ON THE 20-th AND THE 21-st SMARANDACHE'S PROBLEMS
 Krassimir T. Atanassov
 CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria e-mail: krat@bgcict.acad.bg

The 20-nd problem from [1] is the following (see also Problem 25 from [2]):
Smarandache divisor products:

$$
\begin{gathered}
1,2,3,8,5,36,7,64,27,100,11,1728,13,196,225,1024,17,5832,19,8000,441,484,23, \\
331776,125,676,729,21952,29,810000,31,32768,1089,1156,1225,10077696,37,1444, \\
1521,2560000,41, \ldots
\end{gathered}
$$

($P_{d}(n)$ is the product of all positive divisors of n.)
The 21 -st problem from [1] is the following (see also Problem 26 from [2]):
Smarandache proper divisor products:

$$
\begin{gathered}
1,1,1,2,1,6,1,8,3,10,1,144,1,14,15,64,1,324,1,400,21,22,1,13824,5,26,27, \\
784,1,27000,1,1024,33,34,35,279936,1,38,39,64000,1, \ldots
\end{gathered}
$$

($p_{d}(n)$ is the product of all positive divisors of n but n.)
These problems their solutions are well-known and by this reason we shall give more unstandard solutions (see, e.g. [3]).

Let

$$
n=\prod_{i=1}^{k} p_{i}^{a_{i}},
$$

where $p_{1}<p_{2}<\ldots<p_{k}$ are different prime numbers and $k, a_{1}, a_{2}, \ldots, a_{k} \geq 1$ are natural numbers. Then

$$
P_{d}(n)=\prod_{d / n} d
$$

Therefore, every divisor of n will be a natural number with the form

$$
d=\prod_{i=1}^{k} p_{i}^{b_{i}},
$$

where $b_{1}, b_{2}, \ldots, b_{k}$ are natural numbers and for every $i(1 \leq i \leq k): 0 \leq b_{i} \leq a_{i}$, i.e.,

$$
P_{d}(n)=\prod_{i=1}^{k} p_{i}^{c_{i}},
$$

where $c_{1}, c_{2}, \ldots, c_{k}$ are natural numbers and below we shall discuss their form.
First, we shall note that for fixed where $k, a_{1}, a_{2}, \ldots, a_{k}, p_{1}, p_{2}, \ldots, p_{k}$ the number of the different divisors of n will be

$$
\tau(n)=\prod_{i=1}^{k}\left(a_{i}+1\right)
$$

THEOREM: For every natural number $n=\stackrel{k}{\prod_{i=1}} p_{i}^{a_{i}}$:

$$
\begin{equation*}
P_{d}(n)=\prod_{i=1}^{k} p_{1}^{a_{1}+1} . \ldots . p_{i-1}^{a_{i-1}+1} \cdot p_{i}^{t_{a_{i}}} \cdot p_{i+1}^{a_{i+1}+1} \ldots . . p_{k}^{a_{k}+1} \tag{1}
\end{equation*}
$$

where $t_{q}=\frac{q \cdot(q+1)}{2}$ is the $q-$ th triangular number.
Proof: When n is a prime number, i.e., $k=a_{1}=1$, the validity of (1) is obvious. Let us assume that (1) is valid for some natural number $m=\sum_{i=1}^{k} a_{i}$. We shall prove (δ) for $m+1$, i.e., for the natural number $n^{\prime}=n . p$, where p is a prime number. There are two cases for p. Case 1: $p \notin\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. Then

$$
P_{d}\left(n^{\prime}\right)=P_{d}(n \cdot p)=\left(P_{d}(n)\right) \cdot\left(P_{d}(n) \cdot p^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)}\right)
$$

(because the first term contains all multipliers of n multiplied by 1 and in the second term multiplied by p)

$$
\begin{gathered}
=\left(P_{d}(n)\right)^{2} \cdot p^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)}=\left(P_{d}(n)\right)^{a_{k+1}+1} \cdot p^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right) \cdot t_{a_{k+1}}} \\
=\prod_{i=1}^{k+1} p_{1}^{a_{1}+1} \ldots \ldots p_{i-1}^{a_{i-1}+1} \cdot p_{i}^{t_{a_{i}}} \cdot p_{i+1}^{a_{i+1}+1} \ldots \ldots p_{k+1}^{a_{k+1}+1}
\end{gathered}
$$

