On a Deconcatenation Problem

Henry Ibstedt

Abstract

In a recent study of the Primality of the Smarandache Symmetric Sequences Sabin and Tatiana Tabirca [1] observed a very high frequency of the prime factor 333667 in the factorization of the terms of the second order sequence. The question if this prime factor occurs peridically was raised. The odd behaviour of this and a few other primefactors of this sequence will be explained and details of the periodic occurence of this and of several other prime factors will be given.

Definition: The nth term of the Smarandache symmetric sequence of the second order is defined by $S(n)=123$...n_n... 321 which is to be understood as a concatenation ${ }^{1}$ of the first n natural numbers concatenated with a concatenation in reverse order of the n first natural numbers.

Factorization and Patterns of Divisibility

The first five terms of the sequence are: $11,1221,123321,12344321,1234554321$. The number of digits $D(n)$ of $S(n)$ is growing rapidly. It can be found from the formula:

$$
\begin{equation*}
D(n)=2 k(n+1)-\frac{2\left(10^{k}-1\right)}{9} \text { for } n \text { in the interval } 10^{k-1} \leq n<10^{k}-1 \tag{1}
\end{equation*}
$$

In order to study the repeated occurrance of certain prime factors the table of $S(n)$ for $n \leq 100$ produced in [1] has been extended to $n \leq 200$. Tabirca's aim was to factorize the terms $\mathrm{S}(\mathrm{n})$ as far as possible which is more ambitious then the aim of the present calculation which is to find prime factors which are less than 10^{8}. The result is shown in table 1 .

The computer file containing table 1 is analysed in various ways. Of the 664579 primes which are smaller than 10^{7} only 192 occur in the prime factoriztions of $S(n)$ for $1 \leq n \leq 200$. Of these 192 primes 37 occur more than once. The record holder is 333667, the 28693th prime, which occurs 45 times for $1 \leq n \leq 200$ while its neighbours 333647 and 333673 do not even occur once. Obviously there is something to be explained here. The frequency of the most frequently occurring primes is shown below..

Table 2. Most frequently occurring primes.

p	3	33367	37	41	271	9091	11	43	73	53	97	31	47
Freg	132	45	41	41	41	29	25	24	14	8	7	6	6

[^0]The distribution of the primes $11,37,41,43,271,9091$ and 333667 is shown in table 3. It is seen that the occurance patterns are different in the intervals $1 \leq n \leq 9,10 \leq n \leq 99$ and $100 \leq n \leq 200$. Indeed the last interval is part of the interval $100 \leq n \leq 999$. It would have been very interesting to include part of the interval $1000 \leq n \leq 9999$ but as we can see from (1) already $S(1000)$ has 5786 digits. Partition lines are drawn in the table to highlight the different intervals. The less frequent primes are listed in table 4 where primes occurring more than once are partitioned.

From the pattems in table 3 we can formulate the occurance of these primes in the intervals $1 \leq n \leq 9,10 \leq n \leq 99$ and $100 \leq n \leq 200$, where the formulas for the last interval are indicative. We note, for example, that 11 is not a factor of any term in the interval $100 \leq n \leq 999$. This indicates that the divisibility patterns for the interval $1000 \leq n \leq 9999$ and further intervals is a completely open question.

Table 5 shows an analysis of the patterns of occurance of the primes in table 1 by interval. Note that we only have observations up to $\mathrm{n}=200$. Nevertheless the interval $100 \leq n \leq 999$ is used. This will be justified in the further analysis.

Table 5. Divisibility patterns

Interval	p	n	Range for j
$\begin{aligned} & 1 \leq n \leq \\ & 1 \leq n \leq \end{aligned}$	3	$\begin{gathered} 2+3 j \\ 3 j \\ \hline \end{gathered}$	$\begin{aligned} & j=0,1, \ldots \\ & j=1,2, \ldots \end{aligned}$
$\begin{gathered} 1 \leq n \leq 9 \\ 10 \leq n \leq 99 \\ 100 \leq n \leq 999 \end{gathered}$	11	$\begin{gathered} \text { All values of } n \\ 12+11 j \\ 20+11 j \\ \text { None } \end{gathered}$	$\begin{array}{ll} j=0,1, & \ldots, 7 \\ j=0,1, & \ldots, 7 \end{array}$
$\begin{gathered} 1 \leq n<9 \\ 10 \leq n \leq 99 \\ 100 \leq n \leq 999 \end{gathered}$	37	$\begin{gathered} 2+3 j \\ 3+3 j \\ 12+3 j \\ 122+37 j \\ 136+37 j \end{gathered}$	$\begin{gathered} j=0,1,2 \\ j=0,1,2 \\ j=0,1, \ldots, 28,29 \\ j=0,1, \ldots, 23 \\ j=0,1,-23 \end{gathered}$
$\begin{gathered} 1 \leq n \leq 9 \\ 10 \leq n \leq 999 \\ \hline \end{gathered}$	41	$\begin{gathered} 4+5 j \\ 5 \\ 14+5 j \\ \hline \end{gathered}$	$\begin{gathered} j=0,1 \\ j=0,1, \ldots, 197 \end{gathered}$
$\begin{gathered} 1 \leq n<9 \\ 10 \leq n \leq 99 \\ 100 \leq n \leq 999 \end{gathered}$	43	$\begin{gathered} \text { None } \\ 11+21 j \\ 24+21 j \\ 100 \\ 107+7 j \end{gathered}$	$\begin{aligned} & j=0,1,3,4 \\ & j=0,1,2,3 \\ & j=0,1, \ldots, 127 \end{aligned}$
$\begin{gathered} 1 \leq n \leq 9 \\ 10 \leq n \leq 999 \end{gathered}$	271	$\begin{gathered} 4+5 j \\ 5 \\ 14+5 j \\ \hline \end{gathered}$	$\begin{gathered} j=0,1 \\ j=0,1,-, 197 \end{gathered}$
$1 \leq n \leq 999$	9091	9+5j	j=0,1,... 98
$\begin{gathered} 1 \leq n \leq 9 \\ 10 \leq n \leq 99 \\ 100 \leq n \leq 999 \end{gathered}$	333667	$\begin{gathered} 8,9 \\ 18+9 j \\ 102+3 j \\ \hline \end{gathered}$	$\begin{gathered} j=0,1, \ldots, 9 \\ j=0,1, \ldots, 299 \end{gathered}$

