Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract

In this note we discuss the primes in Smarandache progressions.

For any positive integer n, let p_{n} denote the $n^{\text {th }}$ prime.
∞
For the fixed coprime positive integers a, b, let $P(a, b)=\left\{a_{n}+b\right\}_{n=1}^{\infty}$. Then $\mathrm{P}(\mathrm{a}, \mathrm{b})$ is called a Smarandache progression.
In [1, Problem 17], Smarandache possed the following questions:
Questions. How many primes belonng to $\mathrm{P}(\mathrm{a}, \mathrm{b})$?
It would seen that the answers of Smarandache's question is different from pairs (a, b). We now give some observable examples as follows:

Example 1. If a, b are odd integers, then $\mathrm{ap}_{\mathrm{n}}+\mathrm{b}$ is an even integer for $\mathrm{n}>1$. It implies that $\mathrm{P}(\mathrm{a}, \mathrm{b})$ contains at most one prime. In particular, $\mathrm{P}(1,1)$ contains only the prime 3.

Exemple 2. Under the assumption of twin prime conjecture that there exist infinitely many primes p such that $p+2$ is also a prime, then the progression $\mathrm{P}(1,2)$ contains infinitely
many primes.
Example 3. Under the assumption of Germain prime conjecture that there exist infinitely many primes p such that
$2 p+1$ is also a prime, then the progression $P(2,1)$ contains infinitely many primes.

Reference

1. F.Smarandache, Only Problems, not Solutions!, Xiquan Pub. House, Phoenix, Chicago, 1990.
