ON A CONJECTURE CONCERNING THE SMARANDACHE FUNCTION

I.Prodanescu
Lahovari College, Rm. Vâlcea, Romania
L. Tutescu
Vladimirescu Military College, Craiova, Romania

Let $S: Z^{*}->N, S(n)$ is the smallest integer n such that $n!$ is divisibil by m (Smarandache function), for any $m \in Z^{*}$.
Then the following Diophantine equation

$$
S(x)=S(x+1), \text { where } x>0
$$

has no solution.

Some remarks:
$S(1)=0$. Let $a \geq 2$, then $S(a) \neq 0$.
Anytime $S(a) \neq 1$, because $1!=1=0!$ and $1>0$.
Lemma.
If $a \geq 2$ and $S(a)=b$, then $(a, b) \neq 1$.
Proof:
Let $a=p_{1} \ldots p_{s}, \quad$ with all p_{i} distinct prime numbers, its canonical factor decomposition.
Then $S(a)=\max \left\{S\binom{r_{1}}{p_{1}} \ldots, S\left(p_{s} r_{s}\right)\right\}$.

Therefore, $\Xi q \in\left\{p_{1}, \ldots, p_{s}\right\}$ such that q divides $S(a)$, but q divides a, too. Q.E.D.
These results do not solve the Conjecture 2068 proposed by Florentin Smarandache in 1986 (see [1]) and republished by Mike Mudge in 1992 as problem viii, a) (see [2]).

References:

[1] R.Muller, "Smarandache Function Journal", New York, Vol. 1., December 1990, 37. [2] M.Mudge, "The Smarandache Function" in <Personal Computer Word>, London, July 1992, 420.

Remark:

Professor Lucian Tutescu considered that this conjecture may be extended for $S(\alpha x-\beta)=$ $S(\gamma x-\delta)$ equations,
where $(\alpha x-\beta, \gamma x+\delta)=1$ and $\alpha, \beta, \gamma, \delta \in Z$.