We note that no terms are divisible by 11 for $n>100$ in the interval $100 \leq n \leq 200$ and that no term is divisible by 43 in the interval $1 \leq n \leq 9$. Another remarkable observation is that the sequence shows exactly the same behaviour for the primes 41 and 271 in the intervals included in the study. Will they show the same behaviour when $n \geq 1000$?

Consider

$$
S(n)=12 \ldots n _n \ldots 21 .
$$

Let p be a divisor of $S(n)$. We will construct a number
$\mathrm{N}=12 . . \mathrm{n}$ _0..0_n... 21
so that p also divides N . What will be the number of zeros? Before discussing this let's consider the case $\mathrm{p}=3$.

Case 1. $\mathrm{p}=3$.
In the case $\mathrm{p}=3$ we use the familiar rule that a number is divisible by 3 if and only if its digit sum is divisible by 3 . In this case we can insert as many zeros as we like in (2) since this does not change the sum of digits. We also note that any integer formed by concatenation of three consecutive integers is divisible by 3 , cf $a_{-} a+1 _a+2$, digit sum $3 a+3$. It follows that also $a _a+1 _a+2 _a+2 _a+1 _a$ is divisible by 3 . For $a=n+1$ we insert this instead of the appropriate number of zeros in (2). This means that if $S(n)=0$ $(\bmod 3)$ then $S(n+3) \equiv 0(\bmod 3)$. We have seen that $S(2)=0(\bmod 3)$ and $S(3)=0(\bmod$ 3). By induction it follows that $S(2+3 j) \equiv 0(\bmod 3)$ for $j=1,2, \ldots$ and $S(3 j) \equiv 0(\bmod 3)$ for $j=1,2, \ldots$.

We now return to the general case. $S(n)$ is deconcatenated into two numbers $12 \ldots n$ and $n . . .21$ from which we form the numbers

$$
\mathrm{A}=12 \ldots \mathrm{n} \cdot 10^{1+\left[\log _{10} \mathrm{~B}\right]} \text { and } \mathrm{B}=\mathrm{n} \ldots 21
$$

We note that this is a different way of writing $S(n)$ since indeed $A+B=S(n)$ and that $A+B \equiv 0(\bmod p)$. We now form $M=A \cdot 10^{s}+B$ where we want to determine s so that $\mathrm{M} \equiv 0(\bmod \mathrm{p})$. We write M in the form $\mathrm{M}=\mathrm{A}\left(10^{s}-1\right)+\mathrm{A}+\mathrm{B}$ where $\mathrm{A}+\mathrm{B}$ can be ignored $\bmod p$. We exclude the possibility $A \equiv 0(\bmod p)$ which is not interesting. This leaves us with the congruence
$\mathrm{M} \equiv \mathrm{A}\left(10^{5}-1\right) \equiv 0(\bmod \mathrm{p})$
or
$10^{s}-1 \equiv 0(\bmod p)$
We are particularly interested in solutions for which
$p \in\{11,37,41,43,271,9091,333667\}$
By the nature of the problem these solutions are periodic. Only the two first values of s are given for each prime.

Table 6. $10^{-1}-1 \equiv 0(\bmod p)$

p	3	11	37	41	43	271	9091	33367
s	1,2	2,4	3,6	5,10	21,42	5,10	10,20	9,18

We note that the result is independent of n. This means that we can use n as a parameter when searching for a sequence $C=n+1 _n+2 \ldots \ldots n+k_{-} n+k_{-} \ldots n+2 _n+1$ such that this is also divisible by p and hence can be inserted in place of the zeros to form $S(n+k)$ which then fills the condition $S(n+k) \equiv 0(\bmod p)$. Here k is a multiple of s or $s / 2$ in case s is even. This explains the results which we have already obtained in a different way as part of the factorization of $S(n)$ for $n \leq 200$, see tables 3 and 5 . It remains to explain the periodicity which as we have seen is different in different intervals $10^{\prime \prime} \leq n \leq 10^{2}-1$.

This may be best done by using concrete examples. Let us use the sequences starting with $\mathrm{n}=12$ for $\mathrm{p}=37, \mathrm{n}=12$ and $\mathrm{n}=20$ for $\mathrm{p}=11$ and $\mathrm{n}=102$ for $\mathrm{p}=333667$. At the same time we will illustrate what we have done above.

