Charles Ashbacher
Charles Ashbacher Technologies
Hiawatha, Iowa USA
e-mail71603.522@compuserve.com

The Smarandache Square-Partial-Digital Subsequence(SSPDS) is the sequence of square integers which can be partitioned so that each element of the partition is a perfect square[1][2][3]. For example, 3249 is in SSPDS since 3249 can be partitioned into $324=18^{2}$ and $9=3^{2}$.

The first terms of the sequence are:
$49,144,169,361,441,1225,1369,1444,1681,1936,3249,4225,4900,11449,12544,14641, \ldots$
where the square roots are
$7,12,13,19,21,35,37,38,41,44,57,65,70,107,112,121, \ldots$
this sequence is assigned the identification code A048653[4].
L. Widmer examined this sequence and posed the following question[2]:

Is there a sequence of three or more consecutive integers whose squares are in SPDS?
For the purposes of this examination, we will assume that 0 is not a perfect square. For example, the number 90 will not be considered as a number that can be partitioned into two perfect squares. Furthermore, elements of the partition are not allowed to have leading zeros. For example, 101 cannot be partitioned into perfect squares.

Russo[5] considered this question and concluded that the only additional solution to the Widmer question up to $3.3 \mathrm{E}+9$ was
n
12225
12226
12227

n^{2}	Partition
149450625	$1,4,9,4,50625$
149475076	$1,4,9,4,75076$
149499529	$1,4,9,4,9,9,529$

and made the following conjecture:
There are no four consecutive integers whose squares are in SSPDS.
The purpose of this short paper is to present several additional solutions to the Widmer question as well as a counterexample to the Russo conjecture.

A computer program was written in the language Delphi Ver. 4 and run for all numbers n, where $\mathrm{n} \leq 100,000,000$ and the following ten additional solutions were found

n	n^{2}	Partition
376779	141962414841	$1,4,1,9,6241,4,841$
376780	141963168400	$1,4,196,3168400$
376781	141963921961	$1,4,196392196,1$

n
n
999055
999056 999057
n
999056
999057
999058

n

2000341
2000342
2000343
n
2063955
2063956
2063957
n
2083941
2083942
2083943
n
4700204
4700205
4700206
n
5500374
5500375
5500376
n
80001024
80001025
80001026
n^{2}
949414435641
949416384400
949418333161
n^{2}
998110893025
998112891136
998114889249
n^{2}
998112891136
998114889249
998116887364
n^{2}
4001364116281
4001368116964
4001372117649

n^{2}

4259910242025
4259914369936
4259918497849
n^{2}
4342810091481
4342814259364
4342818427249
n^{2}
22091917641616
22091927042025
22091936442436
n^{2}
30254114139876
30254125140625
30254136141376

n^{2}

6400163841048576 6400164001050625
6400164161052676

Partition
9, 4, 9, 4, 1, 4, 4356, 4, 1 $9,4,9,4,16,384400$ 9, 4, 9, 4, 1833316, 1

Partition
9, 9, 81, 1089, 3025
9, 9, 81, 1, 289, 1, 1, 36
$9,9,81,1,4,889249$

Partition
9, 9, 81, 1, 289, 1, 1, 36
9, 9, 81, 1, 4, 889249
9, $9,81,16,887364$

Partition
400, 1, 36, 4, 116281
$400,1,36,81,16,9,64$
400,1,3721, 1764,9

Partition
4, 25, 9, 9, 1024, 2025
$4,25,9,9,1,4,36,9,9,36$
$4,25,9,9,1849,784,9$

Partition
43428100, 9, 1, 4, 81 434281, 4, 25, 9, 36, 4 434281, 842724, 9

Partition
$2209,1,9,1764,16,16$ 2209, 1, 9, 2704, 2025
$2209,1,9,36,4,42436$

Partition

3025, 4, 1, 1, 4, 139876
3025, 4, 1, 25, 140625
3025, 4, 1, 36, 141376

Partition
6400, 16384, 1048576
$6400,1,6400,1050625$
$6400,1,64,16,1052676$

n	n^{2}	Partition
92000649	8464119416421201	$8464,1,1,9,4,16,421201$
92000650	8464119600422500	$8464,1,19600,4,22500$
92000651	8464119784423801	$8464,1,1,9,784,423801$

Pay particular attention to the four consecutive numbers $999055,999056,999057$ and 999058 . These four numbers are a counterexample to the conjecture by Russo.

Given the frequency of three consecutive integers whose squares are in SSPDS, the following conjecture is made:

There are an infinite number of three consecutive integer sequences whose squares are in SSPDS.
In terms of larger sequences, the following conjecture also appears to be a safe one:
There is an upper limit to the length of consecutive integer sequences whose squares are in SSPDS.

We close with an unsolved question:
What is the length of the largest sequence of consecutive integers whose squares are in SSPDS?

References

1] Sylvester Smith, "A Set of Conjectures on Smarandache Sequences", Bulletin of Pure and Applied Sciences, (Bombay, India), Vol. 15 E (No. 1), 1996, pp. 101-107.
[2] L.Widmer, "Construction of Elements of the Smarandache Square-Partial-Digital Sequence", Smarandache Notions Journal, Vol. 8, No. 1-2-3, 1997, 145-146.
[3] C. Dumitrescu and V. Seleacu, Some notions and questions in Number Theory, Erhus University Press, Glendale, Arizona, 1994.
[4] N. Sloane, "On-line Encyclopedia of Integer Sequences", http://www.research.att.com/~njas/sequences.
[5] F. Russo, "On An Unsolved Question About the Smarandache Square-Partial-Digital Subsequence" http://www.gallup.unm.edu/-smarandache'russol.htm.

