ON THE DIOPHANTINE EQUATION $S(n)=n$

Maohua Le
Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R. China.

Abstract. Let $S(n)$ denote the Smarandache function of n. In this paper we prove that $S(n)=n$ if and only if $\mathrm{n}=1,4$ or p , where p is a prime.
Let N be the set of all positive integers. For any positive integer n, let $S(n)$ denote the Smarandache function of n (see[1]). It is an obvious fact that $\mathrm{S}(\mathrm{n}) \leq \mathrm{n}$. In this paper we consider the diophantine equation

$$
\begin{equation*}
S(n)=n, n \in N . \tag{1}
\end{equation*}
$$

We prove a general result as follows:
Theorem. The equation (1) has only the solutions $n=1,4$ or p, where p is a prime.

Proof. If $\mathrm{n}=1,4$ or p , then (1) holds. Let n be an another solution of (1). Then n must be a composite integer with $n>4$. Since n is a composite integer, we have $n=u v$, where u, v are integers satisfying $u \geq v \geq 2$. If $u \neq v$, then we get $n \mid u$!. It implies that $S(n) \leq u=n / v<n$, a contradiction.

If $u=v$, then we have $n=u^{2}$ and $n \mid(2 u)$! It implies that $S(n) \leq 2 u$. Since $n>4$, we get $u>2$ and $\mathrm{S}(\mathrm{n}) \leq 2 \mathrm{u}<\mathrm{u}^{2}=\mathrm{n}$, a contradiction. Thus, (1) has only the solution $n=1,4$ or p. The theorem is proved.

Reference

1. F Smarandache, A function in the number theory, Smarandache function J. 1 (1990), No.1, 3-17.