Case 2: $\mathrm{n}=12, \mathrm{p}=37$. Period=3. Interval: $10 \leq \mathrm{n} \leq 99$.

```
S(n)=123456789101112_121110987654321
N= 123456789101112000000000000121110987654321
C= 131415151413
S(n+k) =123456789101112131415151413121110987654321
```

Let's look at C which carries the explanation to the periodicity. We write C in the form

$$
C=101010101010+30405050403
$$

We know that $\mathrm{C} \equiv 0(\bmod 37)$. What about 101010101010 ? Let's write
$101010101010=10+10^{3}+10^{5}+\ldots+10^{11}=\left(10^{12}-1\right) / 9 \equiv 0(\bmod 37)$
This congruence mod 37 has already been established in table 6. It follows that also $30405050403 \equiv 0$ (mod 37)
and that
$x \cdot(101010101010) \equiv 0(\bmod 37)$ for $x=$ any integer
Combining these observations we se that 232425252423, 333435353433, .. $939495959493 \equiv 0(\bmod 37)$

Hence the periodicity is explained.
Case 3a: $\mathrm{n}=12, \mathrm{p}=11$. Period=11. Interval: $10 \leq \mathrm{n} \leq 99$.

$$
\begin{aligned}
& S(12)=12 \ldots 12 \quad 12 \ldots 21 \\
& S(23)=12 \ldots-12 \overline{1314151617181920212223232221201918171615141312 \ldots-\ldots 21} \\
& C=\quad 13141516171819202122232322212019181716151413= \\
& \mathrm{Cl}=\quad 10+ \\
& \mathrm{C}=\quad 3040506070809101112131312111009080706050403
\end{aligned}
$$

From this we form
$2 \cdot \mathrm{Cl}+\mathrm{C} 2=$
23242526272829303132333332313029282726252423
which is NOT what we wanted, but $\mathrm{Cl} \equiv 0(\bmod 11)$ and also $\mathrm{C} 1 / 10 \equiv 0(\bmod 11)$.
Hence we form

$$
2 \cdot C 1+C 1 / 10+C 2=24252627282930313233343433323130292827262524
$$

which is exactly the C-term required to form the next term $S(34)$ of the sequence. For the next term $\mathrm{S}(45)$ the C -term is formed by $3 \cdot \mathrm{Cl}+2 \cdot \mathrm{C} 1 / 10+\mathrm{C} 2$ The process is repeated adding $\mathrm{Cl}+\mathrm{C} 1 / 10$ to proceed from a C -term to the next until the last term <100, i.e. $S(89)$ is reached.

Case 3b: $\mathrm{n}=20, \mathrm{p}=11$. Period=11. Interval: $10 \leq \mathrm{n} \leq 99$.
This case does not differ much from the case $n=12$. We have

The C-term for $S(42)$ is
$3 \cdot C 1+C 1 / 10+C 2=32333435363738394041424241403938373635343332$
In general $\mathrm{C}=\mathrm{x} \cdot \mathrm{Cl}+(\mathrm{x}-1) \cdot \mathrm{C} 1 / 10+\mathrm{C} 2$ for $\mathrm{x}=3,4,5, \ldots, 8$. For $\mathrm{x}=8$ the last term $\mathrm{S}(97)$ of this sequence is reached.

Case 4: $n=102, p=333667$. Period=3. Interval: $100 \leq n \leq 999$.

```
S(102)=12_\cdots_101102 102101_.._21
S(105)=12_.._101102103104105105104103102101_.._21
C= 103104105105104103 - =0 (mod 333667)
C1= 100100100100100100 #0 (mod 333667)
C2= 3004005005004003 =0 (mod 333667)
```

Removing 1 or 2 zeros at the end of Cl does not affect the congruence modulus 333667, we have:

$C 1^{\prime}=$	10010010010010010	$\equiv 0(\bmod 333667)$
$C 1^{\prime \prime}=$	1001001001001001	$\equiv 0(\bmod 333667)$

We now form the combinations:
$\mathrm{x} \cdot \mathrm{C} 1+\mathrm{y} \cdot \mathrm{C} 1^{\prime}+\mathrm{z} \cdot \mathrm{C} 1^{\prime \prime}+\mathrm{C} 2=0(\bmod 333667)$
This, in my mind, is quite remarkable: All 18 -digit integers formed by the concatenation of three consecutive 3 -digit integers followed by a concatenation of the same integers in descending order are divisible by 333667, example $376377378378377376=0(\bmod 333667)$. As far as the C-terms are concerned all S(n) in the range $100 \leq n \leq 999$ could be divisible by 333667, but they are not. Why? It is because $S(100)$ and $S(101)$ are not divisible by 333667 . Consequently $n=100+3 k$ and $101+3 \mathrm{k}$ can not be used for insertion of an appropriate C -value as we did in the case of $S(102)$. This completes the explanation of the remarkable fact that every third term $\mathrm{S}(102+3 \mathrm{j})$ in the range $100 \leq n \leq 999$ is divisible by 333667 .

These three cases have shown what causes the periodicity of the divisibility of the Smarandache symmetric sequence of the second order by primes. The mechanism is the same for the other periodic sequences.

Beyond 1000

We have seen that numbers of the type:
10101010..10, 100100100..100, 10001000...1000, etc
play an important role. Such numbers have been factorized and the occurrence of our favorite primes 11, 37, $\ldots, 333667$ have been listed in table 7 . In this table a number like 100100100100 has been abbreviated $4(100)$ or $q(E)$, where q and E are listed in separate columns.

Question 1. Does the sequence of terms $\mathrm{S}(\mathrm{n})$ divisible by 333667 continue beyond 1000 ?

