual scalar multiplication by α , $\alpha p = (\alpha p_1, \alpha p_2, \alpha p_3) \notin$ T, (3.3) since $\alpha p_1 + \alpha p_2 + \alpha p_3 = \alpha (p_1 + p_2 + p_3) = \alpha k$. (3.4) In view of (3.1), (3.2), (3.3) and (3.4) the set T is not closed with respect to the usual vector addition and eacher multiplication is a since $\alpha p_1 + \alpha p_2 + \alpha p_3 = \alpha (p_1 + p_2 + p_3) = \alpha k$.

the usual vector addition and scalar multiplication. Hence it can not become a linear space.

4. Now we shall prove, by defining following new algebraic operations, T is a linear space in which components of additive identity are nonzero.

4.1 Definition Let
$$p = (p_1, p_2, p_3) \& q = (q_1, q_2, q_3)$$
 be in T.
We define:

We define :

3.

a. Equality :

$$p = q$$
 if and only if $p_1 = q_1$, $p_2 = q_2$, $p_3 = q_3$.

b. Sum:

$$p+q = (-k/3 + p_1 + q_1, -k/3 + p_2 + q_2, -k/3 + p_3 + q_3)$$

c. Multiplication by real numbers :

$$\alpha \mathbf{p} = ((1 - \alpha) \mathbf{k}/3 + \alpha \mathbf{p}_1, (1 - \alpha) \mathbf{k}/3 + \alpha \mathbf{p}_2, (1 - \alpha) \mathbf{k}/3 + \alpha \mathbf{p}_3)$$

(\alpha real)

d. Difference :

p-q = p+ (-1) q.

e. Zero vector (centroid of the triangle):

0= (k/3 , k/3 , k/3).

5.1 To every pair of elements p and q in T there corresponds an element p+q, in such a way that

p+q = q+p and p+(q+r) = (p+q) + r. p+0 = p for every $p \in T$.

To each $p \in T$ there exists a unique element - p such that p+(-p) = 0T is an abelien group with respect to vector addition.

5.2 For every α , β ϵ R and p, q ϵ T we have

i) α (β p) = (α β) p

 $ii)\alpha (p+q) = \alpha p + \alpha q,$

III)
$$(\alpha + \beta) q = \alpha q + \beta q$$

iv) 1p = p,

Therefore T is a real linear space.

- Remark .1. The real number k is related with the position of the plane x+y+z=a in \mathbb{R}^3
 - 2. There are infinite number of linear spaces of above kind in R³

References.

1. Loney	S.L.	(1952):	The Elements of coordinate Geometry Part II,
			Macmillan and Co. Ltd.
2. Smith	Charles	(1948):	An Elementary Treatise on conic sections"
			Macmillan and Co. Ltd.
3. Sen B		(1968):	Trilinear Coordinates and Boundry Value Problems,
			Bull. Cal. Math. Soc., 60(1-2), pp. 25-30.

G.L. Waghmare,

Lecturer in Mathematics, Govt. Arts & Science College, Aurangabad.-431 001 (M.S.) India.

S.V. More, Prof. & Head, Department of Mathematics, Institute of Science, R.T.Road, Nagpur-1 (M.S.) India.