ON SMARANDACHE CONCATENATED SEQUENCES I: PRIME POWER SEQUENCES

Maohua Ie
Zhanjiang Normal College, Zhanjiang, Guangdong, P.R.China
∞
Abstract. Let $A=\left\{p^{n}\right\}_{n=:}$, where p is a prime. Let $C(A)=\left\{C_{n}\right\}$ denote the Smarandache concatenated sequence of A. In this paper we prove that if $n>1$ and $p \neq 2$ or 5 , then $c_{\text {. }}$ does not belong to A.
∞
Let $A=\left\{a_{n}\right\}_{n=:}$ be an infinite increasing sequence of positive integers. Eor any positive integer n, let $c_{\text {. }}$ be the decimal integer such that

$$
\begin{equation*}
c_{n}=\overline{a_{i}} a_{2} \ldots a_{n} . \tag{I}
\end{equation*}
$$

∞

Then sequence $C(A)=\left\{C_{n}\right\}_{n=1}$ is called the Smarandache concatenated sequence of A. In [1], Marimutha posed a generalquestions as follows:

Question. How many terms of $C(A)$ belong to A ?
In this serial paper, we shall consider some intersting cases for the above question. In this part we prove the following result.

Theorem. Let $A=\left\{p^{\prime}\right\}$, where p is a prime. If $n>1$ and $p \neq 2$ or 5 , then c_{n} does not belong to A.

Proof. Eor any pisitive integer a, let d(a) denote the figure number of a in the decimal system.
∞
If $A=\left\{p^{2}\right\}_{n=:}$, then from(1) we get
2) $c_{n}=p^{n}+p^{n-2} 10^{2} 0^{2}+\ldots+p^{2} * 10^{20} ;-\ldots+0^{3} ;+p^{*} 10^{2} ;-\ldots+0^{2}$

Further, if c_{-}belongs to A, then we have

$$
\begin{equation*}
c_{n}=p^{m}, \tag{3}
\end{equation*}
$$

where m is a positive integer with $m \geq n$. It implies that

$$
\begin{equation*}
p^{2} \mid c_{-}, \tag{4}
\end{equation*}
$$

if $n>1$. Hoever, if $p \neq 2$ or 5 , then $p / 10^{\circ}$ for any positive

亡ategenk. Irerefore,by (2), we get

$$
\begin{equation*}
\mathrm{P}^{2} \quad \mathrm{C}_{n}, \tag{5}
\end{equation*}
$$

wich contradicts (4). Thus, $c_{\text {- }}$ does not belong to A in Enis case. The theorem is proved.

Reference

1. H. Marimutha, Smarandache concatenated type sequences, Bull. Eure Appl. Sci.Sect. E $16(19970$, No. 2, 225-226.