Although $\mathrm{S}(\mathrm{n})$ was partially factorized only up $\mathrm{n}=200$ we have been able to draw conclusions on divisibility up $\mathrm{n}=1000$. The last term that we have found divisible by 333667 is $S(999)$. Two conditions must be met for there to be a sequence of terms divisible by $\mathrm{p}=333667$ in the interval $1000 \leq n \leq 9999$.

Condition 1. There must exist a number 10001000 ... 1000 divisible by 333667 to ensure the periodicity as we have seen in our case studies.
In table 7 we find $\mathrm{q}=9, \mathrm{E}=1000$. This means that the periodicity will be $9-$ if it exists, i.e. condition 1 is met.

Condition 2. There must exist a term $\mathrm{S}(\mathrm{n})$ with $\mathrm{n} \geq 1000$ divisible by 333667 which will constitute the first term of the sequence.
The last term for $n<1000$ which is divisible by 333667 is $S(999)$ from which we build S(108) =12...999_1000_-_1008_1008_-1000_999-..21
where we deconcatenate $1000 \overline{1001} 100 \overline{2} \ldots 10081008 . . .10011000$ which is divisible by 333667 and provides the C-term (as introduced in the case studies) needed to generate the sequence, i.e. condition 2 is met.

We conclude that $\mathrm{S}(1008+9 \mathrm{j})=0(\bmod 333667)$ for $\mathrm{j}=0,1,2, \ldots 999$. The last term in this sequence is $\mathrm{S}(9999)$. From table 7 we see that there could be a sequence with the period 9 in the interval $10000 \leq n \leq 99999$ and a sequence with period 3 in the interval $100000 \leq n<999999$. It is not difficult to verify that the above conditions are filled also in these intervals. This means that we have:

$$
\begin{array}{ll}
S(1008+9 j)=0(\bmod 333667) & \text { for } j=01,2, \ldots, 999, \text { i.e. } 10^{3} \leq n \leq 10^{4}-1 \\
S(10008+9 j)=0(\bmod 333667) & \text { for } j=01,2, \ldots, 9999, \text { i.e. } 10^{4} \leq n \leq 10^{5}-1 \\
S(100002+3 j)=0(\bmod 333667) & \text { for } j=01,2, \ldots, 99999, \text { i.e. } 10^{5} \leq n \leq 10^{6}-1
\end{array}
$$

It is one of the fascinations with large numbers to find such properties. This extraordinary property of the prime 333667 in relation to the Smarandache symmetric sequence probably holds for $n>10^{6}$. It easy to loose contact with reality when plying with numbers like this. We have $S(999999)=0(\bmod 333667)$. What does this number $\mathrm{S}(999999)$ look like? Applying (1) we find that the number of digits $\mathrm{D}(999999$) of $\mathrm{S}(999999)$ is

$$
D(999999)=2 \cdot 6 \cdot 10^{6}-2 \cdot\left(10^{6}-\right) / 9=11777778
$$

Let's write this number with 80 digits per line, 60 lines per page, using both sides of the paper. We will need 1226 sheets of paper - more that 2 reams!

Question 2. Why is there no sequence of $\mathrm{S}(\mathrm{n})$ divisible by 11 in the interval $100 \leq n \leq 999$?

Conditionl. We must have a sequence of the form 100100 .: divisible by 11 to ensure the periodicity. As we can see from table 7 the sequence 100100 fills the condition and we would have a periodicity equal to 2 if the next condition is met.

Condition 2. There must exist a term $\mathrm{S}(\mathrm{n})$ with $\mathrm{n} \geq 100$ divisible by 11 which would constitute the first term of the sequence. This time let's use a nice property of the prime 11:
$10^{3} \equiv(-1)^{s}(\bmod 11)$
Let's deconcatenate the number $a _b$ corresponding to the concatenation of the numbers a and b: We have:

$$
a-b=a \cdot 10^{1+\left[\log _{10} b\right]}+b=\left\{\begin{array}{l}
-a+b \text { if } 1+\left[\log _{10} b\right] \text { is odd } \\
\left\{a+b \text { if } 1+\left[\log _{10} b\right]\right. \text { is even }
\end{array}\right.
$$

Let's first consider a deconcatenated middle part of $S(n)$ where the concatenation is done with three-digit integers. For convienience I have chosen a concrete example the generalization should pose no problem

```
273274275275274273\equiv2-7+3-2+7-4+2-7+5-2+7-5+2-7+4-2+7-3=0 (mod 11)
+-+-+-+-++++-+-+-++
```

It is easy to see that this property holds independent of the length of the sequence above and whether it start on + or - . It is also easy to understand that equivalent results are obtained for other primes although factors other than +1 and -1 will enter into the picture.

We now retum to the question of finding the first term of the sequence. We must start from $n=97$ since $S(97)$ it the last term for which we know that $S(n) \equiv 0(\bmod 11)$. We form:

```
9899100101_n_n_1011009998=2 (mod 11) independent of n<1000.
+-+-+++-+-- - --+-++-+-+++-
```

This means that $\mathrm{S}(\mathrm{n})=2(\bmod 11)$ for $100 \leq n \leq 999$ and explains why there is no sequence divisible by 11 in this interval.

Question 3. Will there be a sequence divisible by 11 in the interval $1000 \leq n \leq 9999$?
Condition 1. A sequence 10001000 ... 1000 divisible by 11 exists and would provide a period of 11, se table 7 .

