On Smarandache's Periodic Sequences

Henry Ibstedt

Abstract

: This paper is based on an article in Mathematical Spectrum, Vol. 29, No 1. It concerns what happens when an operation applied to an n-digit integer results in an n digit integer. Since the number of n digit integers is finite a repetition must occur after applying the operation a finite number of times. It was assumed in the above article that this would lead to a periodic sequence which is not always true because the process may lead to an invariant. The second problem with the initial article is that, say, 7 is considered as 07 or 007 as the case may be in order make its reverse to be 70 or 700 . However, the reverse of 7 is 7 . In order not to loose the beauty of these sequences the author has introduced stringent definitions to prevent the sequences from collapse when the reversal process is carried out.

Four different operations on n-digit integers is considered.
The Smarandache n-digit periodic sequence. Definition: Let N_{k} be an integer of at most n digits and let R_{k} be its reverse. N_{k} ' is defined through

$$
N_{k}^{\prime}=R_{k} \cdot 10^{n-1-\left[\log _{10} N_{k}\right]}
$$

The element N_{k+1} of the sequence through

$$
N_{k+1}=\left|N_{k}-N_{k}^{\prime}\right|
$$

where the sequence is initiated by an arbitrary n-digit integer N_{1} in the domain $10^{n} \leq N_{1}<10^{n+1}$.
The Smarandache Subtraction Periodic Sequence: Definition: Let N_{k} be a positive integer of at most n digits and let R_{k} be its digital reverse. $\mathrm{N}_{\mathbf{k}}^{\prime}$ is defined through

$$
N_{k}^{\prime}=R_{k} \cdot 10^{n-1-\left[\log _{10} N_{k}\right]}
$$

The element $\mathrm{N}_{\mathrm{k}+1}$ of the sequence through

$$
N_{k+1}=\left|N_{k}^{\prime}-c\right|
$$

where c is a positive integer. The sequence is initiated by an arbitrary positive n-digit integer N_{1}. It is obvious from the definition that $0 \leq \mathrm{N}_{\mathrm{k}}<10^{\mathrm{n+1}}$, which is the range of the iterating function.

The Smarandache Multiplication Periodic Sequence: Definition: Let $c>1$ be a fixed integer and N_{0} and arbitrary positive integer. N_{k+1} is derived from N_{k} by multiplying each digit x of N_{k} by c retaining only the last digit of the product cx to become the corresponding digit of $\mathrm{N}_{\mathrm{k}+1}$.

The Smarandache Mixed Composition Periodic Sequence: Definition. Let N_{0} be a two-digit integer $a_{1} \cdot 10+a_{0}$. If $a_{1}+a_{0}<10$ then $b_{1}=a_{1}+a_{0}$ otherwise $b_{1}=a_{1}+a_{0}+1 . b_{0}=\left\{a_{1}-a_{0} \mid\right.$. We define $N_{1}=b_{1} \cdot 10+b_{0} . N_{k+1}$ is derived from N_{k} in the same way

Starting points for loops (periodic sequences), loop length and the number of loops of each kind has been calculated and displayed in tabular form in all four cases. The occurrence of invariants has also been included.

Introduction

In Mathematical Spectrum, vol 29 No 1 [1], is an article on Smarandache's periodic sequences which terminates with the statement:
"There will always be a periodic sequence whenever we have a function $f: S \rightarrow S$, where S is a finite set of positive integers and we repeat the function f."

We must adjust the above statement by a counterexample before we look at this interesting set of sequences. Consider the following trivial function $f\left(x_{k}\right): S \rightarrow S$, where S is an ascending set of integers $\left\{a_{1}, a_{2}, \ldots a_{r}, \ldots a_{n}\right\}$:

As we can see the iteration of the function fin this case converges to an invariant a_{r}, which we may of course consider as a sequence (or loop) of only one member. We will however make a distinction between a sequence and an invariant in this paper.

There is one more snag to overcome. In the Smarandache sequences 05 is considered as a two-digit integer. The consequence of this is that 00056 is considered as as a five digit integer while 056 is considered as a three-digit integer. We will abolish this ambiguity, 05 is a one-digit integer and 00200 is a three-digit integer.

