On A New Smarandache Type Function

J. Sàndor
Babes-Bolyai University, 3400 Cluj-Napoca, Romania

Let $\mathrm{C}_{\mathrm{n}}^{\mathbf{k}}=\binom{\mathrm{n}}{\mathbf{k}}$ denote a binomial coefficient, i.e.
$C_{n}^{k}=\frac{n(n-1) \ldots(n-k+1)}{1^{*} 2^{*} \ldots{ }^{*} k}=\frac{n!}{k!(n-k)!} \quad$ for $1 \leq k \leq n$.

Clearly, $n \mid C_{n}^{1}$ and $n \mid C_{n}^{n-1}=C_{n}^{1}$. Let us define the following arithmetic function:
$C(n)=\max \left\{\mathrm{k}: 1 \leq \mathrm{k}<\mathrm{n}-1, \mathrm{n} \mid \mathrm{C}_{\mathrm{n}}^{\mathrm{k}}\right\}$

Clearly, this function is well-defined and $C(n) \geq 1$. We have supposed $k<n-1$, otherwise on the basis of
$C_{n}^{n-1}=C_{n}^{1}=n$, clearly we would have $C(n)=n-1$.
By a well-known result on primes, $\mathrm{p} \mid \mathrm{C}_{\mathrm{p}}^{\mathrm{k}}$ for all primes p and $\mathrm{l} \leq \mathrm{k} \leq \mathrm{p}-1$.

Thus we get:
$C(p)=p-2$ for primes $p \geq 3$.
Obviously, $\mathrm{C}(2)=1$ and $\mathrm{C}(1)=1$. We note that the above result on primes is usually used in the inductive proof of Fermat's "little" theorem.

This result can be extended as follows:
Lemma: For $(k, n)=1$, one has $n \mid C_{n}^{k}$.

Proof: Let us remark that

$$
\begin{equation*}
C_{n}^{k}=\frac{n}{k} * \frac{(n-1) \ldots(n-k+1)}{(k-1)!}=\frac{n}{k} * C_{n-1}^{k-1} \tag{3}
\end{equation*}
$$

thus, the following identity is valid:

$$
\begin{equation*}
k * C_{n}^{k}=n^{*} C_{n-1}^{k-1} \tag{3}
\end{equation*}
$$

This gives $n \mid k^{*} C_{n}^{k}$, and as $(n, k)=1$, the result follows.

Theorem: $C(n)$ is the greatest totient of n which is less than or equal to $n-2$.
Proof: A totient of n is a number k such that $(\mathrm{k}, \mathrm{n})=1$. From the lemma and the definition of $\mathrm{C}(\mathrm{n})$, the result follows.

Remarks 1) Since $(n-2, n)=(2, n)=1$ for odd n, the theorem implies that $C(n)=n-2$ for $\mathrm{n} \geq 3$ and odd. Thus the real difficulty in calculating $\mathrm{C}(\mathrm{n})$ is for n an even number.
2) The above lemma and Newton's binomial theorem give an extension of Fermat's divisibility theorem $p \mid\left(a^{p}-a\right)$ for primes p.

References

1. F. Smarandache, A Function in the Number Theory. Anal. Univ. Timisoara, vol. XVIII, 1980.
2. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Clarendon Press, Oxford, 1979.