Condition 2. We need to find one value $n \geq 1000$ for which $S(n)=0(\bmod 11)$. We have seen that $S(999) \equiv 2$ (mod 11). We now look at the sequences following $S(999)$. Since $S(999) \equiv 2(\bmod 9)$ we need to insert a sequence $10001001 . . \mathrm{m}$ _m... $10011000=9$ $(\bmod 11)$ so that $S(m)=0(\bmod 11)$. Unfortunately m does not exist as we will see below

```
10001000\equiv2 (mod 11)
+-+-+-+-
1 1
1000100110011000\equiv2. (mod 11)
+-+-+-+-+-+-+-+-
1 1 1 1
    1 1
100010011002100210011000\equiv0 (mod Il)
+-+-+-+-+-+-+-+-+++-+-+-
1 1 1 1 2 1 2 2 1 1
10001001100210031003100210011000 =-4\equiv7 (mod 11)
+-+-+-+-+-+-+-+-+++-++-+-+-+-+-+
\(1 \quad 11_{1}^{1} 2_{3}^{1} 3_{3}^{1} 2_{1}^{1} 1^{1}\)
```

Continuing this way we find that the residues form the period $2,2,0,7,1,4,5,4,1,7,0$. We needed a residue to be 9 in order to build sequences divisible by 9 . We conclude that $S(n)$ is not divisible by 11 in the interval $1000 \leq n \leq 9999$.

Trying to do the above analysis with the computer programs used in the early part of this study causes overflow because the large integers involved. However, changing the approach and performing calculations modulus 11 posed no problems. The above method was preferred for clarity of presentation.

Epilog

There are many other questions that may be interesting to look into. This is left to the reader. The author's main interest in this has been to develop means by which it is possible to identify some properties of large numbers other than the so frequently asked question as to whether a big number is a prime or not. There are two important ways to generate large numbers that I found particularly interesting - iteration and concatenation. In this article the author has drawn on work done previously, references below. In both these areas very large numbers may be generated for which it may be impossible to find any practical use - the methods are often more important than the results.

References:

1. Tabirca, S. and T., On Primality of the Smarandache Symmetic Sequences, Smarandache Notions Journal, Vol. 12, No 1-3 Spring 2001, 114-121.
2. Smarandache F., Only Problems, Not Solutions, Xiquan Publ., Pheonix-Chicago, 1993.
3. Ibstedt H. Surfing on the Ocean of Numbers, Erhus University Press, Vail, 1997.
4. Ibstedt H, Some Sequences of Large Integers, Fibonacci Quarterly, 28(1990), 200-203.

Table 1. Prime factors of $S(n)$ which are less than 10°

n Prime factors of S (n)	n Prime factors of S(n)
111	51 3.37.1847.F180
23.11 .37	52 FI90
3 3.11.37.101	$533^{3} .11 .43 .26539 .17341993 .7178$
411.41 .101 .271	$543^{3} .37 .41 .151 .271 .347 .463 .9091 .333667 . F 174$
5 3.7.11.13.37.41.271	55 67.F200
6 3.7.11.13.37.239.4649	56 3.11.F204
711.73 .101 .137 .239 .4649	57 3.31.37.F206
$8 \quad 3^{2} .11 .37 .73 .101 .137 .333667$	58 227.9007.20903089.F200
$93^{2} .11 .37 .41 .271 .9091 .333667$	59 3.41.97.271.9091.F207
10 F22	60 3.37.3368803.F213
11 3.43.97.548687.F16	61 91719497.6218
12 3.11.31.37.61.92869187.F15	$623^{2} .1693 . F 225$
$13109.3391 .3631 . \mathrm{F} 24$	$63 \quad 3^{2} .37 .305603 .333667 .9136499 . \mathrm{F} 213$
14 3.41.271.9091.290971.F24	64 11.41.271.9091. F 229
15 3.37.661.F37	65 3.839.F238
16 F46	66 3.37.43.F242
17 3.F49	$6711^{2} .109 .467 .3023 .4755497 . \mathrm{F} 233$
$18 \quad 3^{2} .37 .1301 .333667 .6038161 .87958883$. F28	$68 \quad 3.97 .5843 . \mathrm{F} 247$
19 41.271.9091.F50	69 3.37.41.271.787.9091.716549.19208653.F232
20 3.11.97.128819.F53	70 F262
21 3.37.983.F61	71 3.F265
22 67.773.F65	$723^{2} .31 .37 .61 .163 .333667 .77696693 .7248$
23 3.11.7691.F68	73 379.323201.F266
24 3.37.41.43.271.9091.165857.F61	74 3.412 ${ }^{2} .43^{2} .179 .271 .9091 .8912921 . F 255$
25 227.2287.33871.611999.F66	75 3.11.37.443.F276
$263^{3} .163 .5711 .68432503 . \mathrm{F7} 0$	761109.5283
$273^{3} .31 .37 .333667 .481549$. F74	77 3.10034243.F282
$28146273.608521 . \mathrm{F83}$	78 3.11.37.71.41549.F284
29 3.41.271.9091.F89	79 41.271.9091.F290
30 3.37.5167.F96	80 3.F300
$3111^{3} .4673 .599$	$813^{5} \cdot 37.333667 .4274969 . F 289$
32 3.43.1021.F104	82 F310
33 3.37.881.F109	83 3.20399.5433473.F302
34 11.41.271.9091.F109	84 3.37².41.271.9091.F306
$35 \quad 3^{2} .3209 .8117$	851783.627041 .5313
$36 \quad 3{ }^{2} .37 .333667 .68697367 . F 110$	86 3.11.F324
37 F130	87 3.31.37.43.F324
383.1913 .12007 .58417 .597269 .63800419 . F107	88 67.257.46229.F325
39 3.37.41.271.347.9091.23473.F121	$893^{2} .11 .41 .271 .9091 .653659 .76310887 . \mathrm{F} 314$
40 F142	$903^{2} .37 .244861 .333667 . F 328$
41 3.156841.F140	91 173.F343
42 3.11.31.37.61.20070529.F136	$923 . \mathrm{F} 349$
43 71.5087.F148	93 3.37.1637.F348
$443^{2} .41 .271 .9091 .1553479 . F 142$	94 41.271.9091.10671481.F343
$453^{2} .11 .37 .43 .333667 .6151$	95 3.43.2833.F356
46 F166	96 3.37.683.F361
47 3.F169	9711.26974499. F361
48 3.37.173.60373.F165	$98 \quad 3^{2} .1299169 .5367$
4941.271 .929 .9091 .34613 .5162	$993^{2} .37 .41 .271 .2767 .9091 .263273 .333657 .4814$ 17. F347
$503.167 .1789 .9923 . F 172$	10043.47 .53 .83 .683 .3533 .4919 .5367