With these two remarks in mind let's look at these sequences. There are in all four different ones reported in the above mentioned article in Mathematical Spectrum. The study of the first one will be carried out in much detail in view of the above remarks.

1a. The Two-Digit Smarandache Periodic Sequence

It has been assumed that the definition given below leads to a repetition according to Dirichlet's box principle (or the statement made above). However, as we will see, this definition leads to a collapse of the sequence.

Preliminary definition. Let N_{k} be an integer of at most two digits and let N_{k} ' be its digital reverse. We define the element $\mathrm{N}_{\mathrm{k}+1}$ of the sequence through

$$
N_{k+1}=\left|N_{k}-N_{k}\right|
$$

where the sequence is initiated by an arbitrary two digit integer N_{1}.
Let's write N_{1} in the form $N_{1}=10 a+b$ where a and b are digits. We then have

$$
N_{2}=|10 a+b-10 b-a|=9 \cdot|a-b|
$$

The $|a-b|$ can only assume 10 different values $0,1,2, \ldots, 9$. This means that N_{3} is generated from only 10 different values of N_{2}. Let's first find out which two digit integers result in $|a-b|=0,1,2, \ldots$ and 9 respectively.
$|a-b| \quad$ Corresponding two digit integers

0	11	22	33	44	55	66	77	88	99								
1	10	12	21	23	32	34	43	45	54	56	65	67	76	78	87	89	98
2	13	20	24	31	35	42	46	53	57	64	68	75	79	86	97		
3	14	25	30	36	41	47	52	58	63	69	74	85	96				
4	15	26	37	40	48	51	59	62	73	84	95						
5	16	27	38	49	50	61	72	83	94								
6	17	28	39	60	71	82	93										
7	19	29	70	81	92												
8	19	80	91														
9	90																

It is now easy to follow the iteration of the sequence which invariably terminates in 0 , table 1 .
Table 1. Iteration of sequence according to the preliminary definition

$\|a-b\|$	N_{2}	N_{3}	N_{4}	Ns	N_{5}	N_{6}
0	0					
1	9	0				
2	18	63	27	45	9	0
3	27	45	9	0		
4	36	27	45	9	0	
5	45	9	0			
6	54	9	0			
7	63	27	45	9	0	
8	72	45	9	0		
9	81	63	27	45	9	0

The termination of the sequence is preceded by the one digit element 9 whose reverse is 9 . The following definition is therefore proposed.

Definition of Smarandache's two-digit periodic sequence. Let N_{k} be an integer of at most two digits. N_{k} ' is defined through
the reverse of N_{k} if N_{k} is a two digit integer
$N_{k}{ }^{\prime}=\{$
$\mathrm{N}_{\mathrm{k}} \cdot 10$ if N_{k} is a one digit integer
We define the element $\mathrm{N}_{\mathrm{k}+1}$ of the sequence through

$$
N_{k+1}=\left|N_{k}-N_{k}^{\prime}\right|
$$

where the sequence is initiated by an arbitrary two digit integer N_{1} with unequal digits.
Modifying table 1 according to the above definition results in table 2.
Table 2. Iteration of the Smarandache two digit sequence

$\|a-b\|$	N_{2}	N_{3}	N_{4}	N_{5}	N_{5}	N_{6}	N_{7}
1	9	81	63	27	45	9	
2	18	63	27	45	9	81	63
3	27	45	9	81	63	27	
4	36	27	45	9	81	63	27
5	45	9	81	63	27	45	
6	54	9	81	63	27	45	9
7	63	27	45	9	81	63	
8	72	45	9	81	63	27	45
9	81	63	27	45	9	81	

Conclusion: The iteration always produces a loop of length 5 which starts on the second or the third term of the sequence. The period is $9,81,63,27,45$ or a cyclic permutation thereof.

1b. Smarandache's n-digit periodic sequence.

Let's extend the definition of the two-digit periodic sequence in the following way.

Definition of Smarandache's n-digit periodic sequence.

