On certain new inequalities and limits for the Smarandache function

József Sándor

Department of Mathematics, Babes-Bolyai University, 3400 Cluj - Napoca, Romania

I. Inequalities

1) If $n \ge 4$ is an even number, then $S(n) \le \frac{n}{2}$.

-Indeed, $\frac{n}{2}$ is integer, $\frac{n}{2} > 2$, so in $(\frac{n}{2})! = 1 \cdot 2 \cdot 3 \cdots \frac{n}{2}$ we can simplify with 2, so $n \mid (\frac{n}{2})!$. This simplies clearly that $S(n) \leq \frac{n}{2}$.

2) If n > 4 is an even number, then $S(n^2) \le n$

-By $n! = 1 \cdot 2 \cdot 3 \cdots \frac{n}{2} \cdots n$, since we can simplify with 2, for n > 4 we get that $n^2 |n|$. This clearly implies the above stated inequality. For factonials, the above inequality can be much improved, namely one has:

3)
$$S(\underline{(m!)^2}) \leq 2m$$
 and more generally, $S(\underline{(m!)^n}) \leq n \cdot m$ for all positive integers m and n
-First remark that $\frac{(mn)!}{(m!)^n} = \frac{(mn)!}{m!(mn-m)!} \cdot \frac{(mn-m)!}{m!(mn-2m)!} \cdots \frac{(2m)!}{m! \cdot m!} =$

= $C_{2m}^m \cdot C_{3m}^m \cdot C_{nm}^m$, where $C_n^k = \binom{n}{k}$ denotes a binomial coefficient. Thus $(m!)^n$ divides (m n)!, implying the stated inequality. For n = 2 one obtains the first part.

4) Let
$$n > 1$$
. Then $S((n!)^{(n-1)!}) \leq n!$

-We will use the well-known result that the product of n consecutive integers is divisible by

n!. By
$$(n!)! = 1 \cdot 2 \cdot 3 \cdots n \cdot ((n+1)(n+2)\cdots 2n) \cdots ((n-1)!-1) \cdots (n-1)! n$$

each group is divisible by n!, and there are (n-1)! groups, so $(n!)^{(n-1)!}$ divides (n!)!. This gives the stated inequality.

5) For all m and n one has $[S(m), S(n)] \leq S(m \cdot S(n) \leq [m, n]$, where [a, b] denotes the

 $\ell \cdot c \cdot m \text{ of } a \text{ and } b$.

-If $m = \prod_{Pi}^{ai}$, $n = \prod_{Pi}^{bj}$ are the canonical representations of m, resp. n, then it is well-known that $S(m) = S\binom{ai}{Pi}$ and $S(n) = S(q_j^{bj})$, where $S\binom{ai}{Pi} = \max \{S\binom{ai}{Pi}: i = 1, \dots, r\}; S(q_j^{bj}) = \max \{S(q_j^{bj}): j = 1, \dots, h\}$, with r and h the number of prime divisors of m, resp. n. Then clearly $[S(m), S(n)] \leq S(m) \cdot S(n) \leq P_i^{ai} \cdot q_j^{bj} \leq [m, n]$ 6) $(\underline{S(m)}, \underline{S(n)}) \geq \frac{S(m) \cdot S(n)}{mn} \cdot (\underline{m, n})$ for all m and n-Since $(S(m), S(m)) = \frac{S(m) \cdot S(n)}{[S(m), S(n)]} \geq \frac{S(m) \cdot S(n)}{[m, n]} = \frac{S(m) \cdot S(n)}{nm} \cdot (m, n)$ by 5) and the known formula $[m, n] = \frac{mn}{(m, n)} \cdot \frac{(S(m), S(n))}{(m, n)} \geq (\frac{S(mn)}{mn})^2 + (\frac{S(mn)}{mn}$

-Since $S(mn) \le m S(n)$ and $S(mn) \le n S(m)$ (See [1]), we have $\left(\frac{S(mn)}{mn}\right)^2 \le \frac{S(m)S(n)}{mn}$, and the result follows by 6).