Table 1 continued

n Prime factors of S(n)	n Prime factors of $S(\mathrm{n})$
1013.5389	15147.5783 .405869 .5679
102 3.149.21613.106949.333667.F378	$1523^{2} .53 .5693$
10345823.5397	$1533^{2} .359 .39623 .333667 .7192681 . \mathrm{F681}$
104 3.41.271.28813.F399	154 41.73.271.487.14843.F695
$1053.47 .333667 .11046661 . F 399$	155 3.14717.F709
10673.167 .5416	$\begin{aligned} & 156 \begin{array}{l} 3.43 .601 .1289 .14153 .333667 .1479589 .11337 C \\ 23 . F 689 \end{array} \end{aligned}$
$1073^{3} .43 .1447 .1741 .28649 .161039 . F 406$	157 F726
$1083^{3} .569 .333667 . F 422$	1583.49055933 .5723
$10941.271 .367 .9091 . \mathrm{F427}$	159 3.37.41.271.347.9091.333667.F719
1103.5443	16097.179 .1277 .5736
111 3.313.333667.F441	$1613^{4} .3251 .75193 .496283 . F 734$
$112 \mathrm{E456}$	$1623^{4} .73 .26881 .28723 .333667 .3211357 . F 731$
113 3.53.71.2617.52081.F449	16343.1663 .5757
114 3.41.43.73.271.333667.F454	164 3.41.271.136319.F758
115 2309.F470	165 3.53.83.919.184859.333667.3014983.F749
1163.5479	1661367.1454371 .5770
$1173^{2} .333667 .4975757 .5472$	1673 . F785
118167.11243 .13457 .414367 .5476	168 3.19913.333667.F781
119 3.41.271.9091.132059.182657.F479	16941.271 .2273 . 9091.F786
```120 3.1511.7351.20431.167611.333667.572282 99.F473```	$1703^{2} .43 .73 .967 .5796$
$12143.501233 . \mathrm{F5} 02$	$1713^{2} .333667 .5803$
122 3.37.73.2659.F508	172643.96293 .325681 .7607669 .F795
123 3.112207.333667.F511	173 3.37.F820
$12441.83 .271 .367 .37441 . \mathrm{F514}$	174 3.41.271.19423.333667.F813
125 3.F533	$1753607.20131291 . \mathrm{F823}$
$1263^{2} .53 .333667 .395107 .972347 .5520$	1763.7839
127 F546	1773.43 .173 .333667 .7836
128 3.43.97.179.181.347.F540	17853.73 .11527 .461317 .7838
129 3.41.271.9091.333667.F544	$1793^{2} .41 .271 .1033 .9091 .7846$
13073.313 .275083 .5554	$1803^{2} .2861 .26267 .333667 .1894601 . F 843$
131 3.263.12511.210491.95558129.F549	181 F 70
1323.333667 .5570	182 3.83.2417.F870
133 F582	183 3.71.1097.333667.F871
$1343^{3} .41 .173 .271 .7580$	$18441.43 .271 . \mathrm{FB82}$
$1353^{3} .43 .59 .333667 . F 583$	185 3.317371.F888
$13637 . \mathrm{F} 998$	186 3.73.333667.F892
1373.5605	1875906
1383.73 .28817 .333667 .7599	$1883^{3} .181 .1129 .5179 .5901$
13941.53 .271 .9091 .19433 .5604	$1893^{3} .41 .271 .9091 .13627 .333667 .7898$
1403.380623 .7618	190 194087.F918
141 3.83.257.1091.333667.29618101.F609	1913.43 .53 .401 .8923
14243.5634	192 3.47.97.333667.14445391.F919
$1433^{2} .8922281 . F 634$	193 59.F940
$1443^{2} .41 .59 .271 .1493 .333667 . \mathrm{F} 632$	1943.41 .73 .271 .487 .42643 .F934
$145977.22811 .5199703 . \mathrm{F} 640$	$1953.179533 .333667 . \mathrm{F9} 42$
1463.47 .73 .5656	$19637.661 . F 955$
1473.1483 .2341 .333667 .5653	$1973^{2} .47 .18427 .6309143 .32954969 . F 944$
$14871.14271083 .47655077 . F 655$	$1983^{2} .43^{2} .333667 . F 962$
1493.41 .43 .271 .9091 .5667	$19941.271 .9091 .10151 .719779 . F 960$
$1503.333667 . F 678$	$2003.4409 . \mathrm{F979}$

Table 3. Smarandache Symetric Sequence of Second Order: The most frequently occurring prime factors.


Table 4. Smarandache Symmetric Sequence of Second Order: Less frequently occurring prime factors.

\# p d	\# p d	\# p d	\# p	d	\#	p	d	\#	$p$	d	\#	p
57	773	50167	15661		147	2341		154	14843		24	165857
$6 \quad 71$	$8 \quad 73$	10616756	196561		182	2417		197	18427		120	167611
513	$10673 \quad 98$	11816712	96683		113	2617		174	19423		195	179533
$6 \quad 131$	11473	$\begin{array}{lll}48 & 173\end{array}$	100683		122	2659		139	19433		119	182657
1231	$\begin{array}{llll}122 & 73 & 8\end{array}$	$91 \begin{array}{lllll} & 173\end{array}$	$22 \quad 773$		99	2767		168	19913		165	184859