Let N_{k} be an integer of at most n digits and let R_{k} be its reverse. N_{k} ' is defined through

$$
N_{k}^{\prime}=R_{k} \cdot 10^{n-1-\left[\log _{10} N_{k}\right]}
$$

We define the element N_{k+1} of the sequence through

$$
N_{k+1}=\left|N_{k}-N_{k}^{\prime}\right|
$$

where the sequence is initiated by an arbitrary n-digit integer N_{1} in the domain $10^{n} \leq N_{1}<10^{n+1}$. It is obvious from the definition that $0 \leq N_{k}<10^{n+1}$, which is the range of the iterating function.

Let's consider the cases $\mathrm{n}=3, \mathrm{n}=4, \mathrm{n}=5$ and $\mathrm{n}=6$.
$\mathrm{n}=3$.
Domain $100 \leq \mathrm{N}_{1} \leq 999$. . The iteration will lead to an invariant or a loop (periodic sequence). There are 90 symmetric integers in the domain, 101, 111, 121, ..202, 212, ..., for which $\mathrm{N}_{2}=0$ (invariant). All other initial integers iterate into various entry points of the same periodic sequence. The number of numbers in the domain resulting in each entry of the loop is denoted s in table 3 .

Table 3. Smarandache 3-digit periodic sequence

5	239	11	200	240	120
LOOP	99	891	693	297	495

It is easy to explain the relation between this loop and the loop found for $\mathrm{n}=2$. Consider $N=a_{0}+10 a_{1}+100 a_{2}$. From this we have $\left|N-N^{\prime}\right|=99\left|a_{2}-a_{0}\right|=11-9\left|a_{2}-a_{0}\right|$ which is 11 times the corresponding expression for $\mathrm{n}=2$ and as we can see this produces a 9 as middle (or first) digit in the sequence for $\mathrm{n}=3$.
$\mathrm{n}=4$.
Domain $1000 \leq N_{1} \leq 9999$. The largest number of iterations carried out in order to reach the first member of the loop is 18 and it happened for $N_{1}=1019$. The iteration process ended up in the invariant 0 for 182 values of $\mathrm{N}_{1}, 90$ of these are simply the symmetric integers in the domain like $\mathrm{N}_{\mathrm{l}}=4334,1881,7777$, etc., the other 92 are due to symmetric integers obtained after a couple of iterations. Iterations of the other 8818 integers in the domain result in one of the following 4 loops or a cyclic permutation of one of these. The number of numbers in the domain resulting in each entry of the loops is denoted s in table 4.

[^0]Table 4. Smorandache 4-digit periodic sequences

s	378	259			
Loop	2178	6534			
s	324	18	288	2430	310
LoOp	90	810	630	270	450
s	446	2	449	333	208
LoOD	909	8181	6363	2727	4545
s	329	11	290	2432	311
LOOD	999	8991	6993	2997	4995

$\mathrm{n}=5$.

Domain $10000 \leq \mathrm{N}_{1} \leq 99999$. There are 900 symmetric integers in the domain. 920 integers in the domain iterate into the invariant 0 due to symmetries.

Table 5. Smarandache 5 -digit periodic sequences

s	3780	2590			
Loop	21978	65934			
s	3240	180	2880	24300	3100
LOOD	990	8910	6930	2970	4950
s	4469	11	4490	3330	2080
LOOD	9009	81081	63063	27027	45045
s	3299	101	290	3110	
LOOD	9999	89991	6999	24320	49995

$n=6$.

Domain $100000 \leq \mathrm{N}_{1} \leq 999999$. There are 900 symmetric integers in the domain. 12767 integers in the domain iterate into the invariant 0 due to symmetries. The longest sequence of iterations before arriving at the first loop member is 53 for $\mathrm{N}=100720$. The last column in table 6 shows the number of integers iterating into each loop.

