ON SOME CONVERGENT SERIES by Emil Burton

Notations :

 N^* set of integers 1, 2, 3, ...

d(n) the number of divisors of n.

S(n) the Smarandache function $S: N^* \to N^*$.

 $\hat{S}(n)$ is the smallest integer *m* with the property that *m*! is divisible by *n R* set of real numbers.

In this article we consider the series $\sum_{k=1}^{\infty} f(S(k))$.

 $f: N^* \to R$ is a function which satisfies any conditions. <u>Proposition 1.</u> Let $f: N \to R$ be a function which satisfies condition : $f(t) \leq \frac{c}{r}$

$$f(t) \leq \frac{1}{t^{\prime\prime}(d(t!)-d((t-1)!))}$$

for every $t \in N^*$, $\alpha \ge 1$ constant, $c \ge \theta$ constant.

Then the series $\sum f(S(k))$ is convergent.

<u>Proof</u>: Let us denote by m_t the number of elements of the set $M_t = \{k \in N^* : S(k) = t\} = \{k \in N^* : k \mid t! \text{ and } k \neq (t-1)!\}$. It follows that $m_t = d(t!) - d((t-1)!)$.

$$\sum_{\substack{k=1\\k=1}}^{\infty} f(S(k)) = \sum_{\substack{t=1\\t=1}}^{\infty} m_t f(t)$$

We have $m_t \cdot f(t) \le m_t \cdot \frac{c}{t^{\alpha}m_t} = \frac{c}{t^{\alpha}}$.
It is well = known that $\sum_{\substack{t=1\\t=1}}^{\infty} \frac{1}{t^{\alpha}}$ is convergent if $\alpha > 1$.
$$\sum_{\substack{t=1\\t=1}}^{\infty}$$

Therefore $\sum_{\substack{k=1\\k=1}}^{\infty} f(S(k)) < \infty$.
It is known that $d(n) < 2\sqrt{n}$ if $n \in N^*$
and it is obvious that $m_t < d(t!)$
We can show that

$$\sum_{k=1}^{\infty} (S(k)^{p} \sqrt{S(k)!})^{-1} < \infty , p > 1$$
(4)

$$\sum_{k=1}^{\infty} (S(k)!)^{-1} < \infty$$
(5)

(2) (3)

$$\sum_{k=1}^{\infty} (S(1) ! S(2) ! \dots S(k) !)^{-1} < \infty \qquad (6)$$

$$\sum_{k=1}^{\infty} (S(k) \sqrt{S(k)!} (\log S(k))^{k})^{-1} < \infty, p > 1 \qquad (7)$$
Write $f(S(k)) = (S(k)^{k} \sqrt{S(k)!})^{-1}, f(t) = (t^{k} \sqrt{t!})^{-1} = 2(t^{k} \sqrt{t!})^{-1} < (t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} = 2(t^{k} \sqrt{t!})^{-1} = 2(t^{k} \sqrt{t!})^{-1} < (t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} = 2(t^{k} \sqrt{t!})^{-1} < (t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} < 2(t^{k} \det (t))^{-1} = 2(t^{k} \sqrt{t!})^{-1} < (t^{k} \det (t))^{-1} < 2(t^{k} \det ($

$$k \rightarrow \infty$$

A problem : Test the convergence behaviour of the series

k=0

 ∞

$$\sum_{k=1}^{\infty} (S(k))^{p} \sqrt{(S(k)-1)!})^{-1}.$$
 (10)

<u>Remark 2.</u> This problem is more powerful than (4). Let p_1 denote the n-th prime number $(p_1=2, p_2=3, p_3=5, p_4=7, ...)$. œ (11)

It is known that $\sum_{n=1}^{\infty} 1/p_n = \infty$.

We next make use of (11) to obtain the following result :

$$\sum_{n=1}^{\infty} S(n)/n^2 = \infty.$$
 (12)

We have $\sum_{n=1}^{\infty} S(n)/n^{2} \ge \sum_{k=1}^{\infty} S(p_{k})/p_{k}^{2} = \sum_{k=1}^{\infty} p_{k}/p_{k}^{2} = \sum_{k=1}^{\infty} 1/p_{k}$ (13) Now apply (13) and (11) to get (12). We can also show that $\sum_{n=1}^{\infty} S(n)/n^{1+p} < \infty \text{ if } p > 1, p \in \mathbb{R}.$ (14) $\prod_{n=1}^{\infty} S(n)/n^{1+p} \le \sum_{n=1}^{\infty} n/n^{1+p} = \sum_{n=1}^{\infty} 1/n^{p} < \infty.$ If $0 \le p \le 2$, we have $S(n)/n^{p} \ge S(n)/n^{2}$. Therefore $\sum_{n=1}^{\infty} S(n)/n^{p} = \infty \text{ if } 0 \le p \le 2.$

REFERENCES :

- 1. Smarandache Function Journal Number Theory Publishing, Co. R. Muller, Editor, Phoenix, New York, Lyon.
- 2. E. Burton : On some series involving the Smarandache Function (Smarandache Function J., V. 6., Nr. 1/1995, 13-15).
- 3. E. Burton, I. Cojocaru, S. Cojocaru, C. Dumitrescu : Some convergence problems involving the Smarandache Function (to appear).

Current Address : Dept. of Math. University of Craiova, Craiova (1100), Romania.