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k 
Let C (kn) denote a binomial coefficient, ie. 

k 
C 

n 

n 

n(n-I) ... (n-k + I) 

1*2* ... *k 

n! 
= for 1 ~k ~n. 

k!(n-k)! 

I I 

Clearly, n I C 
n-I 

and nlC = C . Let us define the following arithmetic function: 
n n n 

k 

CCn)=rnax{k:1~k<n-1,nIC } (1) 
n 

Clearly, this function is well-defined and CCn) ~ 1. We have supposed k < n - 1, 
otherwise on the basis of 

n-l 1 

C C = n, clearly we would have CCn) = n-l. 
n n 

k 

By a well-known result on primes, pIc for all primes p and 1 ~ k ~ p-1. 
p 

Thus we get: 

C(P) = p-2 for primes p ~ 3. (2) 

Obviously, C(2) = 1 and C(1) = 1. We note that the above result on primes is usually used 
in the inductive proof of Fermat's "little" theorem. 

This result can be extended as follows: 
k 

Lemma: For (k,n) = 1, one has n I C 
n 
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Proof: Let us remark that 

It D (0-1) ... (D-It+I) D It-I 

D 

* = - *C 
It (k-I)! It 0-1 

(3) C 

thus, the following identity is valid: 

It t-1 

k * C =n*C (3) 
D 0-1 

It 

This gives n I k*C ,and as (n,k) = 1, the result follows. 
D 

Theorem: C(n) is the greatest totient of n which is less than or equal to n - 2. 

Proof: A totient of n is a number k such that (k,n) = 1. From the lemma and the definition 
ofC(n), the result follows. 

Remarks 1) Since (n-2,n) = (2,n) = 1 for odd n, the theorem implies that C(n) = n-2 for 
n 2: 3 and odd. Thus the real difficulty in calculating C(n) is for n an even number. 
2) The above lemma and Newton's binomial theorem give an extension of Fermat's 
divisibility theorem p I (aP - a) for primes p. 
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