ON SOME CONIERGENT SERIES
 by Emil Burton

Notations:
N^{*} set of integers $1,2,3, \ldots$
$d(n)$ the number of divisors of n.
$S(n)$ the Smarandache function $S: N^{*} \rightarrow N^{*}$.
$S(n)$ is the smallest integer m with the property that m ! is divisible by n R set of real numbers.

In this article we consider the series $\sum_{i=1}^{\infty} f(S(k))$.
$f: N^{\star} \rightarrow R$ is a function which satisfies any conditions.
Proposition 1. Let $f: N \rightarrow R$ be a function which satisfies condition :

$$
f(t)=\frac{c}{\left.t^{\alpha}(d t(t)-d(t-1)!)\right)}
$$

for every $t \in \mathbf{N}^{*}, \alpha>I$ constant, $c>0$ constant.
∞
Then the series $\Sigma f(S(k))$ is convergent.

$$
\text { Proof: Let us denote by } m_{t} \text { the number of elements of the set }
$$ $M_{t}=\left\{k \in N^{\star}: S(k)=t\right\}=\left\{k \in N^{*} ; k \mid t!\right.$ and $\left.k+(t-1)!\right\}$.

It follows that $\left.m_{t}=d(t!)-d(t-1)!\right)$.

$$
\sum_{t=1}^{\infty} f(\underline{\bar{s}}(k))=\sum_{t=!}^{\infty} m_{t} f(t)
$$

We have $m_{i} \cdot f(t) \leq m_{t} \cdot \frac{c}{l^{\alpha} m_{t}}=\frac{\varepsilon}{l^{\alpha}}$.
It is well $=$ known that $\sum_{i=1}^{\infty} \frac{1}{t^{\alpha}}$ is convergent if $\alpha>1$.
Therefore $\sum_{k=1}^{\infty} f(S(k))<\infty$.
It is known that $d(n)<2 \sqrt{n}$ if $n \in N^{*}$
and it is obvious that $m_{t}<d(t!)$
We can show that

$$
\begin{align*}
& \sum_{k=1}^{\infty}(S(k) \cdot \sqrt{S(k)!}) . \\
& \sum_{k=1}^{\infty}(S(k)!)^{-t}<\infty
\end{align*}
$$

$$
\sum_{k=1}(S(k) \sqrt{S(k)!})^{-1}<\infty, p>1
$$

ω
$\sum_{k=1}(S(1)!S(2)!\ldots S(k)!)^{-1 / k}<\infty$
∞
$\sum_{k=i}\left(S(k) \sqrt{S(k)!}(\log S(k))^{-!}<\omega, p>1\right.$
Write $\mathbf{f}(\mathbf{S}(\mathbf{k}))=\left(\mathbf{S}(\mathbf{k})^{\cdot} \cdot \sqrt{S(k)!}\right)^{-1}, \mathbf{f}(\mathbf{t}) \equiv\left(\mathbf{t}^{*} \cdot \sqrt{t!}\right)^{-1} \equiv \mathbf{2}\left(\mathbf{t}^{\mathrm{P}} \cdot \sqrt{t!}\right)^{-1}<$
$=2\left(t^{\cdot} \cdot d\left(t^{\prime}\right)\right)^{-1}<2\left(t^{+} \cdot(d(t!)-d((t-1)!))\right)^{-1}$.
Now use the proposition 1 to get ((4).
The convergence of (5) follows from inequălity $t \sqrt{t!}<1!$ if $p \in R, p>1$. $t>t .=\left[e^{2 p+1}\right], t \in N^{*}$. Here $\left[e^{2 p+1}\right]$ means the greatest integer $\leq e^{2 p+1}$.
The details are left to the reader. To show (6) we can use the Carleman's Inequality :Let $\left(x_{\mu_{2}}\right)_{n \in N^{*}}$ be a sequence of positive real numbers and $x_{n} \neq 0$ for some n. Then

$$
\begin{equation*}
\sum_{k=1}^{\infty}\left(x_{r} x_{2} \cdots x_{k}\right)^{1 k}<\sum_{k=1}^{\infty} \sum_{k} \tag{8}
\end{equation*}
$$

Write $x_{k}=(S(k)!)^{-1}$ and use (8) and (5) to get (6).
It is well-known that
∞

$$
\begin{equation*}
\sum_{n-2}\left(n(\underline{l o g} n)^{-}\right)^{-1}<\infty \text { if and only if } \rho>l, p \in R . \tag{9}
\end{equation*}
$$

Write $f(t)=\left(t \sqrt{t!}(\log t)^{\prime}\right)^{-3}, t \geq 2, t \in N^{*}$. We have
©
$\Sigma(S(k) \sqrt{S(k)!}(\log S(k)))^{-1}=\Sigma m_{t} f(t)$.
${ }_{m_{1}=2}^{k=2} f(t)<d(t!) f(t)<2 \sqrt{t!}\left(t \sqrt{\sqrt[k=2]{2}}(\log t)^{2}\right)^{-1}=2\left(t(\log t)^{2}\right)^{-1}$.
Now use (9) to get (7).
Remark 1. Apply (5) and Cauchy's Condensation Test to see that ∞
$\sum 2^{k}\left(S\left(2^{k}\right)!\right)^{-1}<\infty$. This implies that $\lim 2^{k}\left(S\left(2^{k}\right)!\right)^{-1}=0$.
$k=0 \quad k \rightarrow \infty$
A problem :Test the convergence behaviour of the series

$$
\sum_{\Delta=1}^{\infty}\left(S(k) \sqrt{(S(k)-1)!}^{-1} .\right.
$$

Remark 2. This problem is more powerful than (4).
Let p_{a} denote the n-th prime number ($\left.p_{1}=2, p_{3}=3, p_{3}=5, p_{1}=7, \ldots\right)$.
It is known that $\sum_{n=1} 1 / \mathrm{P}_{\mathrm{a}}=\infty$.
We next make use of (11) to obtain the following result :

$$
\sum_{n=1}^{\infty} S(n) / n^{2}=\infty .
$$

We have $\sum_{k=1}^{\infty} S(n) / n^{2} \geq \sum_{k=1}^{\infty} S\left(p_{k}\right) / p_{k}{ }^{2}=\sum_{k=1}^{\infty} p_{k} / p_{k}{ }^{2}=\sum_{k=1}^{\infty} 1 / p_{k}$
Now apply (13) and (11) to get (12).
We can also show that

$$
\sum_{n=1}^{\infty} S(n) / n^{1+p}<\infty \text { if } p>1, p \in R .
$$

Indeed , $\sum_{n-1}^{\infty} S(n) / n^{1+p} \leq \sum_{-1}^{\infty} n / n^{1+p}=\sum_{n-1}^{\infty} 1 / n^{p}<\infty$.
If $0 \leq p \leq 2$, we have $S(n) / n^{p} \geq S(n) / n^{2}$.
∞
Therefore $\sum_{==1} S(n) / n^{p}=\infty$ if $0 \leq p \leq 2$.

REFERENCES:

1. Smarandache Function Journal Number Theory Publishing, Co. R. Muller, Editor, Phoenix, New York, Lyon.
2. E. Burton : On some series involving the Smarandache Function (Smarandache Function J. , V. 6. , Nr. 1/1995, 13-15).
3. E. Burton, I. Cojocaru, S.Cojocaru, C. Dumitrescu : Some convergence problems involving the Smarandache Function (to appear).

Current Address : Dept. of Math. Liniversity of Craiova, Craiova (1100), Romania .

