ON THE 46-th SMARANDACHE'S PROBLEM

Krassimir T. Atanassov
CLBME - Bulg. Academy of Sci., and MRL, P.O.Box 12, Sofia-1113, Bulgaria, e-mail: krat@bgcict.acad.bg
krat@argo.bas.bg

The 46-th problem from [1] is the following:

Smarandache's prime additive complements:

$$
\begin{gathered}
1,0,0,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,3,2,1,0,1,0,5,4,3,2,1,0,1,0 \\
5,4,3,2,1,0,3,2,1,0,5,4,3,2,1,0, \ldots
\end{gathered}
$$

(For each n to find the smallest k such that $n+k$ is prime.)

Obviously, the members of the above sequence are differences between first prime number bigger or equal to the current natural number n and the same n. It is well known that the number of primes smaller or equal to n is $\pi(n)$. Therefore, the prime number smaller or equal to n is $p_{\pi(n)}$. Hence, the prime number bigger or equal to n is the next prime number, i.e., $p_{\pi(n)+1}$. Finally, the n-th member of the above sequence will be equal to

$$
\begin{cases}p_{\pi(n)+1}-n, & \text { if } n \text { is not a prime number } \\ 0, & \text { otherwise }\end{cases}
$$

We shall note that in [2] the author gives the following new formula $p_{\boldsymbol{n}}$ for every natural number n :

$$
p_{n}=\sum_{i=0}^{C(n)} s g(n-\pi(i))
$$

where $C(n)=\left[\frac{n^{2}+3 n+4}{4}\right]$ (for $C(n)$ see [3]) and

$$
s g(x)= \begin{cases}0, & \text { if } x \leq 0 \\ 1, & \text { if } x>0\end{cases}
$$

REFERENCES:

[1] C. Dumitrescu, V. Seleacu, Some Sotions and Questions in Number Theory, Erhus Univ. Press, Glendale, 1994.
[5] Atanassov, K. A new formula for the n-th prime number. Comptes Rendus de l'Academie Bulgare des Sciences, Vol. 54, No. 7, 5-6.
[3] Mitrinović, D., M. Popadić. Inequalities in Number Theory. Niś, Univ. of Niś, 1978.