Table 6. Smarandache 6-cigit periodic sequences

$\begin{gathered} 5 \\ 4 \\ \hline \end{gathered}$	$\begin{array}{r} 13667 \\ 0 \end{array}$																		13667
5	$\begin{aligned} & 13542 \\ & 13586 \\ & \hline \end{aligned}$	$\begin{aligned} & 12551 \\ & 65340 \\ & \hline \end{aligned}$			-														26093
$\begin{gathered} 3 \\ 13 \end{gathered}$	$\begin{array}{r} 12685 \\ 219978 \end{array}$	$\begin{array}{r} 12685 \\ 659934 \end{array}$																	26271
$\begin{gathered} 5 \\ 64 \end{gathered}$	$\begin{array}{r} 19107 \\ 900 \\ \hline \end{array}$	$\begin{aligned} & 2711 \\ & 8100 \end{aligned}$	$\begin{aligned} & 7127 \\ & 6300 \\ & \hline \end{aligned}$	$\begin{array}{r} 12330 \\ \quad 2700 \\ \hline \end{array}$	$\begin{array}{r} 12446 \\ 4500 \end{array}$														16471
$\begin{aligned} & 3 \\ & 6 \\ & \hline \end{aligned}$	$\begin{array}{r} 25057 \\ 9090 \\ \hline \end{array}$	$\begin{array}{r} 18 \\ 81810 \\ \hline \end{array}$	$\begin{aligned} & 12259 \\ & 63630 \\ & \hline \end{aligned}$	$\begin{aligned} & 20993 \\ & 2200 \end{aligned}$	$\begin{array}{r} 1449 \\ 45450 \end{array}$														62776
$\begin{gathered} 5 \\ 66 \\ \hline \end{gathered}$	$\begin{aligned} & 47931 \\ & 9990 \\ & \hline \end{aligned}$	$\begin{aligned} & 14799 \\ & 89910 \\ & \hline \end{aligned}$	$\begin{aligned} & 42603 \\ & 69930 \end{aligned}$	$\begin{array}{r} 222941 \\ 29970 \end{array}$	$\begin{aligned} & 29995 \\ & 49950 \end{aligned}$														358269
${ }^{3} 7$	$\begin{aligned} & 25375 \\ & 90009 \end{aligned}$		$\begin{array}{r} 12375 \\ 630063 \end{array}$	$\begin{array}{r} 21256 \\ 270027 \end{array}$	$\begin{array}{r} 4409 \\ 450045 \end{array}$														63436
$\begin{array}{r} 3 \\ 18 \\ \hline \end{array}$	$\begin{array}{r} 1489 \\ 90909 \\ \hline \end{array}$	$\begin{array}{r} 2 \\ 818181 \\ \hline \end{array}$	$\begin{array}{r} 1005 \\ 636363 \end{array}$	$\begin{array}{r} 1033 \\ 272727 \end{array}$	$\begin{array}{r} 237 \\ 454545 \end{array}$														3765
$\begin{gathered} 5 \\ \hline 9 \end{gathered}$	$\begin{array}{r} 1809 \\ 99099 \\ \hline \end{array}$	$\begin{array}{r} 11 \\ 091891 \end{array}$	$\begin{array}{r} 1350 \\ 693693 \end{array}$	$\begin{array}{r} 1570 \\ 297297 \end{array}$	$\begin{array}{r} 510 \\ 495495 \\ \hline \end{array}$														5250
$\begin{aligned} & 5 \\ & 6 \\ & \hline \end{aligned}$	$\begin{aligned} & 19139 \\ & 99999 \end{aligned}$	2648 899991	7292 699993	$\begin{aligned} & 123673 \\ & 299997 \end{aligned}$	$\begin{array}{r} 12472 \\ 499995 \end{array}$														165224
5	$\begin{array}{r} 152 \\ 109 e 9 \end{array}$	978021	1254 85142	972 615384	492 131868	111 736263	826 373626	485 252747	$\begin{array}{r} 429 \\ 494505 \end{array}$										4725
5	623	64	156	796	377	36	525	140	194	596	117	156							8813
112	43659	912681	726462	481835	76329	847341	70593	398286	374517	340956	318087	462726	164539			006296	286308	517374	

2. The Smarandache Subtraction Periodic Sequence

Definition:

