ON A CONJECTURE OF SMARANDACHE ON PRIME NUMBERS

```
J. Sándor
Department of Mathematics
Babes-Bolyai University
Cluj-Napoca, Romania
```

Let p_{n} denote the n-th prime number. One of Smarandache's conjectures in [3] is the following inequality:

$$
\begin{equation*}
p_{n+1} / p_{n} \leq 5 / 3 \text {, with equality for } n=2 \text {. } \tag{1}
\end{equation*}
$$

Clearly, for $n=1,2,3,4$ this is true, and for $n=2$ there is equality. Let $n>4$. Then we prove that (1) holds true with strict inequality. Indeed, by a result of Dressler, Pigno and Young (see [1] or [2]) we have

$$
\begin{equation*}
p_{n+1}^{2} \leq 2 p_{n}^{2} . \tag{2}
\end{equation*}
$$

Thus $p_{n+1} / p_{n} \leq V_{2} \leq 5 / 3$, since $3 V_{2}<5$ (i.e. $18<25$). This finishes the proof of (1).

References:
[1] R. E. Dressler, L. Pigno and R. Young, Sums of Squares of Primes, Nordisk Mat. Tidskrift 24(1976), 39.
[2] D. S. MitrinoviD and J. Sándor (in coop. with B. Crstici), Handbook of Number Theory, Kluwer Acad. Publ., 1995.
[3] M. L. Perez, editor, Five Smarandache Conjectures on Primes, http://www.gallup.unm.edu/-smarandache/conjprim.txt.