8) We have $\left(\frac{S(mn)}{mn}\right)^2 \leq \frac{S(m)S(n)}{mn} \leq \frac{1}{(mn)}$

-This follows by 7) and the stronger inequality from 6), namely $S(m) S(n) \leq [m n] = \frac{mn}{(m,n)}$ <u>Corollary</u> $S(mn) \leq \frac{mn}{\sqrt{mn}}$

9) Max $\{S(m), S(n)\} \ge \frac{S(mn)}{(mn)}$ for all m, n; where (m,n) denotes the $g \cdot c \cdot d$ of m and n. -We apply the known result: max $\{S(m), S(n)\} = S([m, n])$ On the other hand, since $[m, n] \mid m \cdot n$, by <u>Corollary 1</u> from our paper [1] we get $\frac{S(mn)}{mn} \le \frac{S([m, n])}{[m, n]}$. Since $[m, n] = \frac{mn}{(m, n)}$,

The result follows:

<u>Remark.</u> Inequality g) compliments Theorem 3 from [1], namely that max $\{S(m), S(n)\} \leq S(m n)$. 10) Let d(n) be the number of divisors of n. Then $\frac{S(n!)}{n!} \leq \frac{S(n^{d(n)/2})}{n^{d(n)/2}}$

-We will use the known relation $\prod_{k|n} k = n^{d(n)/2}$, where the product is extended over all divisors k of n. Since this product divides $\prod_{k \le n} k = n!$, by <u>Corollary 1</u> from [1] we can write $\frac{S(n!)}{n!} \le \frac{S(\prod_{k|n} k)}{\prod_{k \ne n} k}$, which gives the desired result.
Remark If n is of the form m^2 , then d(n) is odd, but otherwise d(n) is even. So, in each case $n^{d(n)/2}$ is a positive integer.

11) For infinitely many n we have S(n+1) < S(n), but for infinitely many m one has S(m+1) > S(m).

-This is a simple application of 1). Indeed, let n = p - 1, where $p \ge 5$ is a prime. Then, by

1) we have
$$S(n) = S(p-1) \le \frac{p-1}{2} < p$$
. Since $p = S(p)$, we have $S(p-1) < S(p)$.

Let in the same manner n = p + 1. Then, as above, $S(p+1) \leq \frac{p+1}{2} .$

12) Let p be a prime. Then S(p!+1) > S(p!) and S(p!-1) > S(p!)

-Clearly, S(p!) = p. Let $p! + 1 = \prod q_j^{\partial j}$ be the prime factorization of p! + 1. Here each $q_j > p$, thus $S(p! + 1) = S(q_j^{\partial j})$ (for certain $j) \ge S(p^{\partial j}) \ge S(p) = p$. The same proof applies to the case p! - 1.

<u>**Remark**</u>: This offers a new proof for M).

13) Let P_k be the *kth* prime number. Then $S(p_1p_2...P_k + 1) > S(p_1p_2...P_k)$ and -3- $S(p_1p_2...P_k - 1) > S(p_1p_2...P_k)$

-Almost the same proof as in 12) is valid, by remarking that $S(p_1p_2\cdots P_k) = P_k$ (since $p_1 < p_2 < \cdots < p_k$).

14) For infinitely many n one has $(S(n)^2) < S(n-1) \cdot S(n+1)$ and for infinitely many m, $(S(m))^2 > S(m-1) \cdot S(m+1)$. -By S(p+1) < p and S(p-1) < p (See the proof in 11) we have $\frac{S(p+1)}{S(p)} < \frac{S(p)}{S(p)} < \frac{S(p)}{S(p-1)}.$ Thus $\left(S(p)\right)^2 > S(p-1) \cdot S(p+1).$

On the other hand, by putting $x_n = \frac{S(n+1)}{S(n)}$, we shall see in part II,

that $\limsup_{n \to \infty} \sup x_n = +\infty$. Thus $x_{n-1} < x_n$ for infinitely many n, giving

$$\left(S(n)\right)^2 < S(n-1) \cdot S(n+1).$$

II. <u>Limits:</u>

1)
$$\lim_{n\to\infty} \inf \frac{S(n)}{n} = 0$$
 and $\lim_{n\to\infty} \sup \frac{S(n)}{n} = 1$