Let N_{x} be a positive integer of at most n digits and let R_{k} be its digital reverse. N_{k} ' is defined through

$$
N_{k}^{\prime}=R_{k} \cdot 10^{n-1-\left[\log _{10} N_{k}\right]}
$$

We define the element $\mathrm{N}_{\mathrm{k}+1}$ of the sequence through

$$
N_{k+1}=\left|N_{k}^{\prime}-c\right|
$$

where c is a positive integer. The sequence is initiated by an arbitrary positive n-digit integer N_{1}. It is obvious from the definition that $0 \leq N_{k}<10^{n+1}$, which is the range of the iterating function.
$\mathrm{c}=1, \mathrm{n}=2,10 \leq \mathrm{N}_{1} \leq 99$
When N_{I} is of the form $11 \cdot \mathrm{k}$ or $11 \cdot \mathrm{k}-1$ then the iteration process results in 0 , see figure la.
Every other member of the interval $10 \leq \mathrm{N}_{1} \leq 99$ is a entry point into one of five different cyclic periodic sequences. Four of these are of length 18 and one of length 9 as shown in table 7 and illustrated in figures 1 lb and 1 c , where important features of the iteration chains are shown.

Table 7. The subtraction periodic sequence, $10 \leq N_{1} \leq 99$

Seq. No 1	12	20	1	9	89	97	78	86	67	75	56	64	45	53	34	42	23	31
Seq. No 2	13	30	2	19	90	8	79	96	68	85	57	74	46	63	35	52	24	41
Seq. No 3	14	40	3	29	91	18	80	7	69	95	58	84	47	73	35	62	25	51
Seq. No 4	15	50	4	39	92	28	81	17	70	6	59	94	48	83	37	72	26	61
Seq. No 5	16	60	5	49	93	38	82	27	71									

$1 \leq c \leq 9, n=2,100 \leq N_{1} \leq 999$
A computer analysis revealed a number of interesting facts concerning the application of the iterative function.

There are no periodic sequences for $c=1, c=2$ and $c=5$. All iterations result in the invariant 0 after, sometimes, a large number of iterations.

For the other values of c there are always some values of N_{1} which do not produce periodic sequences but terminate on 0 instead. Those values of N_{1} which produce periodic sequences will either have N_{1} as the first term of the sequence or one of the values f determined by $1 \leq f \leq c-1$ as first term. There are only eight different possible value for the length of the loops, namely $11,22,33,50,100,167,189$, 200. Table 8 shows how many of the 900 initiating integers in the interval $100 \leq \mathrm{N}_{1} \leq 999$ result in each type of loop or invariant 0 for each value of c.
rable 8 . Loop statistics, $L=$ length of loop, $f=$ first term of loop

c	$f \downarrow / L \rightarrow$	0	11	22	33	50	100	167	189	200
1	N_{1}	900								
2	N_{1}	900								
3	N_{1}	241			59			150		
	1							240		
	2							210		
4	N_{1}	494				42				
	1					364				
5	N_{1}	900								
6	N_{1}	300			59		84			
	1						288			
	2						169			
7	N_{1}	109								535
	1									101
	2									101
	3									14
-	4									14
	5									13
	6									13
8	N_{1}	203				43	85			
	1						252			
	2					305				
	3						12			
9	N_{1}	21	79	237					170	
	4								20	
	5								10	
	6		161							
	7			121						
	8			81						