Case 2: $p=p_{s} \in\left\{p_{1}, p_{2}, \ldots, p_{k}\right\}$. Then $n=m . p_{s}^{a_{s}}$ and

$$
\begin{aligned}
& P_{d}\left(n^{\prime}\right)=P_{d}(n \cdot p)= P\left(m \cdot p_{s}^{a_{s}+1}\right)=\left(P_{d}(m) \cdot 1\right) \cdot\left(P_{d}(m) \cdot p_{s}^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{s-1}+1\right) \cdot\left(a_{s+1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)}\right) \\
& \cdot\left(P_{d}(m) \cdot p_{s}^{2 \cdot\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{s-1}+1\right) \cdot\left(a_{s+1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)}\right) \\
& \ldots \ldots \cdot\left(P_{d}(m) \cdot p_{s}^{\left(a_{s}+1\right) \cdot\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{s-1}+1\right) \cdot\left(a_{s+1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)}\right) \\
&=\left(P_{d}(m)\right)^{a_{s}+1} \cdot p_{s}^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{s-1}+1\right) \cdot\left(a_{s+1}+1\right) \ldots . \ldots\left(a_{k}+1\right) \cdot\left(1+2+\ldots+\left(a_{s+1}\right)\right)} \\
&=\left(P_{d}(m)\right)^{a_{s}+1} \cdot p_{s}^{\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{s-1}+1\right) \cdot t_{s+1}} \\
&= \prod_{i=1}^{k+1} p_{1}^{a_{1}+1} \ldots \ldots . p_{i-1}^{a_{i-1}+1} \cdot p_{i}^{t_{a_{i}}} \cdot p_{i+1}^{a_{i+1}+1} \ldots \ldots \cdot p_{k+1}^{a_{k+1}+1}
\end{aligned}
$$

Therefore, (1) is valid, i.e., Problem 20 is solved. Using it we can see easily, that

$$
\begin{gather*}
P_{d}(n)=\prod_{i=1}^{k} p_{1}^{a_{1}+1} \ldots . . p_{i-1}^{a_{i-1}+1} \cdot p_{i}^{\frac{a_{i} \cdot\left(a_{i}+1\right)}{2}} \cdot p_{i+1}^{a_{i+1}+1} \ldots \ldots p_{k}^{a_{k}+1} \\
=\prod_{i=1}^{k} p_{i}^{\frac{1}{2} \cdot\left(a_{1}+1\right) \cdot \ldots \cdot\left(a_{k}+1\right)} \cdot p_{i}^{a_{1} \cdot \ldots \cdot a_{k}} \\
=\prod_{i=1}^{k} n^{\frac{1}{2} \cdot \tau(n)} \cdot n=n \cdot \sqrt[n]{\prod_{i=1}^{k} n^{\tau(n)}} \\
P_{d}(n)=n \cdot \sqrt{\prod_{i=1}^{k} n^{\tau(n)}} \tag{2}
\end{gather*}
$$

i.e.,
which is the standard form of the representation of $P_{d}(n)$.
From (2), having in mind that

$$
p_{d}(n)=\frac{P_{d}(n)}{n}
$$

it is seen directly that the solurion of 21 -st problem is

$$
p_{d}(n)=\sqrt{\prod_{i=1}^{k} n^{\tau(n)}}
$$

or in the form of (1):

$$
p_{d}(n)=\prod_{i=1}^{k} p_{1}^{a_{1}+1} \ldots \ldots . p_{i-1}^{a_{i-1}+1} \cdot p_{i}^{\frac{a_{i}}{2}} \cdot p_{i+1}^{a_{i+1}+1} \ldots . . p_{k}^{a_{k}+1}
$$

REFERENCE:

[1] C. Dumitrescu, V. Seleacu, Some notions and questions in number theory, Erhus Univ. Press, Glendale, 1994.
[2] F. Smarandache, Only problems, not solutions!. Xiquan Publ. House, Chicago, 1993.
[3] T. Nagell, Introduction to Number Theory. John Wiley \& Sons, Inc., New York, 1950.

