ON A CONJECTURE CONCERNING THE SMARANDACHE FUNCTION

I.Prodanescu Lahovari College, Rm. Vâlcea, Romania

L.Tutescu

Vladimirescu Military College, Craiova, Romania

Let $S : Z^* \rightarrow N$, S(n) is the smallest integer n such that n! is divisibil by m (Smarandache function), for any $m \in Z^*$.

Then the following Diophantine equation

S(x) = S(x+1), where x > 0, has no solution.

Some remarks: S(1) = 0. Let $a \ge 2$, then $S(a) \ne 0$. Anytime $S(a) \ne 1$, because 1! = 1 = 0! and 1 > 0. Lemma. If $a \ge 2$ and S(a) = b, then $(a,b) \ne 1$. Proof:

Let $a = p_1 \dots p_s$, with all p_i distinct prime numbers, its canonical factor decomposition.

Then
$$S(a) = \max \left\{ S\left(\begin{array}{c} r_1 \\ p_1 \end{array} \right) \dots, S\left(\begin{array}{c} p_s \end{array} \right) \right\}.$$

 $r_1 r_s$

But $S(p_i^{r_i})$ is a multiple of p_i , $\forall i \in \{1, ..., s\}$.

Therefore, $\exists q \in \{p_1, ..., p_s\}$ such that q divides S(a), but q divides a, too. Q.E.D.

These results do not solve the Conjecture 2068 proposed by Florentin Smarandache in 1986 (see [1]) and republished by Mike Mudge in 1992 as problem viii, a) (see [2]).

References:

 R.Muller, "Smarandache Function Journal", New York, Vol. 1., December 1990, 37.
M.Mudge, "The Smarandache Function" in <Personal Computer Word>, London, July 1992, 420. Remark:

Professor Lucian Tutescu considered that this conjecture may be extended for $S(\alpha x + \beta) = S(\gamma x + \delta)$ equations,

where $(\alpha x - \beta, \gamma x + \delta) = 1$ and $\alpha, \beta, \gamma, \delta \in Z$.