A few examples:
For $c=2$ and $N_{1}=202$ the sequence ends in the invariant 0 after only 2 iterations:
2022000
For $\mathrm{c}=9$ and $\mathrm{N}_{1}=208$ a loop is closed after only 11 iterations:
20879338887446995555046631127712208
For $\mathrm{c}=7$ and $\mathrm{N}_{1}=109$ we have an example of the longest loop obtained. It has 200 elements and the loop is closed after 286 iterations:

```
109894491 187 774470 67753 350 46633 329916612 209 895 591 188874471
167754450 47733 330 26613309896691 189974472267755 550 48 833 331
126614409 897791190 84473 367756650 49 933 332226615 509898891191
184474467757750 50 43 333 326616609 899 991 192 284475 567758850 51
143334426617709900 2 193 384476667759950 52243335526618809901
102194484477767760 60 53 343 336626619909902 202195584478867761
160 54443337726620 19903 302196684479967762260 55543 338826621
119904402197784480 77763360 56643339926622219905502198884481
177764460 57743340 36623319906602199984482277765560 58843341
136624419907702200 5493387776670,69953352246635529918812211
105494487777770 70 63353346636629919912212205495587778870 71
163354446637729920 22213305496687779970 72263355546638829921
122214405497787780 80 73363356646639929922222 215505498887781
180 74463357746640 39923322216605499987782280 75563358846641
139924422217705500 2
```


3. The Smarandache Multiplication Periodic Sequence

Definition:

Let >1 be a fixed integer and N_{0} and arbitrary positive integer. N_{k+1} is derived from N_{k} by multiplying each digit x of N_{k} by c retaining only the last digit of the product cx to become the corresponding digit of $\mathrm{N}_{\mathrm{k}+1}$.

In this case each digit position goes through a separate development without interference with the surrounding digits. Let's as an example consider the third digit of a 6 -digit integer for $\mathrm{c}=3$. The iteration of the third digit follows the schema:
xx7yyy -- - the third digit has been arbitrarily chosen to be 7 .
xxlyyy
xx3yyy
xx9yyy
xx7yyy -- which closes the loop for the third digit.
Let's now consider all the digits of a six-digit integer 237456:
237456
691258
873654
419852
237456 - which closes the loop.
The digits 5 and 0 are invariant under this iteration. All other digits have a period of 4 for $\mathrm{c}=3$.
Conclusion: Integers whose digits are all equal to 5 are invariant under the given operation. All other integers iterate into a loop of length 4.

We have seen that the iteration process for each digit for a given value of c completely determines the iteration process for any n-digit integer. It is therefore of interest to see these single digit iteration sequences:

Table 9. One-digit multiplication sequences

$\mathrm{c}=2$						$\mathrm{c}=3$					$\mathrm{c}=4$							c=
1	2	4	8	6	2	1	3	9	7	1	1	4	6	4		5	5	
2	4	8	6	2		2	6	8	4	2	2	8	2			0	0	
3	6	2	4	8	6	3	9	7	1	3	3	2	8	2		5	5	
4	8	6	2	4		4	2	6	8	4	4	6	4			0	0	
5	0	0				5	5				5	0	0			5		
6	2	4	8	6		6	8	4	2	6		4	6			0	0	
7	4	8	6	2	4	7	1	3	9	7	7	8	2	8		5	5	
8	6	2	4	8		8	4	2	6	8	8	2	8			0	0	
9	8	6	2	4	8	9	7	1	3	9	9	6	4	6		5	5	

$c=6$		$\mathrm{c}=7$				$\mathrm{C}=8$							$\mathrm{c}=9$			
16	6	17	9	3	1	1	8	4	2	6			1	9	1	
22		24	8	6	2	2	6	8	4	2			2	8	2	
38	8	31	7	9	3		4	2	6	8			3	7	3	
44		48	6	2	4	4	2	6	8	4			4	6	4	
50	0	55				5	0	0					5	5		
66		62	4	8	6		8	4	2	6				4	6	
72	2	79	3	1	7		6	8	4	2				3	7	
88		86	2	4	8		4	2	6	8				2	8	
94	4	93	1	7	9	9	2	6	8	4			9	1	9	

With the help of table 9 it is now easy to characterize the iteration process for each value of c .
Integers composed of the digit 5 result in an invariant after one iteration. Apart form this we have for:
$\mathbf{c = 2}$. Four term loops starting on the first or second term.
$\mathbf{c = 3}$. Four term loops starting with the first term.
$\mathbf{c = 4}$. Two term loops starting on the first or second term (could be called a switch or pendulum).
$c=5$. Invariant after one iteration.
$c=6$. Invariant after one iteration.
$c=7$. Four term loop starting with the first term.
$\mathrm{c}=8$. Four term loop starting with the second term.
$\mathrm{c}=9$. Two term loops starting with the first term (pendulum).

