ON SMARANDACHE ALGEBRAIC STRUCURES. II:THE SMARANDACHE SEMIGROUP

Maohua Le

Abstract. In this paper we prove that A(a,n) is a Smarandache semigroup.

Key words . Smarandache algorithm , Smarandache semigroup .

Let G be a semigroup. If G contains a proper subset which is a group under the same operation, then G is called a Smarandache semigroup (see [2]). For example, $G = \{18, 18^2, 18^3, 18^4, 18^5\}$ (mod 60) is a commutative multiplicative semigoup. Since the subset $\{18^2, 18^3, 18^4, 18^5\}$ (mod 60) is a group, G is a Smarandache semigroup.

Let a,n be integers such that $a \neq 0$ and n > 1. Further, let A(a,n) be defined as in [1]. In this paper we prove the following result.

Theorem A(a,n) is a Smarandache semigroup.

Proof. Under the definitions and notations of [1], let $A'(a,n) = \{a^e, a^{e+1}, \dots, e^{e+f-1}\} \pmod{n}$. Then A'(n,a) is a proper subset of A(a,n).

If e=0, then $a^e = 1 \in A'(a,n)$. Clear, 1 is the unit of A'(a,n). Moreover, for any $a^i \in A(a,n)$ with i>0, a^{f-i} is the inverse element of a^i in A'(a,n).

If e>0, then $a^f \in A'(a,n)$. Since $a^f \equiv 1 \pmod{m}$, a^f is the unit of A'(a,n) and a^{fr-i} is the inverse element of a^i in A'(a,n), where t is the integer satisfying e < ft-i $\leq e+f-1$. Thus, under the Smarandache algorithm, A'(a,n) is a group. It implies that A(a,n) is a Smarandache semigroup. The theorem is proved.

References

- [1] M.-H. Le, On Smarandache algebraic structures I: The commutative multiplicative semigroup A(a,n), Smarandache Notions J., 12(2001).
- [2] R. Padilla, Smarandache algebraic structures, Smarandache Notions J. 9(1998), 36-38.

Department of Mathematics Zhanjiang Normal College Zhanjiang, Guangdong P.R. CHINA