ON PRIMES IN THE SMARANDACHE PIERCED CHAIN

Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let $C=\left\{c_{n}\right\}_{n=1}^{\infty} \quad$ be the Smarandache pierced chain. In this paper we prove that if $n>2$, then $c_{n} / 101$ is not a prime.

For any positive integer n, let

$$
\begin{equation*}
c_{n}=\underbrace{101^{*} 100010001 \ldots 0001}_{n-1 \text { times }} \tag{1}
\end{equation*}
$$

Then the sequence $C=\left\{c_{n}\right\}_{n=1}^{\infty}$ is colled the Smarandache percied chain (see[2, Notion 19]). In [3], Smarandache asked the following question:

Question. How many $c_{n} / 101$ are primes?
In this paper we give a complete anser as follows:
Theorem. If $n>2$, then $c_{n} / 101$ is not a prime.
Proof. Let $\zeta_{\mathrm{n}}=\mathrm{e}^{2 \pi \sqrt{-1 / n}}$ be a primitive roof of unity with the degree n , and let

$$
f_{n}(x)=\prod_{\substack{1 \leq k \leq n \\ g \operatorname{cd}(k, n)=1}}\left(x-\zeta_{n}{ }^{k}\right) .
$$

Then $f_{n}(x)$ is a polynomial with integer coefficients. Further, it is a well known fact that if $x>2$, then $f_{n}(x)>1$ (see [1]). This implies that if x is an integer with $x>2$, then $f_{n}(x)$ is an integer with $\mathrm{f}_{\mathrm{n}}(\mathrm{x})>1$. On the other hand, we have
(2) $x^{n}-1=\prod_{d / n} f_{d}(x)$.

We see from (1) that if $n>1$, then
(3)

$$
\frac{c_{n}}{-{ }_{101}}=1+10^{4}+10^{8}+\ldots+10^{4(n-1)}=\frac{10^{4 n}-1}{10^{4}-1}
$$

By the above definition, we find from (2) and (3) that

$$
\frac{c_{n}}{-l^{101}}=\left(\prod_{d \mid 4 n} f_{d}(10)\right) /\left(\prod_{d \mid n} f_{d}(10)\right)
$$

Since $n>2$, we get $2 n>4$ and $4 n>4$. It implies that both 2 n and 4 n are divisors of 4 n but not of 4 . Therefore, we get from (4) that
(5) c_{n}

$$
---f_{2 n}(10) f_{4 n}(10) t
$$

where t is not a positive integer. Notice that $f_{2 n}(10)>1$ and $\mathrm{f}_{4 \mathrm{n}}(10)>1$. We see from (5) that $\mathrm{c}_{\mathrm{n}} / 101$ is not a prime. The theorem is proved.

References

1. G.D.Birkhoff and H.S.Vandiver, On the integral divisors of $a^{n}-b^{n}$, Ann. Of Math. (2), 5 (1904), 173-180.
2. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994.
3. F.Smarandache, Only Problems, not Solutions!, Xiquan Pub. House, Phoenix, Chicago, 1990.
