On a problem concerning the Smarandache Unary sequence

Felice Russo
Via A. Infante 7
67051 Avezzano (Aq) Italy
felice.russo@katamail.com

Abstract

In this paper a problem posed in [1] and concerning the number of primes in the Smarandache Unary sequence is analysed.

Introduction

In [1] the Smarandache Unary sequence is defined as the sequence obtained concatenating p_{n} digits of 1 , where p_{n} is the n-th prime number:
$11,111,11111,1111111,11111111111,1111111111111,11111111111111111$,
In the same paper the following open question is reported:

How many terms in the Smarandache Unary sequence are prime numbers?

In this paper we analyse that question and a conjecture on the number of primes belonging to the Smarandache Unary sequence is formulated.

Results

A computer program with Ubasic software package has been written to check the first 311 terms of the Unary sequence; we have found only five prime numbers. If we indicate the n-th term of the unary sequence as:

$$
u(n)=\frac{10^{p_{n}}-1}{9} \quad \text { where } p_{n} \text { is the } \mathrm{n} \text {-th prime. }
$$

those five primes have been found for p_{n} equal to $2,19,23,317$ and 1031.

This means a percentage of $\frac{5}{311} \approx 1.6 \%$ prime numbers. According to this experimental evidence the following conjecture can be formulated:

Conjecture: The number of primes in the Smarandache Unary sequence is upper limited.

Unsolved question: Find that upper limit.

References.

[1] F. Iacobescu, Smarandache Partition type and other sequences, Smarandache Notions
Journal, Vol. 11 N. 1-2-3 Spring 2000

