ON SMARANDACHE SIMPLE FUNCTIONS

Maohua Le
 Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract

Absatract. Let p be a prime, and let k be a positive integer. In this paper we prove that the Smarandache simple functions $S_{p}(k)$ satisfies $p \mid S_{p}(k)$ and $k(p-1)<S_{p}(k) \leq k p$.

For any prime p and any positive integer k, let $S_{p}(k)$ denote the smallest positive integer such that $p^{k} \mid S_{p}(k)!$. Then $S_{p}(k)$ is called the Smarandache simple function of p and k (see [1, Notion 121]). In this paper we prove the following result.

Theorem. For any p and k, we have $p \mid S_{p}(k)$ and
(1) $k(p-1)<S_{p}(k) \leq k p$.

Proof. Let $a=S_{p}(k)$. Then a is the smallest positive integer such that
(2) $p^{k} \mid a!$.

If $p \nmid a$, then from (2) we get $p^{k} \mid(a-1)!$, a contradiction. So we have $\mathrm{p} \mid \mathrm{a}$.

Since (kp)! $=1 \ldots \mathrm{p} \ldots$ (2p) ... (kp), we get $\mathrm{p}^{\mathrm{k}} \mid(\mathrm{kp})!$. It implies that
(3) $\mathrm{a} \leq \mathrm{kp}$.

On the other hand, let $\mathrm{p}^{\mathrm{r}} \mid \mathrm{a}$, where r is a positive integer. It is a well known fact that

$$
\begin{equation*}
\mathrm{r}=\sum_{\mathrm{i}=1}^{\infty}\left[\mathrm{a} / \mathrm{p}^{\mathrm{i}}\right] \tag{4}
\end{equation*}
$$

where $\left[\mathrm{a} / \mathrm{p}^{\mathrm{i}}\right]$ is the greatest integer which does not exceed a / p^{i}. Since $\left[a / p^{i}\right] \leq a / p^{i}$ for any i, we see from (4) that

$$
\begin{equation*}
r<\sum_{i=1}^{\infty}\left(a / p^{i}\right)=a /(p-1) \tag{5}
\end{equation*}
$$

Further, since $k \leq r$ by (2), we find from (5) that
(6) $a>k(p-1)$.

The combination of (3) and (6) yields (1). The theorem is proved.

Reference

1. Editor of Problem Section, Math. Mag 61 (1988), No.3, 202.
