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The 20-rd problem from [1] is the following (see also Problem 25 from [2]):

Smarandache divisor products:
1,2,3,8,5,36,7,64,27,100,11,1728, 13,196,225, 1024, 17, 5832, 19, 8000, 441, 484, 23,
331776,125,676, 729, 21952, 29, 810000, 31, 32768, 1089, 1156, 1225, 10077696, 37, 1444,
1521,2560000,41, ...
(Pi(n) is the product of all positive divisors of n.)
The 21-st problem from [1] is the following (see also Problem 26 from [2]):
Smarandache proper divisor products:
1,1,1,2,1,6,1,8,3,10,1,144,1,14,15,64,1,324,1,400,21,22,1,13824, 5, 26, 27,
784,1,27000,1,1024, 33, 34, 35,279936, 1, 38, 39, 64000, 1, ...

(pi(n) is the product of all positive divisors of n but n.)

These problems their solutions are well-known and by this reason we shall give more
unstandard solutions (see, e.g. [3]).
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where p; < py < ... < pi are different prime numbers and k,ay, as,...,ar > 1 are natural
numbers. Then
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Therefore, every divisor of n will be a natural number with the form
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where by, by, ..., b are natural numbers and for every 7 (1 << k): 0 < b; < ay, e,



where ¢;, ¢y, ..., ¢; are natural numbers and below we shall discuss their form.
First, we shall note that for fixed where &, a1, ay, ..., ax, p1,pP2,-..,px the number of the

different divisors of n will be
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i=

k
THEOREM: For every natural number n = II pj*:
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where ¢, = q.(q.+ 1 is the ¢—th triangular number.
Proof: When n is a prime number, i.e., & = a; = 1, the validity of (1) is obvious. Let us
k
assume that (1) is valid for some natural number m = L a;. We shall prove (8) for m + 1,
i=1

i.e., for the natural number n’ = n.p, where p is a prime number. There are two cases for p.

Case 1: p & {p1,p2,...,px}. Then
Pu(n’) = Py(n.p) = (Pa(n)).(Pa(n).pes+1) — (axt1))

(because the first term contains all multipliers of n multiplied by 1 and in the second term -
multiplied by p)
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Case 2: p=p, € {p1,P2,..-,Px}. Then n = m.p? and

Py(n') = Py(n.p) = P(m.p®+1) = (Py(m).1).(Py(m).plet?): = (Gamitl)-(2sp11). o (aitl))
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Therefore, (1) is valid, i.e., Problem 20 is solved. Using it we can see easily, that
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ie.,

Py(n) =n.

which is the standard form of the representation of Fy(n).
From (2), having in mind that
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or in the form of (1):
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