$\begin{array}{lll}27 & 31 & 15\end{array}$	$\begin{array}{llll}130 & 73 & 8\end{array}$	13417343	$69 \quad 787$		95	2833		83	20399		190	194087
$\begin{array}{llll}42 & 31 & 15\end{array}$	$\begin{array}{lll}138 & 73 & 8\end{array}$	17717343	$65 \quad 839$		180	2861		120	20431		131	210491
$\begin{array}{llll}57 & 31 & 15\end{array}$	$\begin{array}{llll}146 & 73 & 8\end{array}$	74179	33881		67	3023		102	21613		90	244861
$\begin{array}{llll}72 & 31 & 15\end{array}$	$\begin{array}{llll}154 & 73 & 8\end{array}$	12817954	165919		35	3209		145	22811		99	263273
87 31 15   100 47	162738	16017932	49929		161	3251		39	23473		130	275083
10047	$\begin{array}{llll}170 & 73 & 8\end{array}$	128181	170967		13	3391		180	26267		14	290971
105475	17873	188181	145977		100	3533		53	26539		63	305603
1464741	186738	$25 \quad 227$	21983		175	3607		162	26881		185	317371
$\begin{array}{llll}151 & 47 & 5\end{array}$	194738	58227	321021		13	3631		107	28649		73	323201
1924741	10083	$6 \quad 239$	1791033		200	4409		162	28723		172	325681
$\begin{array}{llll}197 & 47 & 5\end{array}$	$\begin{array}{llll}124 & 83 & 24\end{array}$	$7 \quad 239$	1411091		6	4649		104	28813		140	380623
10053	$\begin{array}{llll}141 & 83 & 17\end{array}$	$88 \quad 257$	1831097		7	4649		138	28817		126	395107
$\begin{array}{lll}113 & 53 & 13\end{array}$	$\begin{array}{llll}165 & 83 & 24\end{array}$	141257	761109		31	4673		25	33871		151	405869
$\begin{array}{llll}126 & 53 & 13\end{array}$	$\begin{array}{llll}182 & 83 & 17\end{array}$	131263	1881129		100	4919		49	34613		118	414367
$\begin{array}{llll}139 & 53 & 13\end{array}$	1197	111313	1601277		43	5087		124	37441		178	461317
$\begin{array}{llll}152 & 53 & 13\end{array}$	$20 \quad 979$	130313	1561289		30	5167		153	39623		99	481417
$\begin{array}{llll}165 & 53 & 13\end{array}$	$59 \quad 97 \quad 39$	$\begin{array}{ll}39 & 347\end{array}$	181301		188	5179		78	41549		27	481549
$\begin{array}{llll}178 & 53 & 13\end{array}$	$\begin{array}{llll}68 & 97 & 9\end{array}$	54 347   15	1661367		26	5711		194	42643		161	496283
$\begin{array}{llll}191 & 53 & 13\end{array}$	1289760	12834774	1071447		151	5783		103	45823		121	501233
13559	$\begin{array}{llll}160 & 97 & 32\end{array}$	15934731	1471483		68	5843		88	46229		11	548687
144599	$19297 \quad 32$	153359	1441493		120	7351		113	52081		38	597269
$193 \quad 59 \quad 49$	3101	109367	1201511		23	7691		38	58417		28	608521
1261	41011	124367	931637		58	9007		48	60373		25	611999
426130	$\begin{array}{llll}7 & 101\end{array}$	$\begin{array}{ll}73 & 379\end{array}$	1631663		50	9923		161	75193		85	627041
$\begin{array}{llll}72 & 61 & 30\end{array}$	881011	191401	621693		199	10151		172	96293		89	653659
2267	13109	75443	1071741		118	11243		1021	106949		69	716549
$\begin{array}{llll}55 & 67 & 33\end{array}$	67109	54463	851783		178	11527		1231	112207		199	719779
$\begin{array}{llll}88 & 67 & 33\end{array}$	$\begin{array}{ll}7 & 137\end{array}$	67467	501789		38	12007		201	228819		126	972347
4371	$8 \quad 137$	54487	511847		131	12511		11913	132059			
$78 \quad 71$	102149	194487	381913		1181	13457		1641	136319			
1137135	$\begin{array}{lll}54 & 151\end{array}$	569	1692273		1891	13627		281	146273			
$\begin{array}{llll}148 & 71 & 35\end{array}$	26163	156601	252287		1561	14153		41 i	156841			
$183 \quad 71 \quad 35$	72163	172643	1152309		1551	14717		1071	161039			

Table 7. Prime factors of $q(E)$ and occurrence of selected primes

9	\%	Prime factors <350000	Selected primes
2	10	2.5.101	
3	10	2.3.5.7.13.37	37
4	10	2.5.73.101.137	
5	10	2.5.41.271.9091	41,271,9091