-Clearly, $\frac{S(n)}{n} > 0$. Let $n = 2^m$. Then, since $S(2^m) \le 2m$, and $\lim_{m \to \infty} \frac{2m}{2m} = 0$, we have $\lim_{m \to \infty} \frac{S(2^m)}{2^m} = 0$, proving the first part. On the other hand, it is well known that $\frac{S(n)}{n} \le 1$. For $n = p_k$ (the *kth* prime), one has $\frac{S(p_k)}{p_k} = 1 \to 1$ as $k \to \infty$, proving the second part. <u>Remark:</u> With the same proof, we can derive that $\liminf_{n \to \infty} \frac{S(n^r)}{n} = 0$ for all integers r. -As above $S(2^{kr}) \le 2kr$, and $\frac{2kr}{2^k} \to 0$ as $k \to \infty$ (r fixed), which gives the result. 2) $\liminf_{n \to \infty} \frac{S(n+1)}{S(n)} = 0$ and $\limsup_{n \to \infty} \frac{S(n+1)}{S(n)} = +\infty$

-Let p_r denote the *rth* prime. Since $(p_{\Lambda} \dots p_r, 1) = 1$, Dirichlet's theorem on arithmetical progressions assures the existence of a prime p of the form $p = a \cdot p_{\Lambda} \dots p_r - 1$.

Then
$$S(p+1) = S(ap_{\Lambda} \cdots p_{r}) \leq a \cdot S(p_{\Lambda} \cdots p_{r}) by S(mn) \leq mS(n) (see [1])$$

But
$$S(p_{\Lambda} \cdots p_{r}) = max \{p_{\Lambda}, \cdots, p_{r}\} = p_{r}$$
. Thus $\frac{S(p+1)}{S(p)} \leq \frac{ap_{r}}{ap_{\Lambda} \cdots p_{r}-1} \leq \frac{ap_{r}}{ap_{\Lambda} \cdots p_{r}-1}$

 $\frac{p_r}{p_{\Lambda\cdots}p_r-1} \to 0$ as $r \to \infty$. This gives the first part.

Let now p be a prime of the form $p = bp_{\Lambda} \cdots p_r + 1$.

Then $S(p-1) = S(bp_{\Lambda} \cdots p_{r}) \le b S(p_{\Lambda} \cdots p_{r}) = b \cdot p_{r},$ and $\frac{S(p-1)}{S(p)} \le \frac{bp_{r}}{bp_{1} \cdots p_{r}+1} \le \frac{p_{r}}{p_{\Lambda} \cdots p_{r}} \to 0 \text{ as } r \to \infty.$

3) $\lim_{n \to \infty} \inf \left[S(n+1) - S(n) \right] = -\infty \text{ and } \lim_{m \to \infty} \sup \left[S(n+1) - S(n) \right] = +\infty$

-We have $S(p+1) - S/p) \le \frac{p+1}{2} - p = \frac{-p+1}{2} \to -\infty$ for an odd prime

p (see 1) and 11)). On the other hand, $S(p) - S(p-1) \ge p - \frac{p-1}{2} = \frac{p+1}{2} \to \infty$

(Here S(p) = p), where p - 1 is odd for $p \ge 5$. This finishes the proof.

4) Let $\sigma(n)$ denotes the sum of divisors of n. Then $\lim_{n \to \infty} \inf \frac{S(\sigma(n))}{n} = 0$

-This follows by the argument of 2) for n = p. Then $\sigma(\varphi) = p + 1$ and $\frac{S(p+1)}{p} \to 0$, where $\{p\}$ is the sequence constructed there.

5) Let $\varphi(n)$ be the Enter totient function. Then $\lim_{n \to \infty} \inf \frac{S(\varphi(n))}{n} = 0$

-Let the set of primes $\{p\}$ be defined as in 2). Since $\varphi(n) = p - 1$ and $\frac{S(p-1)}{p} = \frac{S(p-1)}{S(p)} \to 0$, the assertion is proved. The same result could be obtained by taking $n = z^k$. Then, since $\varphi(2^k) = 2^{k-1}$, and $\frac{S(2^{k-1})}{2^k} \leq \frac{2 \cdot (k-1)}{2^k} \to o$ as $k \to \infty$, the assertion follows:

6)
$$\lim_{n \to \infty} \inf \frac{S(S(n))}{n} = 0 \text{ and } \max_{n \in \mathbb{N}} \frac{S(S(n))}{n} = 1$$

-Let n = p! (p prime). Then, since S(p!) = p and S(p) = p, from $\frac{p}{p!} \to 0 (p \to \infty)$

we get the first result. Now, clearly $\frac{S(S(n))}{n} \leq \frac{S(n)}{n} \leq 1$. By letting n = p (prime), clearly

one has $\frac{S(S(p))}{p} = 1$, which shows the second relation.

