NEW SMARANDACHE ALGEBRAIC STRUCTURES

*G.L. WAGHMARE \& S.V. MORE

Abstract

Generally in R^{3} any plane with equation $x+y+z=a$, where a is nonzero number is not a linear space under the usual vector addition and scalar multiplication ! 1 we define new algebraic operations on the plane $x+y+z=a$ it will become a linear space in R^{3}. The additive identity of this linear space has nonzero components.

1. The plane $x+y+z=a$ touches the x-axis at point $A(a, 0,0), y$-axis at point $B(0, a, 0)$ and z-axis at point $C(0,0, a)$. Take triangle $A B C$ as a fixed equilateral triangle known as "triangle of reference."

From any point P in its plane draw perpendiculars $P M, P N$ and $P L$ to $A C, A B$ and $B C$ respectively. Let $\quad \lambda(P M)=p_{1}, \quad \mathcal{L}(P N)=p_{2}$ and $\quad \ell(P L)=p_{3}$. These p_{1}, p_{2} and p_{3} are called the trilinear coordinater of point P [Loney 1, Smith 2, Sen 3 J.

The coordinate p, is positive if P and the
 vertex B of the triangle are on the same side of $A C$ and p_{1} is negative if P and B are on the opposite sides of $A C$. So for the other coordinates p_{2} and p_{3}.
2. Length of each side of the triangle is $\sqrt{2}|a|=b($ say).
$1 / 2$ b $\cdot p_{1}+1 / 2 b \cdot p_{2}+1 / 2 \cdot b p_{3}=1 / 2 b \cdot \sqrt{3} / 2 \cdot b$

$$
\left.p_{1}+p_{2}+p_{3}=\sqrt{3} / 2 \cdot b=k \text { (say }\right) .
$$

The trilinear coordinates p_{1}, p_{2}, p_{3} of any point P in the plane whether it is within the triangle or outside the triangle $A B C$ satisfy the relation

$$
\begin{equation*}
p_{1}+p_{2}+p_{3}=k \tag{2.1}
\end{equation*}
$$

Thus trilinear coordinates of points A, B and C are $(0,0, k),(k, 0,0)$ and $(0, k, 0)$ respectively. Trilinear coordinetes of the centroid of triangle are ($k / 3, k / 3, k / 3$).
3. Now the plane $x+y+z=a$ is a set T of all points p whose trilinear coordinates p_{1}, p_{2}, p_{3} satisfy the relation $p_{1}+p_{2}+p_{3}=k$.

Let $p=\left(p_{1}, p_{2}, p_{3}\right)$ and $q=\left(q_{1}, q_{2}, q_{3}\right)$ be in T.
By usuel addition $p+q=\left(p_{1}+q_{1}, p_{2}+q_{2}, p_{3}+q_{3}\right) \notin T$,
since $\left(p_{1}+q_{1}\right)+\left(p_{2}+q_{2}\right)+\left(p_{3}+q_{3}\right)=\left(p_{1}+p_{2}+p_{3}\right)+\left(q_{1}+q_{2}+q_{3}\right)=2 k$
By usual scalar multiplication by $\alpha, \alpha p=\left(\alpha p_{1}, \alpha p_{2}, \alpha p_{3}\right) \not \& T$,
since $\alpha p_{1}+\alpha p_{2}+\alpha p_{3}=\alpha\left(p_{1}+p_{2}+p_{3}\right)=\alpha k$.
In view of (3.1), (3.2), (3.3) and (3.4) the set T is not closed with respect to the usual vector addition and scalar multiplication. Hence it can not become a linear space.
4. Now we shall prove, by defining following new algebraic operations, T is a linear space in which components of additive identity are nonzero.
4.1 Definition Let $p=\left(p_{1}, p_{2}, p_{3}\right) \& q=\left(q_{1}, q_{2}, q_{3}\right)$ be in T.

We define:
a. Equality :

$$
p=q \text { if and only if } p_{1}=q_{1}, p_{2}=q_{2}, p_{3}=q_{3} .
$$

b. Sum :

$$
p+q=\left(-k / 3+p_{1}+q_{1},-k / 3+p_{2}+q_{2},-k / 3+p_{3}+q_{3}\right)
$$

c. Multiplication by real numbers :

$$
\alpha p=\left((1-\alpha) k / 3+\alpha p_{1},(1-\alpha) k / 3+\alpha p_{2},(1-\alpha) k / 3+\alpha p_{3}\right)
$$

d. Difference:

$$
p-q=p+(-1) q .
$$

e. Zero vector (centroid of the triangle):

$$
0=(k / 3, k / 3, k / 3) .
$$

5.1 To every pair of elements p and q in T there corresponds an element $p+q$, in such a way that

$$
\begin{aligned}
& p+q=q+p \quad \text { and } p+(q+r)=(p+q)+r . \\
& p+0=p \quad \text { for every } p \& T .
\end{aligned}
$$

To each $p \& T$ there exists a unique element $-p$ such that $p+(-p)=0$
T is an abelien group with respect to vector addition.
5.2 For every $\alpha, \beta \in R$ and $p, q \varepsilon T$ we have
i) $\alpha(\beta p)=(\alpha \beta) p$
ii) $\alpha(p+q)=\alpha p+\alpha q$,
iii) $(\alpha+\beta) q=\alpha q+\beta q$
iv) $1 p=p$,

Therefore T is a real linear space.

Remark .1. The real number k is related with the position of the plane $x+y+z=a$ in R^{3}

2. There are infinite number of linear spaces of above kind in R^{3}

References.

1. Loney S.L. (1952):	The Elements of coordinate Geometry Part II,
Macmillan and Co. Ltd.	

G.L. Waghmare , Lecturer in Mathematics,

 Govt. Arts \& Science College , Aurangabad.-431 001 (M.S.) India.S.V. More,

Prot. \& Head, Department of Mathematics, Institute of Science, R.T.Road, Nagpur-1 (M.S.) India.