6	10	2.3.5.7.13.37.101.9901	37,9091
7	10	2.5.239.4649.	
8	10	2.5.17.73.101.137.	
9	10	2. $3^{2} \cdot 5 \cdot 7.13 .19 .37 .52579 .333667$	333667
10	10	2.5.41.101.271.3541.9091.27961	41,271,9091
11	10	2.5.11.23.4093.8779.21649.	11
12	10	2.3.5.7.13.37.73.101.137.9901.	37
13	10	2.5.53.79.859.	
14	10	2.5.29.101.239.281.4649.	
15	10	2.3.5.7.13.31.37.41.211.241.271.2161.9091.	37,41,271,9091
16	10	2.5.17.73.101.137.353.449.641.1409.69857.	
2	100	$2^{2} \cdot 5^{2} \cdot 7.11 .13$	11
3	100	$2^{2} \cdot 3.5^{2} \cdot 333667$	333667
4	100	$2^{2} \cdot 5^{2} \cdot 7.11 .13 .101 .9901$	11
5	100	$2^{2} .5^{2} .31 .41 .271$.	41,271
6	100	$2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11.13 .19 .52579 .333667$	11,333667
7	100	$2^{2} .5^{2} .43 .239 .1933 .4649$.	43
8	100	$2^{2} \cdot 5^{2} \cdot 7.11 .13 .73 .101 .137 .9901$.	11,73
9	100	$2^{2} \cdot 3^{2} \cdot 5^{2} .757 .333667$.	333667
10	100	$2^{2} \cdot 5^{2} \cdot 7.11 .13 .31 .41 .211 .241 .271 .2161 .9091$.	11,41,271,9091
11	100	$2^{2} \cdot 5^{2}$. 67.21649.	
12	100	$2^{2} \cdot 3 \cdot 5^{2} \cdot 7.11 .13 .19 .101 .9901 .52579 .333667$.	11,333667
2	1000	$2^{3} \cdot 5^{3} \cdot 73 \cdot 137$	
3	1000	$2^{3} \cdot 3.5^{3} \cdot 7.13 .37 .9901$	37
4	1000	$2^{3} \cdot 5^{3} \cdot 17.73 .137$.	
5	1000	$2^{3} \cdot 5^{3} \cdot 41.271 .3541 .9091 .27961$	41,271,9091
6	1000	$2^{3} \cdot 3.5^{3} \cdot 7.13 .37 .73 .137 .9901$.	37
7	1000	$2^{3} .5^{3}$. 29.239 .281 .4649 .	
8	1000	$2^{3} \cdot 5^{3} \cdot 17.73 .137 .353 .449 .641 .1409 .69857$.	
9	1000	$2^{3} \cdot 3^{2} \cdot 5^{3} \cdot 7.13 .19 .37 .9901 .52579 .333667$.	37,333667
10	1000	$2^{3} \cdot 3.5^{3}$. 41.73 .137 .271 .3541 .9091 .27961.	41,271,9091
11	1000	$2^{3}$. $5^{3}$.11.23.89.4093.8779.21649.	11
2	10000	24.54.11.9091	11,9091
3	10000	$2^{4} \cdot 3.5^{4} .31 .37$.	37
4	10000	$2^{4} \cdot 5^{4} .11 .101 .3541 .9091 .27961$	11,9091
5	10000	$2^{4} .5^{4} .21401 .25601$.	
6	10000	$2^{4} \cdot 3.5^{4} \cdot 7.11 .13 .31 .37 .211 .241 .2161 .9091$.	11,37,9091
7	10000	$2^{4} \cdot 5^{4} \cdot 71.239 .4649 .123551$.	
8	10000	$2^{4} \cdot 5^{4} .11 .73 .101 .137 .3541 .9091 .27961$.	11,9091
9	10000	$2^{4} \cdot 3.5^{4} \cdot 31.37 .238681 .333667$.	37,333667
2	100000	$2^{5} \cdot 5^{5} \cdot 101.9901$	
3	100000	$2^{5} \cdot 3.5^{5} .19 .52579 .333667$	333667
4	100000	$2^{5} .5^{5} .73 .101 .137 .9901$.	
5	100000	$2^{5} .5^{5}$. 31.41 .211 .241 .271 .2161 .9091.	41,271,9091
6	100000	$2^{5} .3 .5^{5}$.19.101.9901.52579.333667..	333667
7	100000	$2^{5} .5^{5}$. $7.43 .127 .239 .1933 .2689 .4649 .$.	43
8	100000	$2^{5} \cdot 5^{5}$. $17.73 .101 .137 .9901 .$.	
9	100000	$2^{5} \cdot 3^{2} \cdot 5^{5} \cdot 19.757 .52579 .333667$.	333667


[^0]:    ${ }^{1}$ In this article the concatenation of $\mathbf{a}$ and b is written a _ b . Multiplication $a b$ is often made explicit by writing a.b. When there is no reason for misunderstanding the signs "_" and "." are omitted. Several tables contain prime factorizations. Prime factors are given in ascending order, multiplication is expressed by "." and the last factor is followed by ".." if the factorization is incomplete or by Fxxx indicating the number of digits of the last factor. To avoid typing errors all tables are electronically transferred from the calculation program, which is DOS-based, to the wordprocessor. All editing has been done either with a spreadsheet program or directly with the text editor. Full page tables have been placed at the end of the article. A non-proportional font has been used to illustrate the placement of digits when this has been found useful.