7)
$$\lim_{n\to\infty}\inf\frac{\sigma(S(n))}{S(n)}=1$$

-Clearly, $\frac{\sigma(k)}{k} > 1$. On the other hand, for n = p (prime), $\frac{\sigma(S(p))}{S(p)} = \frac{p+1}{p} \to 1$ as $p \to \infty$. 8) Let Q(n) denote the greatest prime power divisor of n. Then $\liminf_{n \to \infty} \frac{\varphi(S(n))}{\partial(n)} = 0$.

-Let $n = p_1^k \cdots p_r^k$ (k > 1, fixed). Then, clearly $\partial(n) = p_r^k$. By $S(n) = S(p_r^k) \left(\text{since } S(p_r^k) > S(p_i^k) \text{ for } i < k\right) \text{ and } S(p_r^k) = j \cdot p_r$, with $j \le k$ (which is

known) and by $\varphi(j p_k) \leq j \cdot \varphi(p_r) \leq k(p_r - 1)$, we get $\frac{\varphi(S(n))}{\partial(n)} \leq \frac{k \cdot (p_r - 1)}{p_r^{k}} \to 0$ as

- $r \rightarrow \infty (k \text{ fixed}).$
- 9) $\lim_{\substack{m\to\infty\\m\,\text{even}}}\frac{S(m^2)}{m^2}=0$

-By 2) we have $\frac{S(m^2)}{m^2} \leq \frac{1}{m}$ for m > 4, even. This clearly inplies the above remark.

<u>Remark</u>. It is known that $\frac{S(m)}{m} \le \frac{2}{3}$ if $m \ne 4$ is composite. From $\frac{S(m^2)}{m^2} \le \frac{1}{m} < \frac{2}{3}$ for m > 4, for the composite numbers of the perfect squares we have a very strong improvement.

10) $\lim_{n \to \infty} \inf \frac{\sigma(S(n))}{n} = 0$ --By $\sigma(n) = \overline{Z} d = n\overline{Z} \frac{1}{d} \le n\overline{Z} \frac{1}{d} < n \cdot (2 \log n)$, we get $\sigma(n) < 2n \log n$ for n > 1. Thus $\frac{\sigma(S(n))}{n} < \frac{2S(n)\log S(n)}{n}$. For $n = 2^k$ we have $S(2^k) \le 2k$, and since $\frac{4k \log 2k}{2^k} \to 0$ $(k \to \infty)$, the result follows.

11)
$$\lim_{n\to\infty}\sqrt[n]{S(n)} = 1$$

—This simple relation follows by $1 \le S(n) \le n$, so $1 \le \sqrt[n]{S(n)} \le \sqrt[n]{n}$; and by $\sqrt[n]{n} \to 1$ as $n \to \infty$. However, 11) is one of a (few) limits, which exists for the Smarandache function. Finally, we shall prove that:

12)
$$\lim_{n\to\infty} \sup \frac{\sigma(nS(n))}{nS(n)} = +\infty.$$

—We will use the facts that S(p!) = p, $\frac{\sigma(p!)}{p!} = \overline{Z} \frac{1}{d} \ge 1 + \frac{1}{2} + \dots + \frac{1}{p} \to \infty$ as

 $p \rightarrow \infty$, and the inequality $\sigma(ab) \ge a \, \sigma(b)$ (see [2]).

Thus $\frac{\sigma(S(p!)p!}{p! \cdot S(p!)} \ge \frac{S(p!) \cdot \sigma(p!)}{p! \cdot p} = \frac{\sigma(p!)}{p!} \to \infty$. Thus, for the sequence $\{n\} = \{p!\}$, the results follows.

References

- [1] J. Sándor. On certain inequalities involving the Smarandache function. Smarandache Notions J. \underline{F} (1996), 3 - 6;
- [2] J. Sándor. On the composition of some arithmetic functions. Studia Univ. Babes-Bolyai, 34 (1989), F - 14.