ON SMARANDACHE SIMPLE FUNCTIONS

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Absatract. Let p be a prime, and let k be a positive integer. In this paper we prove that the Smarandache simple functions $S_{p}(k)$ satisfies $p | S_{p}(k)$ and $k(p-1) < S_{p}(k) \le kp$.

For any prime p and any positive integer k, let $S_p(k)$ denote the smallest positive integer such that $p^k | S_p(k)!$. Then $S_p(k)$ is called the Smarandache simple function of p and k (see [1, Notion 121]). In this paper we prove the following result.

Theorem. For any p and k, we have $p | S_{p}(k)$ and

(1)
$$k(p-1) < S_{p}(k) \le kp$$
.

Proof. Let $a = S_{p}(k)$. Then a is the smallest positive integer such that

If $p \nmid a$, then from (2) we get $p^{k} \mid (a-1)!$, a contradiction. So we have $p \mid a$.

⁽²⁾ $p^{k} | a!$.

Since $(kp)! = 1 \dots p \dots (2p) \dots (kp)$, we get $p^k | (kp)!$. It implies that

(3) $a \leq k p$.

On the other hand, let $p^r \mid a!$, where r is a positive integer. It is a well known fact that

(4)
$$r = \sum_{i=1}^{\infty} [a / p^{i}]$$

where $[a/p^i]$ is the greatest integer which does not exceed a/p^i . Since $[a/p^i] \le a/p^i$ for any i, we see from (4) that

(5)
$$r < \sum_{i=1}^{\infty} (a / p^{i}) = a / (p - 1)$$

Further, since $k \le r$ by (2), we find from (5) that

(6)
$$a > k (p - 1).$$

The combination of (3) and (6) yields (1). The theorem is proved.

Reference 1. Editor of Problem Section, Math. Mag 61 (1988), No.3, 202.