Maohua Le
Department of Mathematics', Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract

In this paper we prove that there exist infinitely many Smarandache pseudo-primes of second kind.

Let n be a composite number. If some permutation of the digits of n is a prime, then n is called a Smarandache pseudoprime of second kind (see[1,Notion 65]). In this paper we prove the following result:

Theorem. There exist infinitely many Smarandache pseudoprimes of second kind.

Proof. Let the sequence $\mathrm{P}=\{100 \mathrm{r}+1\}_{\mathrm{r}=1}$. By Dirichlet's theorem (see[2,Theorem 15]), P contains infinitely many primes. Let

$$
\begin{equation*}
p=\overline{a_{k} \ldots a_{2} a_{1} a_{0}} \tag{1}
\end{equation*}
$$

be a prime belonging to P. Then we have $a_{0}=1$ and $a_{1}=0$. Further let

$$
\text { (2) } \quad n=\overline{a_{k} \ldots a_{2} a_{0} a_{1}}
$$

Then we have $10 \mid n$, since $a_{1}=0$. Therefore, n is a composite number. Moreover, by (1) and (2), some permutation of the digits of n is prime p. It implies that n is a Smarandache pseudo-prime of second kind. Thus, there exist infinitely many Smarandache pseudo-primes of second kind. The theorem is proved.

Reference

1. Dumitrescu and Seleacu, Some Notions and Questions In Number Theory, Erhus Univ. Press, Glendale, 1994.
2. G.H.Hardy and E.M.Wright, An Introduction to the Theory of Numbers, Oxford Univ. Press, Oxford, 1938.