4. The Smarandache Mixed Composition Periodic Sequence

Definition. Let N_{0} be a two-digit integer $a_{1} \cdot 10+a_{0}$. If $a_{1}+a_{0}<10$ then $b_{1}=a_{1}+a_{0}$ otherwise $b_{1}=a_{1}+a_{0}+1$. $b_{0}=\left|a_{1}-a_{0}\right|$. We define $N_{1}=b_{1} \cdot 10+b_{0} . N_{k+1}$ is derived from N_{k} in the same way. ${ }^{2}$

There are no invariants in this case. 36,90,93 and 99 produce two-element loops. The longest loops have 18 elements. A complete list of these periodic sequences is presented below.

```
10 11 20 22 40 44 80 88 70 77 50 55 10
11 20 22 40 44 80 88 70 77 50 55 10 11
12 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 51 64 12
13 42 62 84 34 71 86 52 73 144 53 82 l6 75 32 51 64 12 31 42
14 53 82 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73 14
15 64 12 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 51 64
16}7
```



```
1897 7295 54 91 18
19 18 97 72 95 54 91 18
20 22 40 44 80 88 70 77 50 55 10 11 20
21 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31
22 40 44 80 88 70 77 50 55 10 111 20 22
23}51516412 31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 51
```



```
25}7
26 84 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31 42 62 84
2795}54911897729
28}1
29279554911897 72 95
30 336066 30
31 42 62 84 34 71 86 52 73 14 53 82 16 75 32 51 64 12 31
32}51646412311426284 34 71 86 52 73 144 53 82 16 75 32
3360 66 30 33
34}7
```



```
36 93 36
```



```
38}25\mp@code{73 l4 53 82 16 75 32 51 64 12 31 42 62 84 34 71 86 52 73
3936 93 36
```

[^1]40448088707750551011202240
4153821675325164123142628434718652731453 42628434718652731453821675325164123142
4371865273145382167532516412314262843471 44808870775055101120224044
4591189772955491
$46 \quad 12314262843471865273145382167532516412$
472351641231426284347186527314538216753251
4834718652731453821675325164123142628434
494591189772955491
50551011202240448088707750

54911897729554
55101120224044808870775055
$\begin{array}{llllllllllllllll}56 & 21 & 31 & 42 & 62 & 84 & 34 & 71 & 86 & 52 & 73 & 14 & 53 & 82 & 16 & 75 \\ 32 & 51 & 64 & 12 & 31\end{array}$

584371865273145382167532516412314262843471
5954911897729554
6066303360
 62843471865273145382167532516412314262 63933693
$\begin{array}{lllllllllllll}64 & 12 & 31 & 42 & 62 & 84 & 34 & 71 & 86 & 52 & 73 & 14 & 53 \\ 82 & 16 & 75 & 32 & 51 & 64\end{array}$
652131426284347186527314538216753251641231
6630336066
 6852731453821675325164123142628434718652
6963933693
70775055101120224044808870
71865273145382167532516412314262843471
72955491189772
73145382167532516412314262843471865273

 77505510112022404480887077
786175325164123142628434718652731453821675 $7972955491 \quad 189772$
80887077505510112022404480
8197729554911897
82167532516412314262843471865273145382
832573145382167532516412314262843471865273 84347186527314538216753251641231426284
854371885273145382167532516412314262843471 86527314538216753251641231426284347186

88707750551011202240448088
898197729554911897
909990
91189772955491
922795549118977295
933693
944591189772955491
95549118977295
9663933693
97729554911897
988197729554911897
999099

[^0]: ${ }^{1}$ This is elaborated in detail in Surfing on the Ocean of Numbers by the author, Vail Univ. Press 1997.

[^1]: ${ }^{2}$ Formulation conveyed to the author: "Let N be a two-digit number. Add the digits, and add them again if the sum is greater than 10. Also take the absolute value of their difference. These are the first and second digits of N_{1}."

